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Abstract. There is growing interest in improving indoor navigation using 3D 

spatial visualizations rendered on mobile devices. However, the level of infor-

mation conveyed by these visualization interfaces in order to best support in-

door spatial learning has been poorly studied. This experiment investigates how 

learning of multi-level virtual buildings assisted by mobile 3D displays ren-

dered at different levels of visual granularity effect subsequent unaided naviga-

tion tasks. The visual granularity levels include: a high fidelity model, low fi-

delity model, wireframe model and sparse model. Results showed that using the 

sparse model during learning led to the most accurate and efficient overall 

pointing and navigation performance and that between-floor judgments were 

less accurate when assistance during learning was unavailable. These findings 

demonstrate that more information is not necessarily better and provide new in-

sights into the optimal information content to be included in mobile 3D visuali-

zation interfaces supporting indoor spatial learning and cognitive map devel-

opment. 

Keywords: indoor navigation, 3D visualizations, mobile information displays, 

naïve realism, visual granularity, immersive virtual environments. 

1 Introduction 

Current advancements in the computational resources, memory capacity, and high-

resolution display technologies available on mobile devices means that complex envi-

ronmental visualizations are becoming a viable solution for real-time navigation sys-

tems. However, most existing navigation interfaces are limited to 2D representations 

and work exclusively outdoors. By contrast, our interest here is in designing indoor 

navigation systems based on 3D building visualizations. Considering that on average, 

people spend 87% of their time in indoor spaces [1] and since indoor built environ-

ments often are comprised of complex and confusing 3D spatial structures [2], provid-

ing access to a 3D visualization of the space (i.e., a ground-level egocentric map rep-

resentation) is postulated as being advantageous and more realistic for supporting 

spatial learning and cognitive map development as compared to their traditional 2D 

analogs. Indeed, the efficacy of 3D visualizations and map representations for aiding 
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navigation through indoor environments is a topic of growing interest in both academ-

ic research [3-4] and for commercial applications, e.g. Google Maps and Nokia 3D 

indoor maps.  

One practical question for these 3D visualization based navigation systems is how 

the realism of the 3D models affects human navigation performance? In outdoor envi-

ronments, several authors from the geo-visualization and cartography communities 

have advocated the use of abstract rather than photorealistic 3D visualizations for 

more efficient inference making [5-6]. Empirical experiments addressing this issue 

support the view that users often have misplaced faith in realistic representations, 

termed “Naïve Realism” [7]. For example, people using spatial interfaces for naval 

applications prefer spatially realistic 3D icons of ships and planes on their displays vs. 

functional, symbolic icons. However, these realistic features were shown to actually 

decrease identification performance [7]. Similarly, users predicted they would need 

high-fidelity photorealistic 3D displays to find routes across outdoor terrain, whereas 

experimental results demonstrated that they actually performed the task better with 

lower fidelity displays [8]. Several studies have clearly shown that while photorealis-

tic representations of maps appeal to users, they often have a negative impact on be-

havioral performance [9-10]. As was illustrated in Klippel et al. (2010), people trying 

to use Google street view for wayfinding purposes converged on a similar experience-

-that simply providing photorealism is not enough for accurate spatial learning and 

wayfinding [11].  

However, few studies have been conducted to evaluate the effect of environmental 

realism of mobile interfaces supporting real time indoor navigation. In part, this is due 

to the lack of accurate indoor positioning for indoor environments and a dearth of real 

time indoor data models for use on mobile devices. Although relatively impoverished 

renderings are assumed to be as effective in aiding people’s navigation through indoor 

spaces as photorealistic models, this assumption has not been extensively studied, 

although initial evidence has provided some empirical verification. For example,  

Kalia et al. (2008) found that richly rendered (photorealistic) indoor virtual models 

were not as efficient for spatial learning as a sparse model [12]. However, this study 

did not investigate different levels of visual granularity of 3D models, nor was it 

aimed at evaluating the efficacy of using a mobile navigation device to learn multi-

level buildings, as is the goal here.  

In this study, we experimentally evaluate four simulation fidelity conditions which 

manipulate the level of visual granularity of the environment which is provided to the 

user by a simulated mobile device during learning of virtual buildings. We aim to 

assess whether users’ navigation performance after spatial learning with the mobile 

device differs as a function of the visual granularity of the interface, findings which 

will help specify the optimal information content to be used in future 3D displays for 

real-time indoor navigation systems.  

The experiment was conducted using immersive virtual environments (VEs) rather 

than physical environments (PEs) as VEs best facilitate manipulation of building lay-

out and information content, as well as tracking of movement behavior (see Fig. 1). 



2 Methods 

2.1 Participants 

Twenty participants (10 female and 10 male, mean age=20.9, SD=2.0) were recruited 

from the University of Maine student body. All participants self-reported as having 

normal (or corrected to normal) vision. All gave informed consent and received 

monetary compensation for their time. There were three sessions for each subject, 

with each session lasting approximately one hour. 

2.2 Materials and Apparatus 

We used an SX111 HMD (NVIS, Inc), incorporating inertial tracking, a panoramic 

111 degree field of view, and a high resolution 1260 x 1080 stereo display, which 

provides a highly immersive VR experience. Two Nintendo Wii remotes were used in 

the experiment. One was used by the experimenter to control the sequence of experi-

mental phases, and the other was used by the participant to translate through the VE. 

Turning in the VE was done through physical body rotation.  

Our environments were comprised of five two level buildings which were richly 

rendered in the VE. 3DS Max was used as the 3D modeling and rendering tool. The  

Vizard 3D rendering suite, by WorldViz Inc., was used as the VE platform supporting 

users’ real-time navigation and recording their trajectory and test performance. As is 

illustrated in Fig. 1, two types of models were used in the experiment: virtual reality 

environment models and 3D visualization models. The former simulated the physical 

world in the VE and were made to be as photorealistic as possible in order to foster 

the experience of walking in the physical world. The latter included the 3D visualiza-

tions which were shown on the simulated mobile device during environmental learn-

ing. 

 

Fig. 1. Simulated mobile device in the VE 

Four levels of visualization granularity represent a natural progression of degraded 

surface detail for environmental rendering, while preserving building topology. Each 

model is depicted in Fig. 2. The high fidelity model was rendered with photorealistic 

texture, natural light, and full color (The Mental Ray rendering plug-in was used to 

generate the model. The low fidelity model used grey scale color to represent the 

building and there was no rendering of texture or photorealistic light. The wireframe 



model only rendered the lines at each edge. The sparse model was the simplest repre-

sentation as it only contained the floor plan of each layout without walls and ceilings. 

 

  
High fidelity model Low fidelity model 

  

Wireframe model Sparse model 

Fig. 2. Four visualization fidelity models as shown on the simulated mobile device 

Each level of the building was based on a 3 x 3 matrix of hallways, as illustrated in 

Fig. 3. Each hallway was subdivided into two corridor segments. We deleted two 

segments from the twelve possible corridor segments in the generic environment to 

create our experimental layouts. This procedure ensured that all the layouts were well 

matched in terms of number of nodes, segments, and intersections.  

 

 

Fig. 3. Experimental building layouts 

The two floors were connected by two elevators, which also served as salient 

landmarks for orientation in each of the experimental buildings (“E” represents the 

elevators in Fig. 3). From a top-down perspective, one elevator was always located at 



the top center and the other was located at the southeast corner. In Fig. 3, “L” repre-

sents the starting position during the learning period, which was located at the only 4-

way intersection in the building. The starting position for the navigation tests, indicat-

ed by “S”, was located near one of the two elevators to provide an orientation cue but 

was not visible from the starting learning point. There were two pictures on each floor 

which served as experimental targets, indicated by “T” in Fig. 3. Pictures were based 

on eight high imagery words: bottle, chair, clock, dog, fish, kite, table and tie. All 

routes between pictures were matched across building for route length and number of 

turns. 

2.3 Procedure 

A within subjects design was adopted, with twenty subjects running in all five visual-

ization conditions. There were five phases in the experiment. 

Phase 1: Practice. Subjects were familiarized with the apparatus and navigation be-

havior in the VE. All experimental tasks were explained and demonstrated before 

starting the experimental trials.  

Phase 2: Route learning. In this task, participants learned the route to each picture 

with the assistance of the mobile device. From a north orientation at the learning start 

point, subjects were guided by arrows displayed on the mobile device to each target 

picture in each of the four visualization granularity conditions. After reaching the 

picture, which was hanging on the wall, they were asked to face the picture and re-

member its location. Subjects were then guided back along the same route to the 

learning start point and repeated the task for the next target. During the learning 

phase, the mobile device served as a navigation assistant as it provided increased 

visual access to the overall floor layout than was possible by simply looking around in 

the VE. In a fifth unaided control condition, the mobile device was not available dur-

ing target learning; rather, guidance was done via arrows displayed on the ground. 

The outbound route for target learning was not necessarily the shortest route. Rather, 

we chose routes based on a trajectory that maximized environmental exposure. As 

such, if users looked around as they walked, as was the instruction, they could appre-

hend the entire building after traversal of the four learning routes. Overlap between 

routes was minimized to ensure no part of the building was over-learned.  

Phase 3: Pointing criterion task. To test whether participants had successfully 

learned the four target locations from Phase 2 and could situate them in a globally 

coherent cognitive map of the building, they had to point to each target from the 

learning start point (target order was randomized by floor). The Phase 2 route learning 

and Phase 3 pointing task was done separately for each floor (floor order was coun-

terbalanced). When making the pointing response, participants did not have access to 

the mobile device and no target was visible from the learning start point. Thus, accu-

rate pointing required them to make Euclidean judgments from the learning start point 

to the target, with half of the targets located on a different floor. To meet criterion, 

participants needed to point to targets on each floor within a 15 degree tolerance. If 

they failed the first iteration, the Phase 2 learning and Phase 3 pointing tests proceed-

ed until they either successfully met criterion or until they made four incorrect at-



tempts. We recorded users’ pointing time, angular error, and the number of iterations 

it took to pass the learning criterion test.  

Phase 4: Re-exposure task. After the pointing test, participants once again walked 

from the start point to each of the four pictures (target order was randomized) with the 

assistance of the mobile 3D visualization interface in order to re-instantiate all targets 

in memory before starting Phase 5.  

Phase 5: Unaided Navigation task. To perform this task, participants were posi-

tioned at the navigation start position as shown in Fig. 3. They were then given the 

name of one of the pictures and asked to navigate to it using the shortest route. This 

task was performed without assistance from the 3D visualization interface on the 

mobile device used during learning. The sequences of the pictures were pseudo-

random to ensure two routes were within floor and two routes were between floors. 

Once they believe they had reached the picture, they pressed the button on the Wii 

mote to indicate its location and orientation. The sequence of pictures was counter 

balanced between conditions and participants. As subjects only traveled the route 

between the learning start point and each picture during the learning phase, determin-

ing the shortest route between pictures for this navigation task required accurate de-

velopment and accessing of a “cognitive map” of the entire building. If the participant 

incorrectly indicated the picture’s location or orientation, they were guided to its cor-

rect location and orientation before starting the next trial. This corrective measure was 

done to prevent the accumulation of error between trials. They were then asked to 

follow the same sequence of steps for the next target picture. This was done for four 

routes in total. Two dependent variables for the navigation task were analyzed. The 

first was navigation accuracy, based on whether subjects successfully indicated the 

correct location and orientation of the picture. The second was navigation efficiency, 

based on whether the shortest route was executed (e.g., shortest route length over 

traveled route length). 

3 Results 

3.1 Pointing Task 

A repeated measures ANOVA on pointing angle error was run with visualization (5 

levels: four granularity conditions and the unassisted control) and floor (2 levels: 

within and between floor target trials) as the within subjects factors. The within-

between floor factor was significant, F (1, 39) = 6.495, p < .015, η2 = 0.143, with the 

within floor absolute pointing error being 4.3 degrees lower than the between floor 

pointing error (98.3% of all pointing trials were within the 15 degree tolerance after 2 

iterations). There was no significant main effect of pointing error as a function of 

visualization condition, F (4, 156) = 1.138, p < .341, η2 = 0.028. However, subsequent 

pairwise comparisons showed that pointing error for between floor trials was signifi-

cantly higher than for within floor trials with both the unaided (control) condition 

(p<0.015) and the low fidelity model (p<0.027). 



Table 1. Mean pointing error (SE in parentheses) for within floor and between floors 

 Unaided High Fidelity Low Fidelity Wireframe Sparse 

pointing error 

within floor 

 

5.3 

(.9) 

9.3 

(2.4) 

5.6 

(1.1) 

7.4 

(1.4) 

7.4 

(1.3) 

pointing error 

between floors 

11.3 

(2.9) 

12.8 

(3.3) 

12.1 

(2.9) 

7.9 

(1.7) 

11.8 

(3.6) 

 

A repeated-measures ANOVA on pointing iteration trials was run with the same 

two within-subjects factors. A significant effect was observed for floor, with more 

iterations needed to pass criterion for between floor judgments (m = 1.24, SE = 0.05) 

than for within floor judgments (m = 1.11, SE = 0.023), F (1, 39) = 6.193, p < .017, η
2
 

= 0.137. There was no significant main effect of iteration as a function of visualiza-

tion condition, F (4, 156) = 0.624, p < .646, η2 = 0.016.  

Table 2. Mean iteration (SE in parentheses) for within and between floor pointing judgments 

 Unaided High Fidelity Low Fidelity Wireframe Sparse 

iteration  

within floor 

 

1.08 

(.04) 

1.18 

(.06) 

1.03 

(.03) 

1.13 

(.05) 

1.13 

(.05) 

iteration be-

tween floors 

1.28 

(.10) 

1.28 

(.09) 

1.35 

(.12) 

1.13 

(.05) 

1.18 

(.07) 

 

A repeated-measures ANOVA for pointing time was run with the same within-

subjects factors. Only floor was significant, F (1, 39) = 10.79, p < .002, η2 = 0.217, 

with pointing time taking 3.3 seconds longer for the between floor judgments than for 

the within floor judgments. There was no significant main effect of pointing time as a 

function of visualization condition, F (4, 156) = 0.506, p < .732, η2 = 0.013. However, 

there was a significant interaction between visualization level and floor, F (4, 156) 

=2.754, p < .030, η2 = 0.066. Subsequent pairwise comparisons showed that pointing 

time for between floor trials was significantly longer than for within floor trials with 

both the control condition and the low fidelity model, each p <0.005. 

Table 3. Mean pointing time (SE in parentheses) for within floor and between floor judgments 

 Unaided High Fidelity Low Fidelity Wireframe Sparse 

pointing time 

within floor 

 

7.59 

(.77) 

8.93 

(1.02) 

6.79 

(.68) 

8.53 

(.96) 

8.80 

(.82) 

pointing time 

between floors 

12.21 

(1.69) 

11.86 

(1.97) 

13.60 

(2.16) 

9.87 

(1.23) 

9.83 

(1.26) 



3.2 Unaided Navigation Task 

A repeated-measures ANOVA for target localization accuracy during the navigation 

task was run with the same two within-subjects factors of visualization and floor. 

There was a significant main effect of target localization accuracy as a function of 

visualization condition, F (4, 156) = 2.678, p < .034, η2 = 0.064, with localization 

accuracy after learning with the sparse model (m = 86%, SE=3.6%) being reliably 

higher than after using the low fidelity model (65%, SE=5.7%), p<0.001. The within-

between floor factor was also significant, F (1, 39) = 9.457, p < .004, η2 = 0.195, 

α=0.05, with the navigation accuracy found for within floor performance (83%, 

SE=2.7%) being reliably higher than for between floor judgments (72%, SD=3.6%). 

Table 4. Mean navigation accuracy (SE in parentheses) for within floor and between floors 

 Unaided High 

Fidelity 

Low 

Fidelity 

Wireframe Sparse 

navigation accuracy 

within floor 

 

83% 

(6.1%) 

83% 

(6.1%) 

68% 

(7.5%) 

90% 

(4.8%) 

90% 

(4.8%) 

navigation accuracy 

between floors 

73% 

(7.1%) 

70% 

(7.3%) 

63% 

(7.8%) 

70% 

(7.3%) 

83% 

(6.1%) 

 

A repeated-measures ANOVA for navigation efficiency was also run for the two 

within-subjects factors. There was a significant main effect of navigation efficiency as 

a function of visualization condition, F (4, 156) = 3.192, p < .015, η2 = 0.076. Naviga-

tion efficiency with the sparse model (89%, SE=2.9%) was reliably better than the 

high fidelity model (73%, SD=4.9%) (p<0.008) and the low fidelity model (71%, 

SD=5.0%)  (p<0.001). The within-between floor factor was not significant, F (1, 39) 

= 1.641, p < .208, η2 = 0.040. 

Table 5. Mean navigation efficiency (SE in parentheses) for within floor and between floors 

 Unaided High 

Fidelity 

Low 

Fidelity 

Wireframe Sparse 

navigation efficiency 

within floor 

 

79% 

(5.4%) 

76% 

(5.4%) 

 

73% 

(6.9%) 

87% 

(4.5%) 

92% 

(3.1%) 

navigation efficiency 

between floors 

85% 

(5.4%) 

71% 

(6.7%) 

69% 

(6.6%) 

73% 

(6.9%) 

87% 

(4.9%) 

4 DISCUSSION 

The most important findings of this study are that using the sparse model to assist 

learning led to the highest unaided target to target localization accuracy and route 

efficiency performance. These results provide evidence that use of a sparse model of 

layout structure is better than both of the highest fidelity models for assisting envi-



ronmental learning of complex buildings.  These findings are consistent with, and 

extend, previous research regarding the evaluation of the realism of 2D maps [7-10]. 

One explanation is that participants need to extract picture and layout information 

from high fidelity 3D visualizations to encode the relative positions of these pictures 

as well as their positions in the building, whereas this information is more directly 

specified from the sparse model. This synthesis and extraction process may yield 

additional cognitive effort during learning which resulted in the increased navigation 

error and decreased efficiency for information-rich displays compared to the displays 

rendered with lower visual granularity.  

We interpret the absence of significant differences for any of the five presentation 

conditions in the pointing task (pointing time, pointing iteration trials, and pointing 

error ) as further demonstrating that adding realism to the 3D models during learning 

is neither necessary nor advantageous for extraction of Euclidean relations between 

targets and accurate cognitive map development.  

As for the within-between floor analyses, our results are consistent with previous 

literature for multilevel indoor navigation [13]. Subjects took longer times to point, 

required more iterations to meet criterion, exhibited greater errors, and had lower 

navigation accuracy when pointing and navigating to targets located on different 

floors than when they were on the same floor. These results suggest that it is more 

difficult for people to maintain the spatial relation of objects between floors, likely 

made more difficult when inter-floor layouts are not congruent. Given the known 

challenges for integration of vertical knowledge in cognitive maps, future experiments 

will investigate new mobile visualization interfaces for integrating multi-floor build-

ings during indoor navigation. Importantly, the finding that the control condition 

showed reliably worse between floor pointing performance than the aided conditions 

(but for the low-fidelity model), indicates that having assistance during learning (e.g., 

providing better visual access), may improve knowledge of inter-floor relations. In-

deed, we believe that performance in the control condition was likely elevated for all 

metrics in this experiment as our decision to maximize floor coverage during the route 

learning phase likely provided sufficient opportunity to apprehend global spatial rela-

tions, thereby reducing the inherent benefit afforded by the mobile devices to depict 

layout configuration. It is likely that performance in the unaided condition would have 

been significantly worse if we had used a more realistic route learning paradigm that 

emphasized minimum route length rather than breadth, and was done in buildings 

with greater topological complexity.  

  Taken together, these results provide compelling evidence that there is no reliable 

advantage of 3D information displays rendered at a high level of visual granularity on 

learning and navigation of buildings and that in many cases, the best performance is 

obtained using a sparsely rendered spatial model. To our knowledge, our results are 

the first empirical demonstration showing the advantage of using sparse models on 

portable mobile devices as supporting real-time learning and navigation of complex 

indoor buildings. As illustrated by Smallman et al. (2005), good display design is 

more than slavishly adhering to realism [7]. Our research extends the theory of naïve 

geography to use of 3D real time indoor maps and provides new evidence for the 

basic principle of these displays that graphics should not provide more information 



than is needed by the user [7]. Our results also provide an empirical foundation to 

help guide the development of more efficient visualization interfaces to be imple-

mented on future indoor navigation systems.  
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