

Beyond the Basics: Cutting-Edge Stock Preparation for Molded Fiber

Thermoformed Molded Fiber Symposium University of Maine December 10-11, 2024

Tina Lawton, Valmet Inc. Director, Stock Preparation and Recycled Fiber, North America

Agenda

- Introduction
- Pulping
- Equipment protection
- Refining
 - Refiner types
 - Refining mechanism and impact on fibers
 - Factors affecting refining
 - Specific energy
 - Refining intensity
 - Refining efficiency
- Deflaking

Valmet Today: Progress built on 220 years of industrial history

From cloth making to high-tech processes

Valmet Today: Unique offering combining process technology, services, and automation

Board and paper technologies

- Board, paper, and tissue production lines, tissue converting
- Rebuilds
- Machine sections
- Stock preparation systems
- Recycled fiber systems

Services

- · Spare and process parts
- Workshop and roll services
- Fabrics
- Maintenance development and outsourcing
- Field services
- Process upgrades
- Industrial Internet solutions

Pulp technologies

- Complete pulp mills
- Pulp mill processes
 - Wood handling, Cooking and fiber line, Pulp drying and baling, Chemical recovery

Energy technologies

- Heat and power generation
- Air emission control
- · Biofuels production

Flow Control and Automation Systems

- Valves
- Valve automation
- · Valve controls
- Distributed Control Systems (DCS)
- Quality Management Systems (QMS)
- Analyzers and measurements
- Industrial applications
- Services and Industrial Internet solutions

Overview of stock preparation offering

Solutions and equipment to process raw materials for all paper grades and pulp lines

Stock preparation for molded fiber

Mold your fibers for optimal results

Well designed stock preparation system ensures smooth operation and preferred end-product qualities

Stock preparation concept for multiple forming machines Several different fiber types from one pulper

Pulping

Bale Pulper

- One bale pulper batch operation
- Several different fiber types can be served from one pulper
- Number of fiber lines depending on need for separation of fibers and individually treat the fiber types
- Broke collection from several machines can be brought to common broke pulper
 - Plant layout and need for separation of broke types define the number of broke lines

Bale Pulper Operation principle

Valmet 🔷

Bale Pulper Factors affecting slushing

Improving pulper performance

- Vat design
- Rotor design and material •
- Process hydraulics, consistency, controls

1.70 1.53 1.36 1.19 1.02 0.85 0.68 0.51 0.34 0.17

Equipment protection

Refiner and Deflaker protection alternatives

Valmet Protection Screen DX offers barrier protection down to 2 mm wide slots to remove remaining bale wires with highest efficiency

Protection Screen

- Used to remove large contaminants, safeguarding downstream equipment
- Barrier protection down to 2 mm wide slots
- Screen cylinder creates a barrier, filtering out contaminants larger than its screen cylinder apertures
- Can operate with consistencies up to 5.5%
- Low maintenance costs
- Low energy consumption
- Cost effective barrier screen that minimizes downtime

Valmet Protection Screen DX

Refiner and Deflaker protection alternatives

Valmet high consistency cleaners – lower cost alternative offering good protection

High Consistency Cleaner

- Used to remove large heavy-weight contaminants (metal, rocks, etc.) to protect downstream equipment (refiners, deflakers, etc.)
- Lower cost alternative to protection screen, also offers good protection, but it is a probabilistic separation so there's no 100% separation guarantee
- At low production rates, accepts consistency drops and may be too low for refining or deflaking

Refining

Refiners

Ensure the preferred qualities and strength in the final molded fiber products

Double disk refiner operation An energy transfer device

Pulp in

How refining works

- Fiber flocs staple and collect along bar edges
- Fibers are compressed and unraveled as rotor and stator bars pass each other
- Successive compression and relaxation changes the fiber properties

Refining effects and objectives

- Effects
 - Defibration
 - Internal fibrillation
 - External fibrillation
 - Cutting

- Objectives
 - STFI, ring crush
 - Tensile, burst/mullen
 - Plybond
 - Formation
 - Freeness
 - Smoothness
 - Porosity
 - Bulk
 - Shive reduction
 - Fiber length
 - Fines
 - Etc.

Effects of refining: external fibrillation – "brushing"

Increased surface area also gives more surface-tosurface contact (↑ strength)

Unrefined fibers with low surface area

Refined fibers with lots of surface area

Effects of refining: internal fibrillation, fiber collapse, and densification

Unrefined

Refined

Flexible fibers

Flexible fibers have more surface-tosurface contact, increasing strength

External and internal fibrillation

Factors affecting refining

Valmet's LC Refining Optimization Process

Refining 7 Step "Sub-System" Analysis

Refining 7 Step "Sub-System" Analysis

Definition: The amount of energy transferred from the refiner's motor to the fiber

• Equation: SE = HPD/T =
$$\frac{\text{Motor Load (HP)} - \text{No Load (HP)}}{\text{TPD}}$$

Effects of refining on fiber properties

Refining 7 Step "Sub-System" Analysis

Refining intensity (Specific Edge Load theory – SEL)

- Definition: a term used to define "how" the energy is applied to the pulp
- A measure of how severely the energy is applied
- The amount of energy (watts) applied across one meter of a refiner segment's bar edge and transferred to the pulp in one second (Ws/m)

Pattern Design Plays Key Role

Intensity (Ws/m) = (km Bar Edge Crossings/Rev) (RPM) (1min/60sec)

Cutting Edge Length (CEL) km of bar edge crossings per revolution

- Refiner pattern identity
- Bar edge length measurement
- DD Refiners: based on a full filling (4 Circles) and one full rotation of the rotor

- Energy transfer points: Motor \rightarrow Shaft \rightarrow Rotor \rightarrow Segment \rightarrow Bar edge crossing \rightarrow Fiber
- Determines brushing (fibrillation) or cutting

Refining intensity

Low intensity→ Less energy per impact on the fibers

Refining 7 Step "Sub-System" Analysis

Refining efficiency: Freeness drop / HPD/T

- Indicator of how much work has been done to the pulp
- Correlates to paper machine drainage characteristics
- A great tool for evaluating refiner efficiency

Deflaking

Deflaker

- **Defiberizes** and breaks down fiber bundles
- Homogenizes stock
- Maximizes the yield of repulped material
- **Controls** the deflaking result with gap adjustments

Deflaking basics Factors affecting deflaking

10 December 2024

Deflaking mechanism

Deflaking mechanism based on internal friction between fibers, not on mechanical action

- The purpose of deflaking is to separate fibers
- The purpose of deflaking is not to affect fiber properties

Internal friction is created by accelerating and decelerating stock flow between a high speed rotating rotor and a stationary stator fillings through narrow gap

• The deflaking result is based on energy used in deflaker to create vortex

Deflaking mechanism

Deflaker has higher hydraulic forces than pulper due to higher peripheral speed and intensity. Hydraulic forces in deflaker are more effective to break small size flakes and fiber bundles.

Thank you!

Beyond the Basics: Cutting-Edge Stock Preparation for Molded Fiber

Tina Lawton, Valmet Inc. Director, Stock Preparation and Recycled Fiber, North America <u>Tina.Lawton@valmet.com</u> 916-847-7562

