
Sustainable, High-Performance, Cellulose-Based Thermal Insulation

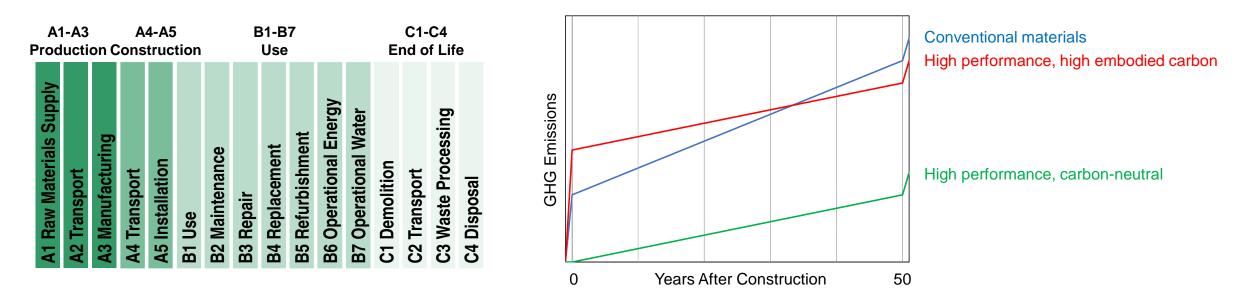
Aspen Products Group, Inc. 182 Cedar Hill St. Marlborough, MA 01752

Mark Fokema Vice President, Research & Development fokema@aspensystems.com

Cellulose Nanomaterials Researchers Forum August 23, 2023

PRODUCTS GROUP. INC.

Residential Building Insulation Requirements


- 22% of US energy consumption is associated with residential buildings (20 quads)
- Heat/cooling/ventilation (43%), appliances (16%), water (13%), lighting (3%)
- Heat transfer through building envelope is the primary driver of HVAC load
- Insulation requirements for new US homes are becoming more stringent
- Maine (Climate Zone 6A)

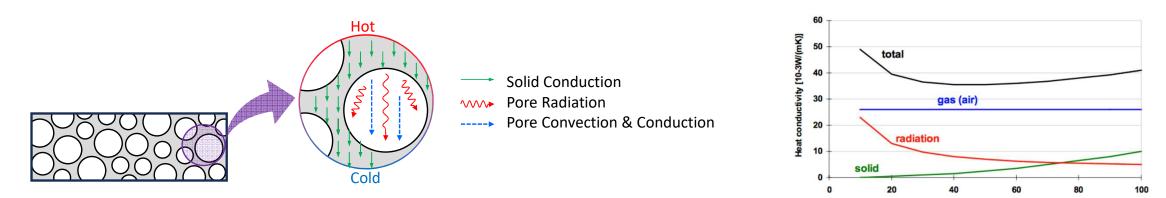
International Energy Conservation Code	Wall R-Value	Ceiling R-Value	
2006	19 or 13+5ci	49	
2009	20 or 13+5ci	49	
2012, 2015, 2018	20+5ci or 13+10ci	49	
2021	30 or 20+5ci or 13+10ci or 0+20ci	60	
~8" of fiberglass		~18" of loos	e-fill!

Life-Cycle Energy Footprint of Buildings

- Improved insulation reduces operational GHG emissions
- Operational emissions are only a small part of building life-cycle emissions

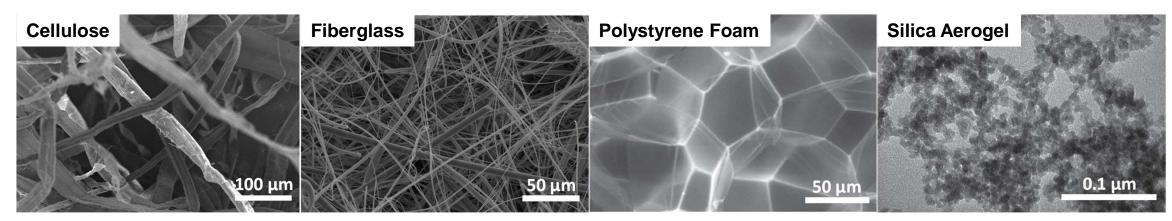
Embodied emissions become an important consideration as operational emissions are reduced

Current Insulation Products


Material	R-value per inch	Cost (\$/FU)	Embodied GHG (kg CO ₂ eq/FU)
Cellulose	3-4	1-2	-2.0
Fiberglass/Mineral Wool	3-4	1-2	0.2-0.5
Polymer Foam	4-7	5-10	2.5-4.0
Silica Aerogel	6-10	>100	>15
Vacuum Panel	13-48	>20	>15

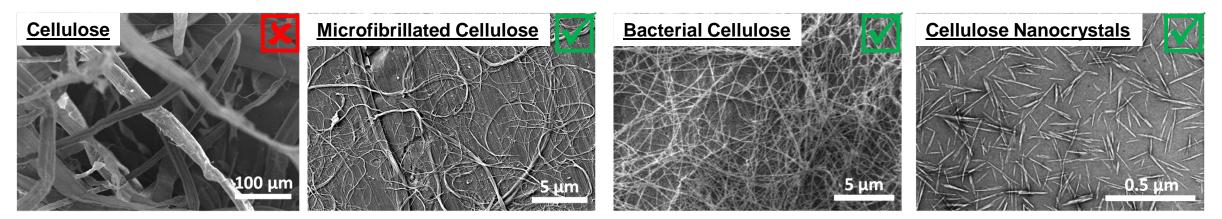
- \bullet Low embodied carbon \rightarrow Low insulating performance
- High insulating performance \rightarrow High embodied carbon

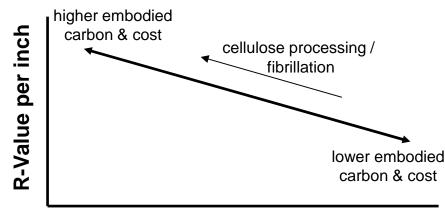
What makes foams and aerogels better insulators than cellulose and fiberglass?



Heat Transfer In Porous Thermal Insulation

Convective/conductive transport within pores is main difference between conventional insulations


Density [kg/m³



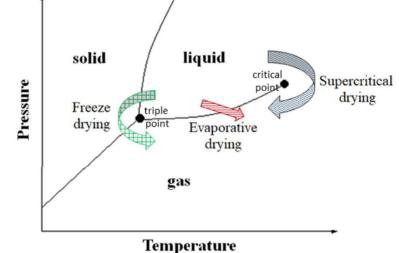
Can the pore size of cellulose insulation be reduced to improve its insulation properties?

Nanocellulose-Based High Performance Insulation

Smaller diameter cellulose fibers = Smaller pore sizes

Fiber Diameter or Insulation Pore Size

ASPEN PRODUCTS GROUP, INC.


Nanocellulose Insulation Synthesis

Challenge: Dewatering nanocellulose while preserving microstructure of wet cellulose network

• Capillary forces at water-air interface contribute to collapse of pore structure \rightarrow membrane/film

capillary pressure, p_c = 2 $\gamma \cos\theta$ / r_c

- Common approaches to preserve porosity during drying
- Strengthen wet gel network (crosslinking)
- Reduce surface tension of solvent (mixed solvents, surfactants)
- Alter cellulose-solvent wetting angle (surface modification)
- Remove liquid while avoiding liquid-gas interface
 - Supercritical drying
 - Freeze drying

Nanocellulose Insulation Properties

Microfibrillated cellulose board insulation

- R-value up to R-8 per inch
- Contains over 90% cellulose
- Sustainable/carbon-negative

Other building insulation product considerations

- Hydrophobicity
 - Liquid Water Sorption
 - Water Vapor Sorption
 - Water Vapor Permeance
- Flammability
 - Flame Spread
 - Smoke Development

ASPEN PRODUCTS GROUP, INC.

- Odor Emission
- Corrosiveness
- Fungal Resistance
- Compressive & Tensile Strength

Acknowledgements

- ARPA-E HESTIA Program
 - Marina Sofos
 - Kate Pitman
 - Ken Pulido
- University of Maine
 - Colleen Walker
 - Donna Johnson
- Aspen Products Group
 - Decio Coutinho
 - Hai-Ching Lee

