What is happening at **UMaine's** Laboratory of Renewable Nanomaterials

Mehdi Tajvidi

Associate Professor of Renewable Nanomaterials, School of Forest Resources, FBRI, ASCC

Nutting Hall, Orono, Maine

HE UNIVERSITY OF

Research Institute

est.umail

OURCES

100

55

LIMAINE

Current Research @LRN

- Building/construction applications
- Packaging (protective/barrier) applications
- Water treatment applications

Building/construction applications

Upgrading regular wood-fiber insulation panels to structural wall sheathing enabled by cellulose nanofibrils Lead: Rakibul Hossain

Panel making process (lab and pilot scale)

Thermal conductivity

 1% alum

Water absorption & thickness swelling

Mechanical properties of the pressure-controlled panels

 $C)$

в

B

B

B

Properties of the panels made with starch-CNFs as binder Properties of the panels made in the pilot-scale

Min standard value for regular wall sheathing Min. standard value for structural wall sheathing $-1%$ CNF \mathcal{C} 3.0 $+$ 1% CNF B $-$ 1% CNF -25 CNF В 0.26 2% CNF 300 2.5 $\frac{1}{2}$ 0.24
and $\frac{1}{2}$ 0.22 $\begin{array}{l} \underline{\overline{\mathbf{S}}} \\ \underline{\mathbf{S}} \\ \underline{\mathbf{S}} \end{array}$ 2.0 $\frac{8}{2}$ 200 ħ 1.5 a 150 0.20 a) $b)$ \mathbb{C} 1.0 $\begin{array}{l} 1\% \text{ CNF (2h test)}\\ 2\% \text{ CNF (2h test)}\\ 1\% \text{ CNF (24 h test)} \end{array}$ B $1^{n_{\rm q}}$ CNF (21 rest)
2% CNF (21 rest) $16.0N$ Ē B 12 296 CNF % CNF (24 li lest) 2% CNF (24 h test) 2% CNF (24 h (est) $\overline{10}$ А $\ddot{\mathcal{S}}$ a \overline{b} Š c۱ n \mathbf{z} $\mathcal{I}% _{0}$ -3 Starch addition to different CNF content (%) Starch addition to different CNF content (%) Starch addition to different CNF content (%)

Industrial scale trial

Acknowledgement:

BLUE RIDGE

Industrial trial by the numbers

- 2 tons (4,000 lb) (dry basis) of CNFs produced at PDC, that is 66.7 tons @3% solids
- CNF was dewatered to 18% solids (22.2 tons)
- Shipped in 18 super sacs to trial location
- Over 170,000 square feet of panels (5,300 4 by 8 panels) were produced in a continuous process over 6 hours

All Biobased (mycelium-based) insulation products for building and packaging applications Lead: Maryam El-Hajam**Eco-friendly, Non-toxic, Renewable, and Recyclable Lignocellulosic materials Fungal mycelium Cellulose Fruiting 03/01/2023** Body **Hemicellulose Lignin** Mycelium Hyphae

Preparation of low-density substrate: Foam forming method

Properties

Density: SDS: 0.01<d<0.04 g/cm³ CTAB: 0.015<d<0.08 g/cm³ **Thermal conductivity:** 0.032-0.055 W/mK **Young's Modulus:** 0-40 kPa (SDS) 2-250 kPa (CTAB) **Sound absorption:** 0.3-1 at 3000 Hz

Constraints found during the mycelium growth

Packaging (protective/barrier) applications

Cellulose nanofibril (CNF) enabled non-conventional food serving products 0.80 **Fabrication of plates** nventiona **BC C B**

Raw material : Thermomechanical pulp (TMP), Wood Flour (WF), Bleached Kraft Pulo (BKP) and Cellulose Nanofibril (CNF) 2d

Lead: Mamoona Raheem

1865 THE UNIVERSITY OF \mathbf{F}

Reactions under Gas phase

V1

 $V2$

Post-surface treatment on plates

Reactions with hexamethyldisilazane (HMDZ) and hexamethylene diisocyanate (HMDI) with a catalyst

Treated with HMDZ Untreated

untreated HMDZ HMDI

Layer of CNF g/m² No Treatment Cas phase HMDZ DScCOZHMDI

- Reactions performed under gas phase and Supercritical $CO₂$ showed increased Kit and reduced Cobb values as compared to the untreated samples.
- The gas phase (surface treatment with HMDZ) showed increased tensile strength while under supercritical CO₂ (crosslinking with HMDI) showed an increase in modulus.

Enhancement of CNF barrier properties by nanofibril alignment

Method: **COEN Formed Film Auto-Dynamic Sheet Former Sheet Press** *XY – Z shrinkage drying* Aluminum Spacer Film **Filter Paper** Filter Paper removed from The wet film placed Hot Press Compaction of the film Steel Plate with Hot Press the film (pressure wet film between the steel reading zero) for drying at with no filter paper, no spacer at spacer plates 150 °C, and 1.1 MPa pressure for 150 °C for 8 minutes *Z– Z shrinkage drying* 4 minutes. Hot Press Compaction of the The stack of wet film **Filter Papers on** Hot Press the film film with **no filter papers at** and filter papers **both surfaces of** (**pressure reading zero**) **150 °C, and 1.1 MPa** placed between the **the film** for drying at **150 °C for 8 pressure for 4 minutes.** steel plates **minutes**

CNFs provided by the University of Maine Product Development Center at **3 wt. % solid content** and **90% fines** were used to make the film. In CNF suspension, three different solid contents, **0.1 wt.%, 0.2wt%, and 0.3 wt.%,** were used. Four levels of wire speeds **900 m/min, 1000 m/min, 1100 m/min, and 1200 m/min** were used to form the films

- Wire-speed $-$ 900 m/min, 1200 m/min
- Initial Water Wall 2mm
- Water wall limit 10 mm
- Compacting time -4 min
- Compacting speed -1400 rpm
- Average flow rate $-$ 2.20 l/min
- Cold press pressure -30 psi.

CNF laminated wood veneerNormalized Peel Strength (N/mm) Peel Strength (N/mm)

a
 $\frac{8}{9}$ $\frac{8}{9}$ **Preparation of wet** \circ **CNF Films** c \circ \bullet **CNF wet mass CNF Suspension Filtration Wet CNF** Normalized **Film** Wood Veneer
 Preparation of Wood
 Preparation of Wood
 Veneer 122 211 212 221 $1.1.1$ 112 121 222 Formulation **Veneer** Cobb Value 172.75 250 **Wood Veneer Polycup as Polycup soaked in water cross-linking spreading on** Cobb Value (g/m^x2)

S

S

S

S **agent Wood Veneer** 149.23 CNF Film **Preparation of Food** 95.29 Film 74.46 یں **Container** 50 **Hot Press compaction Container CNF Film with glued wood veneer on both side** $1-2-1$ WV $2 - 1 - 2$ 2-1-2_WV Com. Plate $1 - 2 - 1$

Formulation

Multi-layer oil and water-resistant food serving container made using

Cellulose nanofibril-reinforced surfactant-assisted lignocellulosic foams for packaging and building applications

Lead: Mara Paulette Alonso, Rakibul Hossain

100.0 **BETIS F Vent** 0.0116 ± 12.5 A couple. $90 - 0$ $-5DS + 1%$ TMP $+$ SDB + 1% Acradia - CbD + ThB $NDE + TMP + CN$ STE-15-Arrivhe-CSB 30.0 $= 0.756 \pm 1.01328$ 76.0 ob. 50.0 20.6 $10J$ 100. $= 3256 + 126$ CPAN $*$ SDS + 1% CPAM + CNF = TMP $0.8126 + 1%$ CPAM + CN -60.0 50.0 i in a 20.0 10.0 0.0 Time [sec]

Foam formulation

- CNF slows down drainage
- CNF stabilizes the foam
- TMP fibers destroy the bubbles, destabilize the foam
- Different additives affect the bubbles differently
- TMP fibers destroy the bubbles in the foam for both neat foams and with additives

Thickness & density of the foams

SEM analysis of the foams

EDS analysis of the foams

• Homogeneous distribution of additive along the surface of the foams. No significant difference in concentration on 0.5% additive compared to 1%

Compressive strength & thickness recovery

Foam resilience, thermal conductivity & water absorption properties

- Compressive strength & modulus increased to various degrees depending on the additive type and content.
- Foam resilience increased with the increase of density
- All foams exhibited excellent thermal resistivity
- Foams without additives disintegrated during the test, high temperature drying performed better
- Acknowledgement: TIMBER MAK RIDGE Foams with additives maintained their structure except for 0.5% CPAM

Water treatment applications

Hybrid Freeze-dried CNF-based Aerogel for Arsenic Removal from Water

Lead: Md. Musfiqur Rahman

Alternative Approach to Produce Hybrid CNF-based Foams by Microwave

- Density of the foams: $35-37$ kg/m³; porosity 97%
- Freezing rate effects, the pore architecture: slow freezing generates uniform pore architecture
- To date- the fastest & cost-effective method of producing

CNF-based foam.
Rahman, M.M.; Hafez, I.; Tajvidi, M.; Amirbahman, A. Fundamentals of Hybrid Cellulose Nanofibrils Foam Production by Microwave-assisted Thawing/Drying Mechanism. *ACS Sustain. Chem. Eng.* (Just accepted)

WW

*Scale 5 cm

A Novel Cost-effective Approach for 3D Printing with Cellulose Nanofibrils (CNFs)

- Assessment of structures in different
- Rheology, compression & tensile testing
- Effects of different components (CNF/Urea/CMC) on internal pore morphology.

