

Waterborne modifications to cellulose nanofibrils for biomaterials, coatings, and composites

William Gramlich Department of Chemistry University of Maine

Challenges with using CNFs

Modular modification of CNFs

- Translatable chemistry for all cellulose materials
- Covalent stability through water-based reactions

Kelly et al. Macromolecular Rapid Communications 2021 Fein et al. Carbohydrate Polymers 2020 - 115672 Fein et al. Carbohydrate Polymers 2020 – 117001 Dadoo et al. Cellulose 2021

Modular modification of CNFs

- Modifications performed in water
- Can occur on other polysaccharides and cellulose derivatives
- Orthogonal reactions possible
- All secondary reactions are possible in water
- Functional group tolerance

Morrison and Gramlich Carbohydrate Polymers 2023 McOscar and Gramlich Cellulose 2018 Ji et al. Bioprinting 2020 Dadoo et al. Macromolecular Bioscience 2017

$M_{AINE}^{\text{THE UNIVERSITY OF}}$ Modular small molecule modifications

Small molecule thiol-ene

- Modifications can change suspension viscosity
- cCNF reduces viscosity by over an order of magnitude

Colloidal modifications for coatings

Layered structure

Natural rubber (NR) from havea brasiliensis (natural rubber tree)

- CNF coatings and films formed through filtration
- Good grease and oxygen barrier
- Retains properties after folding
- Desire improved water barrier

thiol-ene coupling reaction

EXAMPLE Coupling natural rubber improves dispersion

MAINE Chemically crosslinked CNF hydrogels

- Hydrogels for biomedical applications
- Various dithiols crosslink through thiolene
- Provide mechanical robustness
- Control mechanical properties

Dadoo et al. Cellulose 2021 Morrison and Gramlich Carbohydrate Polymers 2023

Main E The UNIVERSITY OF Stability and stiffness control

Covalently crosslinked hydrogel

With crosslinker

Without crosslinker

- Crosslinked hydrogels are stabilized
- Different thiol-ene initialization possible
- Control over the compression modulus

MAINE Interpenetrating network synergy

- Synergistic interactions between CNF and NorCMC network increase modulus
- Can be tuned to different stiffness for desired application

UNIVERSITY OF Strengthening PLA with CNFs H,

PLA-SCF

PLA-SCF-CCF

Disposable items

- Polylactide or poly(lactic acid) (PLA) is renewably sourced ۲
- Requires reinforcement for durable goods applications ۲
- Incorporate fibers and fibrils without solvent casting .

Tekinalp et al. Composites Part B 2019

Grafting-through polymerization

MAM

OFGMA

MAA

- Works on wood, pulp, CNF, wheat straw, flax, etc.
- Hydrophobic and hydrophilic monomers can be attached
- Can tune to polymer matrix

Surfactant free-emulsion polymerization

PS-CNF

Unmodified CNF

THE UNIVERSITY OF

NE

- Hydrophobic monomers can retain fibril morphology oven drying
- Complex emulsion behavior

IAINE Creating and testing PLA reinforcements

Aqueous Modification

Composite

- Water soluble polymers can be used to create reinforcements
- Understand how polymer coating affects spray drying process
- Understand how polymer coating affects composite properties

Polymer modification prevents aggregation

- Polymer coating blocks hydrogen bonding
- Increased surface area

Surface energy analysis for targeted modifications

- Work of cohesion reduced after modification
- NIPAM could not be measured
- Targeted three modifications for compounding

UNIVERSITY OF

H

Improved composite properties

- PNIPAM and PMAM improved strength
- POEGMA plasticized the PLA and reduced strength
- Elastic response in melt

Rheology

Increasing to pilot scale

Aqueous Modification

Composite

- Created nearly a kilogram of reinforcement
- Compound at 20 wt% reinforcement

Creating composites for printing

Scale bar = $6 \mu m$

- Pilot spray drying gives different morphology
- Can be compounded and printed

pin cm

20% PNIPAN

MAINE Significant strength improvements

• Potential alignment of fibers or fibrils in print direction

1865

$Main E^{\text{THE UNIVERSITY OF}}$ Printing aligns fibers for PNIPAM modified

CNF Control Printed

50 µm

CNF Control Molded

- Shear aligns fibers
- PNIPAM surface chemistry enables
 interactions with matrix
- Tune surface energy for new thermoplastics

Conclusions

Acknowledgements

CNF Hydrogels

Dr. Nayereh Dadoo

Tessali Morrison

CNF Coatings

Dr. Kendra Fein

U.S. Endowment for Forestry and Communities

Dr. Siamak Shams Es-haghi

Dr. Doug Gardner

Dr. Meghan

Lamm

CNF Composites

ADVANCED STRUCTURES &

composites center

U.S. Department of Energy under contract DE-AC05-000R22725 (subcontract no. 4000174848)

