

A Member of Brückner Group

FIBER BASICS 201

A DEEPER DIVE INTO THE REALM OF CELLULOSE

Outline

- Fiber Overview
 - **Fiber Sources**
 - **Pulping Process** ۲
- **Stock Preparation**
- Morphology
- Summary

What are fibers?

Definition of 'fiber'

fiber

(f<u>aɪ</u>bər 📢 🕕)

Word forms: fibers

REGIONAL NOTE:

in BRIT, use fibre

1. countable noun

A **fiber** is a thin thread of a natural or artificial substance, especially one that is used to make cloth or rope.

If you look at the paper under a microscope you will see the fibers.

Building Blocks – All fiber sources contain

- Cellulose
 - 6 String carbon molecule
 - Most important for forming molded fiber
- Hemi-Cellulose
 - 5 or 6 String carbon molecule
 - Second most important for forming molded fiber
- Lignin
 - 31 String carbon molecule
 - Obstructs cellulose and hemi-cellulose from making bonds
 - Extractives
 - Terpenes/Terpenoids
 - Fats and Waxes
 - Phenolic Compounds
 - Alkaloids
 - Can be profitable bi-products from the pulping process

KIEFEL

Fiber Guide by Håkan Karlsson Copyright © 2006 AB Lorentzen & Wettre, Box 4, SE-164 93, KISTA, Sweden

Fiber Sources

- Different fiber sources have different characteristics
 - **Growth Patterns**
 - Fiber Length ۲
 - Fiber Width
 - Fiber Shape ۲
 - Flexibility
 - Water Retention
 - Percentage of cellulose/lignin/ hemicellulose/ extractives
 - Geography
 - NA vs EU

Softwood \geq Fibers

Fibers

Fibers

>

>

a (1 kWh/s Hardwood 100 nm Nonwood

Fiber Sources – Wood Fibers

Fiber Sources – Nonwood Fibers

Table 3: Properties of non-wood fibers

Species	Fiber length (mm)	Fiber diameter (μm)
Bamboo	2.8	15
Straw	1.5	13
Bagasse	1.7	20
Hemp	20	20
Cotton	20	20
Reed	1.2	12
Wheat	1.5	13
Rice	1.5	8.5

Fiber Guide by Håkan Karlsson Copyright © 2006 AB Lorentzen & Wettre, Box 4, SE-164 93, KISTA, Sweden

Fiber Sources – Pulping Process

Fiber Sources – Pulping Technique - Mechanical

Fiber Sources – Pulping Technique – Chemical

Fiber Sources – Pulping Technique – ChemiThermo Mechanical (CTMP)

Fiber Sources – Pulping Technique

Pulping process	Fibre separation mechanism	Yield	Pulp properties	Typical products
Mechanical	Mechanical energy	High (85-95%) lignin preserved	Short, weak, unstable, high opacity fibres, good print quality	Newsprint, magazines, books, container board
Chemical	Chemical and thermal	Lower (45-50% for bleachable/bleached pulp. 70% for brown paper)	Long, strong, stable fibres	Kraft: bags, wrapping, linerboard, newsprint, graphic, writing paper, Sulfite: fine paper, tissue, glassing, newsprint
Semi chemical	Combination of chemical and mechanical	Intermediate (55-85%)	"Intermediate" pulp properties	Corrugated board, food packaging, newsprints, magazines
Recycled (RCF fibre)	Mainly mechanical with some heat and chemicals	Depends on waste paper source. Up to 95% for waste packaging, and 60% for waste hygienic products	Mixture of fibre grades, properties depend on waste paper source	Newsprint, magazines, packaging, tissue and writing paper.

Kowalska, Malgorzata & Donatello, Shane & Wolf, Oliver. (2019(. EU Ecolabel criteria for Graphic Paper, Tissue Paper and Tissue Products. Final Technical Report. 10.2760/71692

Next Steps – Preparing the Fibers

Fiber Morphology

Stock Preparation

https://voith.com/corp-en/papermaking/blueline-occ-process.html

Pulping

- Pulp and Water
 - Batch vs continuous
 - Consistency (percent solids)
 - Dwell Time
 - Fiber to fiber interaction
 - Swelling
 - Temperature
 - pH

https://www.pulpandpaper-technology.com/products/cellwood-machinery/vertical-pulpers

Screening and Cleaning

- Contamination Removal
- Most common in a cascading system
 - Maximized fiber recovery
- Removal Based on Size
 - Pressure Screen
 - Coarse screens
 - Fine screens
- Removal Based on Density
 - Cleaner Cones
 - High density
 - Low density

Refining

- Adds surface area to the fibers (fibrils)
 - Increases bonding sites
 - Can shorten fibers
- Increases fiber flexibility
- Changes strength properties
- Increases smoothness
- Slows drainage and drying time

Refining Continued

- **Refining Techniques**
 - Plate Gap
 - Plate Design
 - Refiner Style
 - Disc ٠
 - Double Disc ٠
 - Conical ٠
 - Jordan ٠
 - Valley Beater ٠
 - Pulp Consistency
 - **Fiber Source**

KIEFEL

Morphology

Properties

https://www.valmet.com/media/news/press-releases/2016/valmet-adds-new-capabilities-to-the-fiber-image-analyzer/

Morphology

Modifying Morphology

Chemical pulp fibers before refining

Chemical pulp fibers after refining

Objectives of refining:

- to treat fibers to obtain desired properties for paper or board
- physical treatment of fibers so that they form a strong and smooth paper sheet with good printing properties

Refining is based on mechanical treatment of fibers with metallic bars with the presence of water.

https://www.knowpap.com/www_demo/english/paper _technology/2_stock_system/7_refining/1_introductio n/jauhatuksen_tavoitteet_img.htm

Many Solutions/Problems

Questions?

Thank you!

DRIVING YOUR PERFORMANCE