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ABSTRACT 

Navigation systems have become increasingly available and more 
complex over the past few decades as maps have changed from 
largely static visual and paper-based representations to interactive 
and multimodal computerized systems. In this introductory article 
to the Special Issue on Human-computer Interaction, Geographic 
Information, and Navigation, we review literature across a variety of 
fields to generate nine design principles to guide future research 
and development of navigation systems. Specifically, we suggest 
making mobile navigation systems more accessible and multimo-
dal, which will make the systems more inclusive and usable for all 
types of users. We also introduce the research articles contributed 
to the present special issue and suggest future research directions 
to empirically evaluate emerging and untested features of user- 
adapted and context-aware mobile navigation systems.
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1. Introduction

Most people travel outside of their homes every day, whether for work, play, or 
to fulfil basic needs. Beyond its personal value, efficient and effective naviga-
tion can ensure that cities operate smoothly or that search and rescue missions 
are successful. Often during travel, people utilize navigation systems to sup-
port wayfinding through the environment. The availability and complexity of 
navigation systems have increased over the past two decades now that smart-
phones and small assistive computers are widely available. For example, 81% 
of adults aged 18 and older in the United States own GPS-enabled smart-
phones as of 2019, which has increased dramatically since 2011, when only 
35% of U.S. adults possessed smartphones (Pew Research, 2019).

Scientists across many disciplines have claimed that navigation systems may 
degrade the user’s spatial learning and spatial problem solving abilities but 
generalizations are difficult to make because not all navigation systems provide 
equivalent information and individuals utilize navigation systems in different 
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ways (Dahmani & Bohbot, 2020; Hejtmánek, Oravcová, Motýl, Horáček & 
Fajnerová, 2018; Ishikawa, Fujiwara, Imai & Okabe, 2008; Ruginski, Creem- 
Regehr, Stefanucci & Cashdan, 2019; Willis, Hölscher, Wilbertz & Li, 2009) . 
For example, people can use navigation systems as a visual map, as a provider 
of auditory route directions, or to check traffic patterns to choose an uncon-
gested travel path. As such, it is critical to synthesize findings across the fields 
of geography (cartography in particular), cognitive psychology, and human- 
computer interaction on the design, implementation, use, and impacts of 
navigation systems (Coughlan, Laczó, Hort, Minihane & Hornberger, 2018). 
Recently, there have been several calls for usability research on mobile geo-
graphic information aids, with many challenges and opportunities outlined for 
future work (Delikostidis, van Elzakker & Kraak, 2016; Roth, 2018).

To this end, in this introductory article to the Special Issue on “Geographic 
Information, Human-computer Interaction, and Navigation,” we aim to pro-
vide a review of recent literature to identify gaps in understanding across 
disciplines and suggest future research directions and challenges based on the 
consideration of these gaps. We start by defining navigation-relevant geospa-
tial information and describing the implementation of this information on 
navigation systems. We then offer some key design recommendations and 
future research opportunities based on these systems.

2. Geospatial information and navigation

Navigation systems have been shown to affect the user’s spatial learning (e.g., 
landmark location and configural knowledge) and navigational efficiency (e.g., 
travel time and navigation accuracy). Often, while the user may reach their goal 
successfully, their spatial learning is negatively affected (Dahmani & Bohbot, 2020; 
Gardony, Brunyé, Mahoney & Taylor, 2013; Hejtmánek et al., 2018; Ishikawa, 
2019; Ishikawa & Takahashi, 2014; Ruginski et al., 2019). Although some naviga-
tion systems can have short-term negative effects on wayfinding and spatial 
learning (e.g., poor immediate recall of the traversed environment; Gardony 
et al., 2013; Hejtmánek et al., 2018; Ishikawa et al., 2008) and others lead to long- 
term deficits (e.g., degradation of spatial cognitive skills and awareness; Dahmani 
& Bohbot, 2020; Ishikawa, 2019; Ruginski et al., 2019), the problem of when and 
how to best use these systems remains multi-faceted. We do not argue that we 
should dispense with navigation systems; they are definitely convenient and 
support self-navigation, for example, for people with various disabilities, and the 
fact that the tools are popular and help simplify navigation tasks suggests that 
people will continue using them. What, then, do we still need to do, and how can 
we specifically improve these systems? What aspects of device design elements are 
associated with degraded spatial learning and navigational efficiency, in terms of 
cartographic visualizations or the method of providing directions? We posit that, 
to be truly effective, design elements should match how individuals categorize and 
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process spatial information, especially in reference to the difficulty that they have 
with accurate spatial orientation and the existence of large individual differences 
in this ability. This line of reasoning – that design should be based on cognitive 
abilities and constraints – reflects a philosophy that has been referred to as 
“cognitive engineering” (Montello, 2002; Montello, Fabrikant & Davies, 2018; 
Raubal, 2009; Richter, Tomko & Coltekin, 2015) and can be discussed in relation 
to the idea of universal design (often also called inclusive design). Universal design 
is the idea that making systems accessible to specific users, such as people with 
disabilities, makes the systems more accessible and inclusive for all users and more 
usable in a wider range of use cases (Iwarsson & Ståhl, 2003; Story, 1998). 
Throughout this paper, we leverage empirical research and cognitive theories to 
argue for design principles that support universal design of mobile navigation 
systems.

2.1. Navigation-relevant environmental information and processes

Navigation-relevant geospatial information can be broadly categorized into 
two types of knowledge: route knowledge and survey knowledge. Both route 
and survey knowledge include landmarks that people use to navigate the 
environment and locate themselves within it; route knowledge typically relies 
on proximal (close in space) landmarks and local cues, and these landmarks 
are not spatially integrated in the learner’s mind (Siegel & White, 1975; see 
Taylor, Gardony, & Brunye, 2018, for a recent review). On the other hand, 
survey knowledge includes information about global features, such as cardinal 
directions and distal (far in space) landmarks, and they are represented in the 
learner’s mind in a spatially integrated manner in a common frame of refer-
ence. These two types of knowledge are also related to navigational preferences 
and strategies, mapping onto, respectively, route-based and orientation stra-
tegies. There are well-studied individual differences in preference for each of 
these navigational strategies (Lawton, 1994; Pazzaglia & De Beni, 2001). 
Route-based strategies tend towards navigation decisions that can be consid-
ered “response-like” based on the sequences of locally encountered cues, 
whereas orientation (or survey) strategies are associated with the ability to 
take novel shortcuts based on a “cognitive map” closely resembling the 
environment in an approximately metric and configurational sense (Furman, 
Clements-Stephens, Marchette & Shelton, 2014; Marchette, Bakker & Shelton, 
2011; Wiener, Tenbrink, Henschel & H ̈olscher, 2008).

Although the major source of information about these landmark cues is in 
many cases visual, other sense modalities are also important for our spatial 
learning and orientation. For example, non-visual cues such as local topogra-
phy are also used in local navigation (Nardi, Newcombe & Shipley, 2013). 
Kinesthetic (sense of limb velocity and movement) and vestibular (sense of 
balance, translational and rotational movement through space) senses in 
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particular are especially important for spatial updating of one’s position and 
orientation (heading direction – the direction that one is facing) in the 
environment (Chrastil, Nicora & Huang, 2019; Chrastil & Warren, 2013; 
Klatzky et al., 1990). Audition, smell, and haptics can also serve as cues for 
spatial location and orientation, either directly through the environment or via 
an assistive device (Hamburger & Knauff, 2019; Jacobs, Arter, Cook & 
Sulloway, 2015; Loomis, Klatzky & Giudice, 2013; Nardi, Twyman, Holden 
& Clark, 2020; Weisberg, Badgio & Chatterjee, 2018). Environmental informa-
tion is thus multimodal and effectively redundant.

The issues of individual differences, navigational strategies, and the 
associated environmental cues used to navigate offer possible guidance 
for the information that navigation systems should provide to effectively 
aid navigators. This suggests a first design principle, that navigation 
systems should provide the option to deliver information about both 
local and global cues in the environment using multiple sensory chan-
nels in their user interface, since this matches how individuals reason 
about and categorize space (Arleo & Rondi-Reig, 2007; see the section 
on “Usability and accessibility” for more research on how multimodal 
cueing aids navigation). While self-selection of sensory feedback is cri-
tical to the avoidance of information overload, multisensory feedback in 
HCI systems reduces cognitive workload and increases usability 
(Freeman et al., 2017; Prewett, Elliott, Walvoord & Coovert, 2011; 
Prewett et al., 2006; Vitense, Jacko & Emery, 2003).

Note that there are many other navigation-relevant processes beyond the 
scope of the present article, such as dead reckoning (see Montello, 2005, for 
a review) and cognitive maps (see Golledge, 1978; Warren, Rothman, Schnapp 
& Ericson, 2017). Importantly, studies from the individual differences per-
spective emphasize that it is more informative to assess how and why people 
differ in the accuracy and developmental pattern of spatial knowledge, rather 
than discussing whether spatial knowledge is maplike – an approach that also 
applies to designing individually-adapted navigation systems (Ishikawa & 
Montello, 2006; Weisberg & Newcombe, 2018).

2.2. Presenting information using navigation systems

In this review, we discuss two essential methods of communicating navi-
gation information through navigation systems: visually-represented maps 
and verbal navigational directions. We then review evidence for the 
effectiveness of multimodality in navigation systems, which makes systems 
more accessible to people with disabilities and a broader range of users 
more generally.
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2.2.1. Visual information: Lessons from cartography, visualization, and the 
human visual system
Geographers have conducted years of research about how to best present map- 
based information to users to support navigation (see Montello, 2002, for 
a review). Creating maps involves a cognitive design process of cartographers 
abstracting from and modelling the complex world, and then communicating 
this information to end-users using visual conventions (Montello et al., 2018). 
This review will focus on cognitive and design issues related to the necessity of 
rapid understanding of environment-orientation information by users of 
mobile navigation systems with low information density. Low density displays 
are often envisaged as limited physical space on a visual display, but this idea 
also relates to other types of user interfaces and displays. For instance, down-
sampling of information and selection of its conveyance is important to 
consider to ensure usability of speech-based information displays and haptic 
displays, both of which can convey similar spatial cues as visual interfaces do 
but via a much lower information bandwidth channel.

First, a navigation system should facilitate matching of the user’s location in 
the real world to their location on a map quickly and accurately, avoiding what 
has been called the “alignment problem.” (Montello, 2010; Presson, 1980). 
A map’s topmost orientation should align with the viewer’s facing direction to 
best facilitate map-environment matching and reduce the need for mental 
spatial rotation or perspective taking (Klippel et al., 2010; Montello, 2010; 
Richardson, Montello & Hegarty, 1999).

How can system design address the alignment problem? People typically 
travel more efficiently when using “track-up” maps, which rotate automati-
cally on a digital device to match the user’s heading direction (Taylor, Brunyé 
& Taylor, 2008). These map displays are contrasted with “fixed alignment” 
displays, which are consistently oriented with a cardinal direction (such as 
north) as the upwards direction regardless of the user’s orientation and head-
ing in the environment. Researchers have shown that determining a heading 
direction is easy with a track-up map, whereas fixed alignment maps facilitate 
relational (memory for position of landmarks relative to one another, which 
facilitates route following) and metric (memory for position of landmarks 
relative to a fixed metric grid or map, which facilitates taking shortcuts) spatial 
learning (Harwood & Wickens, 1991; Montello, 2010). This can result in fewer 
wayfinding errors with a track-up map, even though spatial learning is 
equivalent to, or worse than, that with a fixed alignment map (Münzer, 
Lörch & Frankenstein, 2019). This brings us to a second design principle: 
modern navigation systems should allow the user to choose between north-up 
and track-up maps, as the user’s spatial abilities and usage context determine 
whether a track-up or north-up map is most supportive of wayfinding or 
spatial learning (Meneghetti, Muffato, Varotto & De Beni, 2017; Münzer et al., 
2019).
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Even if the alignment problem is solved, navigators should also be able to 
easily and quickly extract relevant information from a mobile map. Yet this is 
easier said than done – research has shown conflicting results regarding the 
benefits and pitfalls of the level of visual detail on maps. For example, people 
tend to prefer 3D information on maps, but preferences do not necessarily 
align with better performance (Hegarty, 2013). A detailed satellite imagery 
map can result in less efficient navigation, less attentional scanning of global 
landmarks, and more interactions with the map compared with a map con-
taining only building and road footprints, but navigational errors do not differ 
depending on the level of detail (Dillemuth, 2005; Keil, Edler, Kuchinke & 
Dickmann, 2020). Other evidence suggests that landmark visualization in 3D 
increases navigational efficiency by reducing turning errors (Delikostidis et al., 
2013; Li, Corey, Giudice & Giudice, 2016) and enhances spatial learning (Liao, 
Dong, Peng & Liu, 2017). More recent work shows that increased detail 
(satellite imagery) increases spatial memory for landmarks compared with 
a map depicting only building footprints and roads (Stevens & Carlson, 2019). 
Furthermore, individuals with a poor sense of direction perform navigation 
tasks more quickly using mobile maps that provide additional visual detail 
from a 2D perspective (Bienk, Kattenbeck, Ludwig, Müller & Ohm, 2013; 
Ohm, Bienk, Kattenbeck, Ludwig & Müller, 2016). Overall, the effects of visual 
detail on maps seem to depend on users’ tasks, goals, and abilities – making 
this area ripe for future research from an individual differences perspective.

Regardless of visual detail, it is generally agreed that displays should avoid 
visual clutter. Visual clutter can be defined as task-irrelevant visual informa-
tion that distracts the user’s attention from task-relevant features, resulting in 
less accurate inferences or longer reaction times (Fabrikant, Hespanha & 
Hegarty, 2010; Hegarty, Canham & Fabrikant, 2010; Rosenholtz, Li & 
Nakano, 2007; Wilkening & Fabrikant, 2011). It includes multiple defining 
components, such as (1) feature congestion – the ability of a newly added item 
to draw attention; (2) subband entropy – the efficiency at which an image can 
be processed while maintaining quality, where higher entropy means that 
lesser prediction of the features of an item from the features of items close 
by in the display; and (3) edge density – the percentage of pixels in the display 
that are edge pixels (Rosenholtz et al., 2007). Visual clutter becomes an even 
greater problem when the user needs to gather information quickly by glan-
cing, since peripheral vision is especially vulnerable to visual clutter (see 
Figure 1). Given this problem, the texture tiling model – a computational 
vision model that generates images with a simulated peripheral vision loss 
during eye fixations – is a powerful tool for assessing when displays may fail, 
particularly if the displays need to be used during multitasking or time- 
sensitive scenarios (Rosenholtz, 2016, 2020). Put simply, a third design prin-
ciple suggests that navigation systems should avoid presenting non-essential 
information and should minimize visual clutter.
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2.2.2. Providing directions and spatial language
Even if the visual display of a navigation system is well-designed, there 
remains the issue of verbally communicating directions and additional orien-
tation information to the user to supplement the screen-based information. 
Many digital navigation assistants, such as Google Maps, provide turn-by-turn 
directions containing metric information, such as, “in 100 feet, turn left.” 
However, these turn-by-turn directions typically contain little or no informa-
tion about local or global landmarks in the environment, and assume that the 
user makes correct judgments about when and where to turn based on metric 
estimation (such as distance to a nearby intersection). In reality, when people 
provide directions to others in navigation, they often refer to landmarks and 
crucial decision points using gesture-based and natural language descriptions 
(Schroder, Mackaness & Gittings, 2011; Tenbrink & Winter, 2009; 
Weissensteiner & Winter, 2004). These types of directions could be either 
chunking-based, which combine different route elements to inform the 

Figure 1. The phenomena of visual crowding in peripheral vision. Peripheral vision is extremely 
vulnerable to nearby clutter. Fixating on the white star in the top panel, it is very hard to see the 
path of the brown subway line. The task becomes trivially easy when other visual elements are 
removed, as in the rightmost panel. The task simplifies when the map is more abstract and less 
cluttered, even though the map is less geographically accurate (Berman, 2018). Top left and right 
figures reprinted with permission from Rosenholtz and Yu (2019). Bottom panel, Marco Vignelli 
inspired design, Wikipedia.org.
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navigator about the next decision point (e.g., “turn right at the church after 
passing two streets”), or orientation-based, which provide local (near space) 
and global (far space) landmark information (Anacta, Schwering, Li & 
Muenzer, 2017; Klippel, 2003; Klippel, Hansen, Richter & Winter, 2009; 
Krukar, Anacta & Schwering, 2020; Schwering, Li & Anacta, 2013).

How should navigation systems provide directions? Klippel (2003) found 
that both Germans and Americans employ various directional chunking 
strategies to generate route directions, such as landmark chunking (“turn 
right at the main building, go straight after the church”), numerical chunking 
(“turn right at the second intersection, it’s the third street to the right”), or 
structure chunking (“turn right at the roundabout”). Even though there is 
evidence that these types of descriptions are routinely used in natural language 
directions across cultures, there has been relatively little empirical work 
assessing their effectiveness in supporting spatial learning and wayfinding. 
Recently, Krukar et al. (2020) compared the effects of turn-by-turn directions 
(“turn right onto Clark St. in 500 meters”), chunking-based directions (“turn 
right at the church after passing the school”), and orientation-based directions 
(referring to global landmarks such as the city center; “go around the city 
center towards the church, then go through the park”) on the recipient’s 
spatial learning. They found that chunking-based and orientation-based direc-
tions improved spatial learning compared with turn-by-turn directions. 
Furthermore, orientation-based directions resulted in better survey knowledge 
than chunking-based directions without compromising route knowledge. In 
tandem, this research suggests a fourth design principle: that navigation 
systems should implement chunking or orientation information in their 
directions, or, at least, allow users to choose task-appropriate directions 
depending on the relevance of global information.

Other researchers have focused on the general role of landmarks in verbal 
navigational directions (see Richter & Winter, 2014, for a review). People 
typically express a desire for landmark inclusion in directions, particularly 
when encountering critical decision and re-orientation points in the environ-
ment, such as intersections or globally visible landmarks (Denis, Michon & 
Tom, 2007; Michon & Denis, 2001; Snowdon & Kray, 2009). Directions that 
cue navigators to landmarks help to increase navigational efficiency and spatial 
learning, particularly when salient landmarks are emphasized (Klippel & 
Winter, 2005; Nothegger, Winter & Raubal, 2004; Richter, 2007; Schwering 
et al., 2013). Including landmark information in directions improves both 
pedestrians’ and drivers’ procedural and configural spatial learning, particu-
larly at navigation decision points (Gramann, Hoepner & Karrer-Gauss, 2017; 
Wunderlich & Gramann, 2019).

At the same time, landmark cueing can also lead to difficulties or disor-
ientation. For example, when there are multiple turns available at critical 
decision points, navigators become confused about the correct turning point 
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(Hirtle, Richter, Srinivas & Firth, 2010; Tomko & Richter, 2015). However, 
these errors can be minimized by focusing directional cueing on landmarks 
that are salient (such as a major city hall) or provided by the user explicitly 
(Krieger, Kattenbeck, Ludwig, Helmbrecht & Giannopoulos, 2020; Tenbrink, 
2018). Further, urban planners have recommended tailoring urban design so 
that it supports mobile map users, by building simple junctions with land-
marks that are easily recognizable at intersection corners (Ahmadpoor & 
Smith, 2020; Ahmadpoor, Smith & Heath, 2021). Based on this research, we 
suggest a fifth design principle: that navigation systems explicitly cue users to 
decision-relevant and salient landmarks in the environment. A challenge for 
future research includes providing landmark information for global, off-route, 
off-screen, and non-visible landmarks (Dillemuth, 2009; Krukar, Mavros & 
Hoelscher, 2020; see the section on “Providing accessible global and orienta-
tion information” for further discussion).

2.2.3. Usability and accessibility
Making navigation systems more accessible and multimodal for people with 
sensory impairments will facilitate navigation for many users and in various 
navigation contexts. Although the major source of information for spatial 
cognition and navigation is often visual, environmental information is intrin-
sically multimodal and the human brain encodes spatial layout in a modality 
independent manner (Huffman & Ekstrom, 2019; Wolbers, Klatzky, Loomis, 
Wutte & Giudice, 2011). A large body of evidence suggests a functional 
equivalence between vision and other senses due to common perception, 
processing, and representation of spatial information between the senses; for 
example, highly similar navigation performance can be attained when learning 
is based on visual cues and haptic or auditory cues (see Giudice, 2018, for 
a review). This suggests that navigation devices should provide redundant 
spatial information to most effectively support the user’s navigation, and that 
visual information is not necessarily better for supporting navigation than 
information from other sensory modalities.

Much of the navigation system literature has focused on making this technol-
ogy accessible to blind and visually impaired (BVI) people. Navigation by BVI 
travellers poses several practical problems, such as obstacle avoidance and spatial 
updating using varying levels of residual vision and non-visual cues (Barhorst- 
Cates, Rand & Creem-Regehr, 2017; Giudice, 2018; Rand, Creem-Regehr & 
Thompson, 2015; Schinazi, Thrash & Chebat, 2016). Although canes and 
guide dogs are efficient for solving the problems of mobility and obstacle 
avoidance, obtaining relevant information about global landmarks and environ-
mental configurations and updating or maintaining one’s orientation in the 
environment remain difficult and cognitively effortful tasks for BVI travellers, 
something that can be greatly assisted through the use of navigation systems to 
aid in providing updated orientation information (Giudice & Legge, 2008). BVI 
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navigators often only have access to route information since (1) non-visual 
sensing (and degraded visual access) is limited to the immediate environment, 
meaning access to off-route information is generally limited and error prone 
(Giudice & Long, in press) and (2) most navigation systems only provide route 
instructions, rather than global environmental information. However, the most 
accurate navigation and orientation behavior requires knowledge of both route 
information and off-route environmental configuration, as this allows for an 
understanding of spatial relations and global layout, which is important for 
supporting spatial inference, route detours, cognitive mapping, and other com-
plex spatial behaviors (Ahmadpoor & Shahab, 2019; Shelton, Marchette & 
Furman, 2013). For this reason, navigation systems that provide access to off- 
route information or that include the use of complementary accessible maps are 
particularly important for this community. Knowledge about global orientation 
cues and physical mobility information are rarely available to blind users from 
an integrative navigation system and it is important to determine how that 
information should be presented. Three options that have been extensively 
tested are spatial language, touch, and spatialized acoustics (see Gallay, Denis 
& Auvray, 2013, for a review).

Learning via spatial language can support exploration and goal-directed 
wayfinding, not just route following. For instance, describing local landmarks 
and layout configuration in an updated manner (e.g., with respect to the 
navigator’s changing heading and position in the environment as they 
move) facilitates learning of off-route knowledge such as self-to-object rela-
tions and global structure (Giudice, Bakdash & Legge, 2007). More recently, 
Giudice, Whalen, Riehle, Anderson and Doore (2019) found that a navigation 
device providing spatial descriptions assisted a group of blind individuals in 
navigating complex, multifloor indoor environments, similarly to a sighted 
group who had visual access to the same information (Giudice et al., 2020, 
2019). Importantly, blind individuals performed much better when this infor-
mation was accessible during wayfinding compared with when the same 
information was only accessible during route planning.

Touch-based feedback has been implemented successfully in navigation 
systems for people with visual impairments, and has historically taken the 
form of raised-line paper maps, force feedback, or cutaneous feedback via 
joysticks, mice, buttons, and pins (Ducasse, Brock & Jouffrais, 2018). Yet touch 
feedback presents unique challenges on mobile touchscreen devices, which 
have a smooth, 2D surface. Klatzsky, Giudice, Bennett, & Loomis (2014) 
recommended combining touch-based and auditory information, given that 
sound spectrum information contains and can convey spatial location infor-
mation (Auvray, Hanneton & O’Regan, 2007; Klatzky et al., 2014). Another 
option involves combining touch-based vibration information with descrip-
tions in spatial language. Recent evidence using such a system suggests that 
a vibro-audio map, rendered on the touchscreen of a smartphone, results in 
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better wayfinding efficiency and route knowledge development than 
a traditional raised-line tactile map of the same area, even when the auditory 
information is equivalent between the two interfaces (Giudice, Guenther, 
Jensen & Haase, 2020; see also Brock, Truillet, Oriola & Jouffrais, 2010; 
Brock, Truillet, Oriola, Picard & Jouffrais, 2015).

There are instances where a specific modality provides advantages for BVI 
navigators. For instance, spatial sound (sonification) results in better naviga-
tion performance than spatial language for BVI people when navigation is 
conducted under cognitive load (Klatzky, Marston, Giudice, Golledge & 
Loomis, 2006). More generally, sonification results in shorter wayfinding 
times, more accurate spatial memory, and more favorable subjective experi-
ence ratings than spatial language instructions (Clemenson, Maselli, Fiannaca, 
Miller & Gonzalez-Franco, 2021; Loomis, Golledge & Klatzky, 2001; Marston, 
Loomis, Klatzky, Golledge & Smith, 2006). This line of research suggests that 
multisensory user interfaces are important for the design of navigation sys-
tems, as they (1) support a bio-inspired design philosophy built on how the 
brain actually performs spatial information processing and representation, 
and (2) allow for maximum potential user benefit, for example, universal 
design, essentially designing with the idea that supporting disability is simply 
the outcome of supporting diversity of users in the design process. Thus, this 
research suggests a sixth design principle: to adopt design conventions that 
provide redundant, accessible information using multiple sensory modalities 
(e.g., visualization, text, and auditory information).

While we highlighted a rich history of research on building more accessible 
navigation systems for BVI users, there remains a vast array of challenges given 
common map applications’ overreliance on visual information and gesture-based 
feedback. Froehlich and colleagues recently began a special interest group“Making 
Maps Accessible and Putting Accessibility in Maps” which hopes to tackle the 
challenge of providing more pedestrian, accessibility-focused information in map 
applications (Brock et al., 2018; Froehlich et al., 2019).

Froehlich et al. (2019) segment user abilities into three categories: sensory, 
cognitive, and physical. Each set of ability should be considered separately 
during design in order to ensure that the navigation system can be used by the 
widest array of users, that is, support the core tenet of universal design. In 
particular, the group notes that while strides in accessibility for low vision 
individuals have been made, much less research has been done around phy-
sical accessibility (e.g., Tannert & Schöning, 2018) and cognitive accessibility 
(e.g., language comprehension, attentional, or memory degradation issues). 
Age is a great example, as people over 65 are the fastest growing demographic 
(at least in the United States), and experience many (often co-existing) 
changes in sensory, memory, attentional, and other cognitive factors, but are 
little studied in the domain of navigation. A few applications, such as 
Opensidewalks.com and Wheelmap are in early development, but have sparse 

SPATIAL COGNITION & COMPUTATION 11



data and are in need of further research (see Froehlich et al., 2019, for more). 
This leads us to form a seventh principle of navigation system design, that 
systems should provide physical accessibility information, such as availability 
of wheelchair-friendly routes.

Deaf individuals also require different design principles in order to facilitate 
effective navigation. While deaf individuals can utilize visual map applications 
and read directions, this becomes difficult when environmental monitoring or 
a secondary task (e.g. driving) is co-occurring with navigation. To reduce 
cognitive load due to risk monitoring and facilitate effective navigation, wear-
able devices are being developed that classify environmental sounds and 
describe their content and location using textual descriptions and vibrational 
feedback (Findlater et al., 2019; Jain et al., 2020). Research is in the early stages 
of development for navigation systems in this area and presents a major 
opportunity for future investigation. This brings us to an eighth design 
principle: navigation systems should strive to provide information about non- 
visual orientation cues, such as auditory, tangible, and olfactory/smell proper-
ties of the environment.

Differences in cognitive abilities and other factors, such as dementia due to 
aging, also require specific design constraints to fit user needs. For older 
individuals, general declines in cognitive and sensory functioning (e.g., visual 
acuity, working memory, and linguistic comprehension) have to be considered 
when designing navigation systems (see Wiener & Pazzaglia, 2021, for 
a comprehensive review of aging-friendly navigation design). Users’ varying 
cognitive abilities and constraints suggest a ninth and final design principle: 
that navigation systems should strive to minimize users’ cognitive load when 
possible, and at the least avoid cognitive overload. Recent work has developed 
simulation models for non-digital navigation systems, such as signage and 
architectural design, in order to create easy to navigate environments with 
accessible signage (Dubey, Thrash, Kapadia, Hoelscher & Schinazi, 2019; 
Gath-Morad, Aguilar, Dalton & Holscher, 2020). For individuals with intel-
lectual and cognitive disabilities, augmented reality has shown better spatial 
learning and wayfinding outcomes compared to Google Maps and paper 
maps, but there is a dearth of research in this domain and future work and 
application development is needed (Gomez et al., 2015; McMahon et al., 2015; 
Smith et al., 2017). Simulation, virtual reality, and augmented reality offer 
promising mediums for assessing low-cost navigation system prototypes prior 
to implementation in real-world systems.

Importantly, there is not necessarily a “one size fits all” solution for making 
devices more accessible, nor is there a best implementation strategy or user 
interface modality (Loomis, Klatzky, Giudice, Manduchi & Kurniawan, 2012). 
Rather, navigation systems should be tested extensively with respect to user 
abilities and task-based needs, and provide empirically validated options that 
suit the user and situation. Making systems more accessible will contribute to 
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making them easier and more enjoyable to use for all types of users, and 
following the recommendations in the above principles will go a long way 
towards supporting more inclusive design.

3. Lessons learned, open questions, and opportunities for future 
research

3.1. Mobile navigation system design principles

Our review helped to generate design principles for mobile navigation systems 
based on past empirical work that will ensure that future systems are more 
accessible and usable for all navigators. In summary, mobile navigation sys-
tems should strive to:

(1) Provide the option to present both route (e.g., information about local 
turns) and global orientation information (e.g., information about glo-
bal landmarks and cardinal directions).

(2) Allow users to easily choose a preferred map alignment, such as track- 
up or north-up.

(3) Avoid presentation of non-essential information and visual clutter.
(4) Implement chunking and orientation information in verbal directions, or, 

at least, allow users to choose directions based on the importance of global 
spatial information to the user’s goals. Chunking can be landmark-based 
(“turn left at the church after passing the school”), numeric (“turn left 
after passing the second intersection”), or a combination of the two.

(5) Cue users to decision-relevant, perceptually-salient landmarks in the 
environment. Decision-relevant landmarks include those at intersec-
tions and other junctions, while perceptually-salient landmarks could 
include structurally prominent landmarks such as a city hall, or land-
marks specified by the user that are memorable or salient to them.

(6) Adopt design conventions that provide redundant, accessible informa-
tion using multiple sensory modalities (e.g., visualization, text, and 
auditory). Sonification and use of vibrotactile information on commer-
cially available smart devices (phones or tablets) is especially promising 
for facilitating spatial learning for low-vision and blind individuals.

(7) Provide physical accessibility information, such as wheelchair-friendly 
routes.

(8) Provide information about non-visual orientation cues (e.g., sound, 
tactile, and smell properties of the environment).

(9) Minimize users’ cognitive load when possible, and at the least avoid 
cognitive overload (e.g., providing too much information in concur-
rence such that it is not useful, able to be efficiently filtered, or able to be 
remembered by the user).
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What challenges remain, and where is mobile navigation systems research 
headed? We briefly discuss three major challenges and potential approaches: 
adjusting for context, providing accessible global orientation information, and 
providing insights into navigation processes and development over time.

3.2. Adjusting for context

Years of spatial cognition and navigation research point to vast individual 
differences in navigational abilities (Ishikawa & Montello, 2006; Montello, 
1998; Weisberg & Newcombe, 2018) and situational strategies (e.g., navigating 
under stress; Credé, Thrash, Hölscher & Fabrikant, 2019; Frei, Richter & 
Fabrikant, 2016; Gagnon et al., 2018; Ruginski, Stefanucci & Creem-Regehr, 
2018). Designing navigation systems that take into account and adapt to these 
individual abilities, preferences, and contexts remains a challenge. Several 
contextual design recommendations have been recently proposed (Thrash 
et al., 2019), outlined in Table 1. For example, landmarks could be emotionally 
relevant due to the observer’s emotional state or to the emotional valence of 
the landmark itself (Balaban, Roser & Hamburger, 2014) and may change 
performance. Measures of individual differences in preference and perfor-
mance rely on self-report or behavioral responses and can inform the route 
elements presented.

Many researchers have demonstrated that mobile navigation systems 
result in poorer spatial learning as the result of reducing cognitive work-
load and diverting attention from the environment (Brugger et al., 2019, 
Parush, Ahuvia & Erev, 2007). But often, navigation systems are designed 
with the purpose of making wayfinding as easy and efficient as possible, 
often during a concurrent task, such as driving. At the same time, naviga-
tion systems can be used by pedestrians similarly to a map, where spatial 
learning is the primary goal, and not necessarily arriving at a wayfinding 
goal as quickly as possible. The negative effects of navigation systems on 
spatial learning are likely only problematic if they (1) contribute to 
a cognitive decline more generally and causally over a long time period, 

Table 1. Design recommendations for geographic information display (GID) 
elements based on context. originally appearing in (Thrash et al., 2019).

GID element Design recommendation

Landmarks Emphasize emotionally relevant landmarks
Landmarks Provide virtual landmarks via augmented reality
Landmarks Emphasize landmarks at critical decision points
Routes Provide multiple route options
Routes Personalize route options to match individual preferences
Topography Only provide sparse information under time pressure
Topography Provide richer details without time pressure
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or (2) affect the user’s wayfinding goals and user experience negatively. 
Because of this, it is important to further study the interaction between 
navigation systems and wayfinders’ goals in real-world contexts. Designing 
navigation systems to serve various navigation contexts and understanding 
how navigation systems affect users’ differing wayfinding goals is an impor-
tant area for future research.

3.3. Providing accessible global and orientation information

3.3.1. Restricted displays and global information
Limited screen space is a major challenge when displaying maps on mobile 
navigation systems. Many modern map applications such as Google Maps 
and OpenStreetMap allow users to dynamically change map scale by panning 
and zooming. Still, global landmarks may be difficult to find efficiently using 
map panning and zooming operations. Some methods have sought to solve 
this issue by portraying landmark information on the borders of device 
screens, which provides additional information about landmarks that are 
not in view (Baudisch & Rosenholtz, 2003; Li, 2019; Schwering, Krukar, Li, 
Anacta & Fuest, 2017).

Even if an optimal visualization is chosen, selecting which specific land-
marks to display has important implications for spatial learning and way-
finding. Löwen, Krukar and Schwering (2019) found that highlighting local 
landmarks on a mobile map supported route knowledge acquisition, whereas 
highlighting global landmarks supported survey knowledge acquisition. 
Systems have also been developed that change the level of detail of naviga-
tional directions depending on the stage of the navigator’s route (Klippel 
et al., 2009; Tenbrink & Winter, 2009). One recent solution implements 
guiding arrows that point to off-screen goal landmarks on navigation sys-
tems, and has promise as a solution to achieve both efficient navigation and 
effective spatial learning (Maidenbaum, Patel, Gedankien & Jacobs, 2020). 
Implementing off-screen, global landmark visualization in real time will be 
a challenge for future work, considering the problems of contextual land-
mark selection, varying landmark granularity, and non-visual navigation 
system design (Palani, Giudice & Giudice, 2016; Rastogi, Pawluk & 
Ketchum, 2013; Schwering et al., 2017).

3.3.2. When GPS is challenging, noisy, or unavailable
Many challenges with retrieving global positioning information have been largely 
solved by the increasing availability of location-based services to support naviga-
tion (Hirtle & Raubal, 2013). GPS devices often possess fairly accurate knowledge 
of the world assuming the signal arrives to the device, and can provide this 
information via mobile map applications, such as Google Maps. When there is 
uncertainty in GPS signalling, research suggests the viability of visualizing position 
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using blurry visual boundaries and providing users with additional information 
about local environmental cues to aid self-localization (McKenzie, Hegarty, 
Barrett & Goodchild, 2016; Ranasinghe, Heitmann, Hamzin, Pfeiffer & Kray, 
2018; Ranasinghe et al., 2018; Ranasinghe & Kray, 2018).

Location information remains especially challenging to provide for indoor 
environments due to technological limitations (no consistent GPS signals or 
inconsistent building maps) and perceptual limitations (limited sight lines or 
multiple floors) (Basiri et al., 2017; Giudice et al., 2019; Riehle, Anderson, 
Lichter, Whalen & Giudice, 2013). A recently developed solution, NavCog, 
utilizes Bluetooth beacons to provide turn-by-turn, point of interest, and 
accessibility information for effective indoor navigation using auditory cues 
(Ahmetovic et al., 2016). To our knowledge, there are no standards or broadly 
accepted conventions for indoor GIS and digital building maps, leaving this an 
open research area ripe for future work.

3.4. Providing insights into navigation processes

Beyond determining whether navigation systems affect wayfinding efficiency 
and spatial knowledge positively or negatively, future research should system-
atically examine how navigation systems affect navigation processes and differ-
ent levels of spatial knowledge. This will help clarify system effectiveness within 
specific contexts. For example, a navigation system used in a car might be “good 
enough” and facilitate efficient navigation even if the driver only gains sequential 
knowledge of turns. We present a summary of previously validated measures of 
spatial learning and navigation efficiency in Table 2, and hope that it is helpful to 
researchers who aim to empirically evaluate navigation systems.

Future work should also incorporate more ecologically valid, real-world 
usage contexts to increase generalization of results. In these cases, wayfinding 
trajectories, specifics of application use, familiar environment knowledge, and 
learning of new environments could all be measured or manipulated to 
increase insights into behavior–system–environment interactions. For exam-
ple, mobile eye tracking has been proposed as a rich tool to measure indivi-
duals’ dynamic wayfinding behaviors using navigation systems (Kiefer, 
Giannopoulos, Raubal & Duchowski, 2017; Kiefer, Straub & Raubal, 2012) 
and to model gaze-based landmark salience (Krukar et al., 2020; Wang, Chen, 
Zheng, Yuan & Wang, 2020). In addition, MapRecorder is a recently devel-
oped tool that provides insights into interaction with common navigation 
systems such as Google Maps (Savino et al., 2020)

The effects of navigation systems on navigational processes throughout the 
lifespan also need to be further investigated (Unrau & Kray, 2019). To our 
knowledge, there is still no causal evidence of long-term detriments to spatial 
cognitive abilities from navigation system use, and thus a need for longitudinal 
studies to assess open questions of causality based on within-person, repeated- 
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measures experimental designs (Newsom, 2015). In this line of work, device 
use can be monitored over periods of weeks, months, or years to better 
understand how devices affect spatial cognition over time, as well as how 
users adapt to device interfaces over time. This research will also help expand 
an understanding of navigation in familiar environments, even though most 
studies cited in this review assess navigation in unfamiliar environments.

4. Introduction to the special issue

The current special issue features six articles, in addition to the present 
introductory review article, that contribute to open questions regarding the 
study of mobile navigation systems. These articles take on important questions 
in the areas of navigation systems regarding navigation behavior in an emer-
gency context (Snopkova et al.), provision of navigational directions on 
navigation systems (DeCock et al.; Kattenbeck et al.), and visual design of 
navigation system maps (Gardony et al.; Smith et al.; Sugimoto et al.).

Research included in the issue broadly shows that context plays an impor-
tant role in wayfinding with navigation systems. Snopkova et al examined 
people’s route choice in emergency evacuation using virtual-reality simula-
tion. They found that the tendency to apply a route-retracing strategy was 
lower when a designated evacuation path was wide and straight. Also, 

Table 2. Behavioral measures of spatial learning and navigation efficiency.
Spatial learning Navigation efficiency

Survey knowledge: take 
shortcuts beyond 
previously traversed 
routes; cognitive map 
with landmark 
relations

● Distance estimation or metric 
knowledge
○ Blind walking1

○ Verbal estimate
○ Visual matching task2

● Cognitive map or relative environ-
mental configuration
○ Sketch map drawing3

○ Bidimensional regression4

○ Judgment of relative direction 
task5

○ Egocentric pointing task6

○ Shortcut tasks
● Latent spatial learning
○ Combination of pointing, cogni-

tive map, distance estimation7

● Distance travelled to goal
○ Deviation from shortest straight-line 

path
○ Choice of shortcut or route following 

(e.g. dual solutions paradigm8)
● Time to goal
● Natural exploration
○ Revisiting9

○ Diffusion9

○ Directional persistence10

○ Pausing10

Route knowledge: 
Landmark recognition 
and memory of turns

● Landmark recognition11

● Sequential memory (ordering land-
mark images)

● Route retracing12

● Pointing to landmarks on the same 
route13

● Distance travelled to goal
● Time to goal
● Number of turning errors

Numbers reference the following studies: 1. (Loomis et al., 1993); 2. (Rand, Barhorst-Cates, Kiris, Thompson & Creem- 
Regehr, 2019); 3. (Schwering et al., 2014); 4. Friedman & Kohler, 2006; 5. Shelton & McNamara, 1996; 6. (Mou, 
McNamara, Valiquette & Rump, 2004); 7. (Hegarty, Montello, Richardson, Ishikawa & Lovelace, 2006); 8. (Marchette 
et al., 2011); 9. (Gagnon et al., 2018); 10. (Munion, Stefanucci, Rovira, Squire & Hendricks, 2019); 11. (Wunderlich & 
Gramann, 2019); 12. (Brügger, Richter & Fabrikant, 2019); 13. (Weisberg, Schinazi, Newcombe, Shipley & Epstein, 2014)
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availability of a floor plan during evacuation facilitated the choice of 
a designated evacuation path. These results provide implications for the 
design of a building and the provision of evacuation information with an 
understanding of people’s spatial behavior in emergency situations. De Cock 
et al. found that navigation instructions reduce wayfinding errors to a greater 
degree when wayfinding instructions are adapted to the type of decision 
point in the environment, compared to when the same type of instructions is 
used across all decision points – suggesting that systems should provide 
different types of instructions based on environmental context. Kattenbeck 
et al. examined when and where to provide landmark-based navigational 
instructions to the traveller along a route, with a view to developing auto-
mated navigation tools. They found that preferred timing of route instruc-
tions was related to personality traits, orientation abilities, route length, land 
cover types, and familiarity. The results shed light on the discussion of user- 
adapted and context-aware navigation assistance.

The next series of papers examined the effects of visual map design on 
wayfinding with navigation systems. Smith et al. developed two different types 
of mobile maps that depicted off-screen landmarks as symbols and varied 
whether the maps had game-like dynamic updating of symbols versus fixed 
locations of symbols. Using a route-following task in a real-world city and 
a task of pointing to previously visited landmarks, their findings suggest that 
dynamically updating landmark locations on a map can facilitate abilities to 
update one’s spatial location and orientation along a novel route. They also 
discuss the benefits and challenges of interdisciplinary and mixed-methods 
approaches across geospatial science and experimental psychology. Further, 
Gardony et al. assessed the impact of graphical detail of 3D terrain models on 
spatial localization and orientation in large-scale environments. Their surpris-
ing results, based on an interactive geo-visualization paradigm, showed that 
rendering a moderate (rather than maximum) level of detail was sufficient for 
supporting these behaviours. Findings were used to motivate new percep-
tually-driven guidelines for collecting and communicating 3D terrain models 
for accurate end-user visualization of spatial data.

Lastly, Sugimoto et al. compared people’s spatial memory and navigation 
performance when they learned route using a smartphone map and a paper 
map. Their results demonstrated that route learning was reliably less accu-
rate when using the smartphone map. Of interest however, this performance 
deficit was not perceptually obvious to the participants, as their self- 
evaluation data revealed no significant differences between the two map 
conditions on ratings of state anxiety and confidence. These findings suggest 
that users are not only worse when using smartphone-based maps but that 
they are unaware of the learning and memory impairments caused by the use 
of this technology.
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The study of navigation systems is a wide-ranging, interdisciplinary effort that 
has only just begun given the increasing complexity of digital navigation systems. 
While some may argue that overreliance on GPS devices is problematic for 
navigational skills, our review finds a more nuanced story – that navigation 
systems can aid wayfinding and spatial learning when designed based on theories 
of human behaviour, perception, and cognition; which in turn makes the devices 
more accessible. For instance, they should provide access to landmarks and be 
inclusively designed to support users of varying abilities in their desired naviga-
tion goals. To further research in this area, we provide design principles and 
tangible goals for future work considering remaining research challenges. Our 
special issue is a first step in this direction, containing multiple studies across 
disciplines addressing open questions in the study of navigation systems.
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