Spatial Relations and Natural-Language Indoor Scenes

Stacy Doore will defend her PhD dissertation Thursday April 27 at 12 in room 336 Boardman Hall. All are invited to attend.

Abstract:

SPATIAL RELATIONS AND NATURAL-LANGUAGE SEMANTICS FOR INDOOR SCENES
Over the past 15 years, there have been increased efforts to represent and communicate spatial information about entities within indoor environments. Automated annotation of information about indoor environments is needed for natural-language processing tasks, such as spatially anchoring events, tracking objects in motion, scene descriptions, and interpretation of thematic places in relationship to confirmed locations. Descriptions of indoor scenes often require a fine granularity of spatial information about the meaning of natural-language spatial utterances to improve human-computer interactions and applications for the retrieval of spatial information. The development needs of these systems provide a rationale as to why—despite an extensive body of research in spatial cognition and spatial linguistics—it is still necessary to investigate basic understandings of how humans conceptualize and communicate about objects and structures in indoor space.
This thesis investigates the alignment of conceptual spatial relations and natural-language (NL) semantics in the representation of indoor space. The foundation of this work is grounded in spatial information theory as well as spatial cognition and spatial linguistics. In order to better understand how to align computational models and NL expressions about indoor space, this dissertation uses an existing dataset of indoor scene descriptions to investigate patterns in entity identification, spatial relations, and spatial-preposition use within vista-scale indoor settings. Three human-subject experiments were designed and conducted within virtual indoor environments. These experiments investigate alignment of human-subject NL expressions for a sub-set of conceptual spatial relations (contact, disjoint, and partof) within a controlled virtual environment. Each scene was designed to focus participant attention on a single relation depicted in the scene and elicit a spatial preposition term(s) to describe the focal relationship.
The major results of this study are the identification of object and structure categories, spatial relationships, and patterns of spatial-preposition use in the indoor-scene descriptions that were consistent across both open response, closed response and ranking type items. There appeared to be a strong preference for describing scene objects in relation to the structural objects that bound the room depicted in the indoor scenes. Furthermore, for each of the three relations (contact, disjoint, and partof), a small set of spatial prepositions emerged that were strongly preferred by participants at statistically significant levels based on the overall frequency of response, image sorting, and ranking judgments. The use of certain spatial prepositions to describe relations between room structures suggests there may be differences in how indoor vista-scale space is understood in relation to tabletop and geographic scales. Finally, an indoor scene description corpus was developed as a product of this work, which provides future researchers with new human-subject based datasets for training NL algorithms used to generate more accurate and intuitive NL descriptions of indoor scenes.