



# INCREASING WET END TURBULENCE IN MOLDED FIBER PRODUCTION

Presented by: Jim Fogg and Karl Palmer

#### A Kiefel-Solenis Collaboration Project





Solenis, LLC Wilmington, DE

BGU, Dover, NH





#### Impetus for the Study

BRÜCKNER GROUP USA

#### **Customer Driven**

- The market is always searching for the means to make a better product faster.
  - How can we improve strength properties?
  - How can we reduce cycle time?
  - How can we improve OGR and other barrier properties?



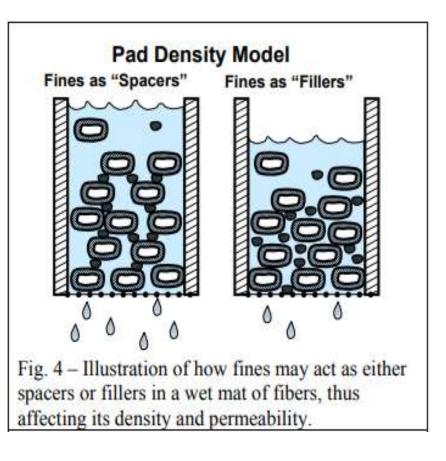
Solenis.

A Critical Papermaking Parameter- Formation





- Approach System, Headbox, Slice lip and Table
  - All setup to create an even distribution of fiber and keep flocculation to a minimum until the sheet is set.
  - Significant time and technology spent on this part of the papermaking process.
  - Improved formation, or minimum flocculation of the fiber mat, provides
    - Improved strength
    - Improved drainage and drying- speed improvement
    - A less porous sheet
    - Better printability (might translate to holdout in MF)




### Densification of the Fiber Mat

Solenis.

BRUCKNER GROUP USA

Hubbe, Martin. (2002).



#### **Examples of Formation**

Good Formation- Even Fiber Distribution



Poorer Formation- Heavy Floc Formation

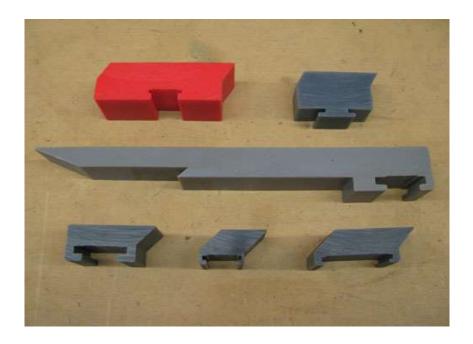
Solenis.

BRUCKNER GROUP USA



### Impetus for the Study

Papermaking Experience

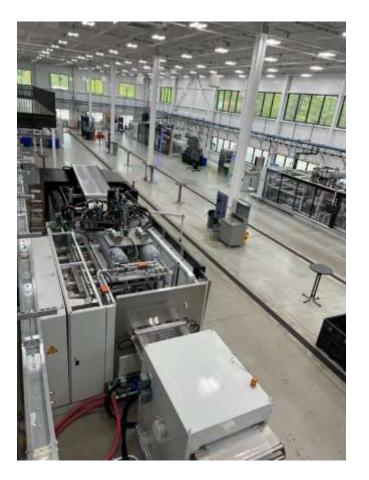

- Turbulence is key to wet end forming on a paper machine.
  - Improves drainage.
  - Improves formation.
    - Improves strength
    - Improves hold out
  - Can we take this base knowledge and transfer it to molded fiber?

#### Table Foil Elements Designed for Turbulence

Solenis.

BRUCKNER

GROUP USA




List of Equipment

- Regmed Lab Refiner
  - Fine Bar Refiner Plates
- L&W Fiber Analyzer
- Kiefel Natureformer KFT Lab
  - Shallow Tray
- Modix 3D Printer
- Testing Equipment at Solenis Technical Center
  - Paper-perfect Formation Tester
  - Caliper Meter
  - Porosity Tester
  - Tensile Tester
  - Mullen/Burst Tester



#### BRUCKNER GROUP USA



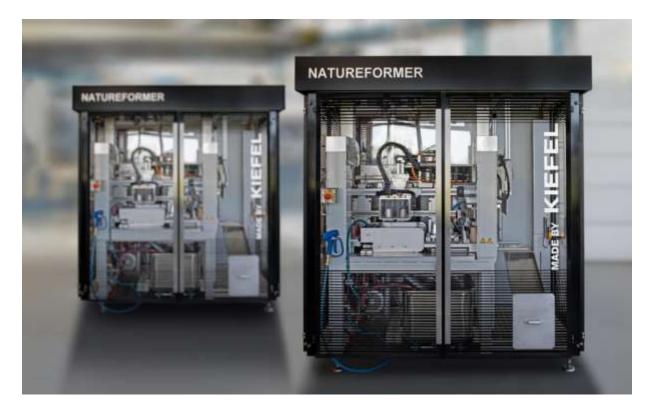
Regmed Lab Refiner

- Refiner Specs
  - 7.5 hp, 1750 rpms
  - 50-liter capacity



**Fine Plate Specifications** 

- Sectors 20
- Angle- 12.5
- Bar- 1.2 mm
- Groove- 2 mm
- CEL Cutting Edge Length- 0.89 km/rev
- Cutting Speed- 25.96 km/s
- SEL- Specific Edge Length- 0.1 W.s/m






BRUCKNER GROUP USA

В

#### Kiefel Natureformer KFT Lab



#### Shallow Tray

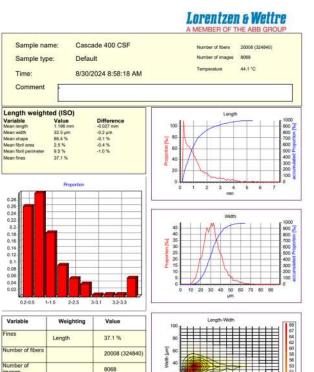


Solenis.

BRUCKNER

GROUP USA

В


#### **Pulp Specifications**

#### Cascade White Gold

| Length weighted (ISO)   |                   |           |
|-------------------------|-------------------|-----------|
| Variable<br>Mean length | Value<br>1.196 mm | -0.027 mm |
| Mean width              | 32.5 µm           | -0.2 µm   |
| Mean shape              | 86.4 %            | -0.1 %    |
| Mean fibril area        | 2.5 %             | -0.4 %    |
| Mean fibril perimeter   | 9.5 %             | -1.0 %    |
| Mean fines              | 37.1 %            |           |



П



44.1 °C

- µm

images

Fiber Wall

Thickness

Temperature

51

49

47

44

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5 5 5 5 6 6 5 7 7 5 42

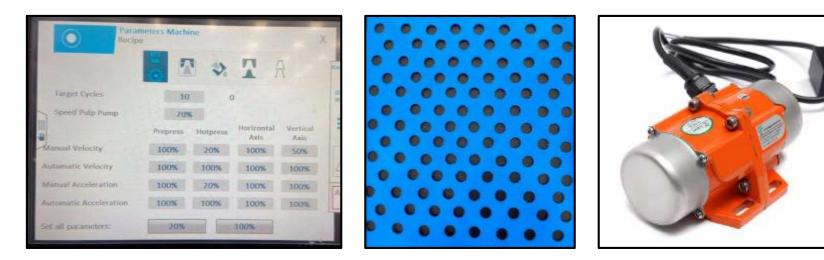
Length [mm]

#### **Chemistry Package**

Solenis.



- Same chemistry package for all
- Chemistry in order of addition
  - OGR
    - Topscreen MF-305 @ 8%
  - Water sizing (AKD)
    - Topscreen MF7900 @ 1%
  - Drainage and sizing promotor
    - Xelorex RS1200 @ .5%
- All chemistries added to stock tub- 1 minute between each addition
- As received based on dry fiber




#### **Turbulence Creation**

Solenis.

#### BRUCKNER GROUP USA

Machine and Parameter Changes



Pump speed

Changing the pulp flow pattern

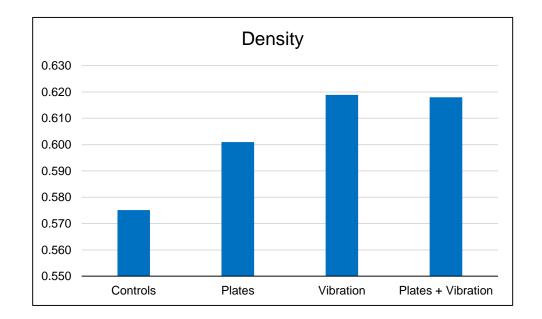
Vibration

# **Post-Trial Testing**

Testing at Solenis' Wilmington Research Center

- Basis Weight
- Caliper
- Density
- Porosity
- Dry Tensile
- Dry Stretch
- Dry TEA
- Dry Mullen
- Formation
- Oil Holdout
- Water Holdout




Solenis.

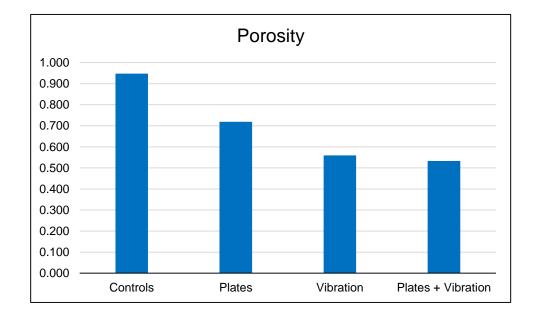
BRÜCKNER

GROUP USA



П




#### Stock Turbulence vs Porosity

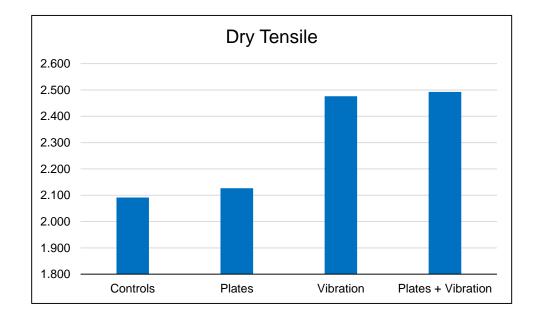




П

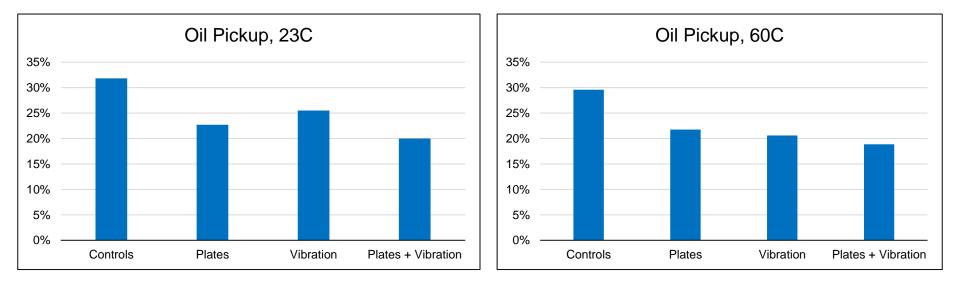
Normalized for Weight




#### Stock Turbulence vs Dry Tensile






L

Normalized for Weight



#### Stock Turbulence vs Oil Pickup

Solenis. BRUCKNER GROUP USA



20

Т

### Main Take Aways

GROUP USA

Solenis

В

Turbulence During Forming Appears Impactful

- Not all turbulence generation has the same effectiveness
- Increasing turbulence increases density and decreases porosity.
- If turbulence is too low/porosity too high, oil hold out will fail.
- Improvements in strength were observed in some conditions.
- Cycle time decreased with additional turbulence.

#### **Next Steps**



BRUCKNER GROUP USA



#### **Trial Conditions**

- Increasing sample size for promising conditions
- Reduce weight of shallow trays
- Reduce OGR dosage
- Repeat test with:
  - Different fiber type
  - Higher fines content
- Test different methods of vibration
  - Intensity
  - Location
  - Frequency
- Install a larger pulp pump

Additional Process Testing

- Moisture content after forming
- Moisture content after Pre-press
- Moisture content of finished article
- Temperature of finished article
- Cycle time
- First pass retention





Hubbe, Martin. (2002). Fines Management for Increased Paper Machine Productivity.









# **Solenis**

# **KIEFEL** TECHNOLOGIES

