

RWU 4709 Fiber and Chemical Sciences Research

- Umesh Agarwal, Res Chemist
- John Considine, Res Mat Eng
- Roland Gleisner, Eng Tech
- Carl Houtman, Res Chem Eng
- Clayton Mickles, Chemist
- Roderquita Moore, Res Chemist
- Sally Ralph, Chemist
- Richard Reiner, Chem Eng
- Xiaoyan Tang, Eng Tech
- JY Zhu, Gen Res Eng
- Biljana Bujanovic, Supervis Gen Res Eng

Cellulose Nanocrystals

Richard Reiner Chemical Engineer

Preparation of Cellulose Nanocrystals (CNCs)

CNCs: Reaction

- Feedstock
 - Dissolving pulp drylap
 - Combination strip-cut (20%) and cross-cut (80%)
 - 50 kg per batch feed, 25kg per batch product
- Sulfuric Acid
 - 64% H₂SO₄ (PC-grade)
 - Preheated to 48°C
 - 300 L
- Reaction Conditions
 - 45°C for 2 hours
 - Nitrogen/vacuum
 - Glass-lined steel reactors 400L, water jacket

Richard Reiner Chemical Engineer

CNCs: Quench, Bleach & Neutralize

- Quench
 - Dilute into approx. 1200L
 - Additional rinse water, approx. 300L
- Bleach
 - While acidic, add 1 kg NaClO₂
 - Stir 30-60 minutes
- Neutralize
 - Add 8-10 wt% NaOH to neutral pH

U.S. Forest Service Forest Products Laboratory

CNCs: Ultrafiltration for Purification

- Three A19 modules: 3.66 m, 12 mm tubes
 - 7.5 m² filtration area
 - 200 kDa MWCO
- Retentate circulation: 675 L/min
- Approximately 1 wt% CNCs in suspension
- Terminate at permeate conductivity 100 uS/cm

CNCs: Clarification and Concentration

- Removing less than 1% as rejects
- 3850 G
- 20 L/min, approximately 4 min retention time

- Product concentration to 10 wt% CNCs
- Permeate flow drops dramatically with concentration of CNCs (<1 L/min)
- Use circulation pump as viscometer
 - Terminate at retentate flow 325 L/min
 - "Flush-on-the-fly" rinse

CNCs: Acid Recovery

- Decant approximately 8% H2SO4 from CNC production run
- Use membranes to separate to pass acid while retaining sugars
- Distill 8% acid to 64 wt % acid under vacuum 80C at 6.5 kPa

- Recovered 64 wt% H₂SO₄
- Recovered 64 wt% H₂SO₄ boiled at 150°C (atm) for 4 hrs
- Reaction acid concentrated on rotavap: 50°C, water aspirator
- Boiled 64 wt% H₂SO₄ reaction acid (with sugars ~1%).

CNCs: Freeze Drying

- Freeze drying is admittedly slow and expensing
 - 100L nanocellulose suspension in 2-3 weeks
- Manner with which the suspension is frozen is important
 - Nanocellulose concentrates between ice crystals
- Freeze to "soft-serve" using an ice cream machine with addition of 8 vol% tert-butyl alcohol
- t-BuOH recovered with distillation, azeotrope ~85 vol%

- Never-dried CNC suspension
- Slow freeze
- Liquid Nitrogen freeze
- Ice cream freeze without t-BuOH, no mixing
- Ice cream freeze with t-BuOH and mixing

Cellulose Nanofibrils

Richard Reiner Chemical Engineer

Preparation of Cellulose Nanofibrils (CNFs)

U.S. Forest Service Forest Products Laboratory

CNFs: Reaction

- Feedstock
 - Eucalyptus bleached kraft pulp from drylap
 - Acid wash and touch-up bleaching
- Reaction Conditions
 - TEMPD, NaBr catalysts
 - Hypochlorite terminal oxidant
 - Maintain pH 10 with alkali (CO_3^{2-}/HCO_3^{-} buffer)
 - Room temperature for 4 hours
 - Glass-lined steel reactors 400L
 - Typically 2 kg/batch, literature recipe 4 kg/batch
- Filter and wash
 - Minimize mechanical shear
 - Swells further as salt is washed from pulp

CNFs: Homoginization

- Four passes 800-900 bar, 250L/hour
- 1 wt % CNF suspension
- 5% easy to disperse, add'I material more and more recalcitrant
- Similar results to microfluidizer

How do we improve from here?

- Ultrafiltration bottleneck
 - Leap-frog with centrifuge
 - High shear causes temporary dispersion
 - Soft solids make it difficult to operate decanter
 - Ultrafiltration filter agent
- Drying
 - 25-50 percent solids CNC, 10 percent CNF
 - Integrate by drying with end use products
 - Additives that are compatible with end-use products
 - How much energy to redisperse?
 - Do we need a "perfect" (re)dispersion?
- Preservation in wet storage
 - Additives
 - Pasteurization

FPL – R&D pilot-scale, Boutique Production

- Continue to source material
 - Distribution through University of Maine
 - Supply FPL research
 - Supply pilot demonstrations (US Endowment for Forestry and Communities, Inc.)
- Optimization with end-use products
- Novel sources of material for nanocellulose
 - Wood species variation
 - Other plant (animal) cellulose sources
 - Cotton, Algae, Tunicate, etc.
 - Waste cellulose sources
 - Mill sludge, recycle waste, forest slash, farm crop waste, etc.
- Integral part of forest biorefinery

What could you make with these green materials? **P.9**

