Production of microfibrillated cellulose using stirred media mills and selected applications

David Skuse, Lewis Taylor and Tom Larson FiberLean Technologies Limited

Presented by: David Skuse

Outline

- Introduction
- Stirred media mills
- Product characterisation
- Influence on particle size and fibrillation
- Optimisation for various fibre substrates
- Applications of MFC
- Product stewardship

Introduction

- **MFC** produced by **mechanical treatment** of cellulose
- Highly viscous aqueous suspension
- Typically **satellite production** adjacent to final use location
- **Continuously produced at large scale using stirred media mills**
- **Flexible process enables a wide variety of product characteristics**

Product families

- **MFC from 100% virgin pulp**
- **MFC from recycled fibres**
- **MFC mineral composites**
- **NB Two of these families have no added minerals**. **MFC only**

Pilot-Plant Production Facility, and Product Forms

Slurry

Production plant in the UK, **2000 dry metric tonnes pa of fibril capacity**. Operational since Q4 2013: **Slurry** (< 2% fibre solids) and **presscake** (10 – 20% fibre solids) product forms

Press cake

Stirred Media Mills – Introduction

- *Stirred vessel*, where *collisions between grinding media beads* break intervening particles.
- Widely used in minerals and mining industry due to efficiency, scale, and flexibility.
- We have adapted this technology to *break and fibrillate fibres into MFC*; requires modifying theory and operating principles.
- *Very high active surface area* of media and *inherent scalability of stirred vessels* permits *high throughput* and *continuous production* of MFC.

Stirred Media Mills – Advantages

For large-scale MFC production, stirred mills confer many benefits:

Video of Grinder

- **Robust technology, operational since 1950s for minerals processing, since 2013 for MFC**
- **No close tolerances or precision engineered components**
- **Continuous single stage process**
- **Availability > 95%**
- **Low capital and running costs**
- **High throughput in a small footprint (typically >1000 dry tonnes / annum per grinder)**
- **Modular easily-scalable design**
- **No additives or pre-treatments**
- **Flexibility in tailoring MFC properties**

Stirred Media Mills – Optimisation

- Unlike minerals processing, where minimising particle size is usually the goal, effective MFC production requires *high surface area generation whilst maintaining fibril aspect ratios*.
- Stirred mills are *conceptually simple*, though *optimising is complex* due to the number of parameters (charge formulation, grinding media properties, machine operation parameters, grinder geometry); a purely empirical approach is not sensible.
- Effective optimisation requires the following:
	- 1. An *intimate understanding of the feed fibre properties* (i.e. what forces are required for breakage and fibrillation).
	- 2. Tailoring the *type, frequency and magnitude, of forces* applied by the media to the fibres.
	- 3. Modifying the energy distribution within the vessel by *controlling flow patterns*.
- Stirred mills have the key advantage that the *strength of forces can be varied by many orders of magnitude with little to no equipment modifications.*

PEPT tracking of a lab-scale grinder – (left) occupancy, (middle) kinetic energy distribution, (right) velocity vectors.

Product Characterisation

- **Particle size and morphology analysis -** Microscopy, fibre analysers, laser diffraction
- **Viscosity / rheology -** Over a range of shear conditions
- **Permeability and drainage**
- **In-application testing**
- **Mechanical properties** "**FLT"** (FiberLean Tensile) strength test (hereafter referred to as *high loading tensile index*) - Good correlation with in-application mechanical properties.

Particle size alone is not sufficient to characterise MFC performance.

A test of performance is also required

High Loading Tensile Index

- Since *particle size alone* (e.g. laser diffraction d₅₀, Fines%) says nothing about the extent of *fibrillation or quality of fibrils*, we instead use such measurements largely to aid understanding of the process, and for process control and diagnostics.
- Many MFC applications rely on the *bonding ability of the MFC*; measuring a proxy for this can be expected to correlate more generally with performance.
- The high loading tensile index test does this using a direct measurement of the *tensile strength of an MFC - mineral film.*
	- A sheet of 100% MFC will be so heavily bonded that the sheet will largely fail by breakage of fibril cross-sections (i.e. zero-span strength) rather than bonding failure.
	- Therefore, the *high loading tensile index test is performed at extreme mineral loadings* (many times more mineral than fibre) to greatly weaken sheet bonding, thereby *forcing bonding failure* to be the dominant failure mechanism.
- Such a measurement gives a *good general correlation with performance* in many applications, that is largely *robust to changes in pulp type and processing conditions*.

Fibre Breakage and Fibrillation (i)

• Using a stirred media mill, parameters can be changed to *decouple fibre breakage from fibrillation*, and control them independently based upon application requirements.

Fibre Breakage and Fibrillation (ii)

Very different product morphology possible with the same feedstock.

Below have very different particle sizes, but similar high loading tensile index (bonding) values.

Performance / Energy Balance

Stirred media mills are economical at generating a highly fibrillated product compared to alternative technology, though tends to maintain larger particle dimensions.

Optimisation for Fibre Substrate

Optimum conditions change based upon fibre type and properties

Improvements Since 2020

- Understanding how to adapt the process conditions based upon the properties of the feed fibres has:
	- *Improved product quality* at a given energy input.
	- *Lowered the energy required* to obtain a target quality.
	- Produced good quality MFC out of *previously nonviable substrates.*
	- Enabled us to produce *100% MFC products without requiring minerals* as a co-grinding aid.

MFC Applications

The strengthening and viscosifying properties of MFC have shown benefits in applications such as:

- **Paper and board** generally improved mechanical properties, increased filler, softwood replacement, lightweighting, new products and grade development.
- **White top liner:**
	- Improved optical properties from formation and filler increase, significant reduction in fibre use.
	- Wet-end coating of MFC to upgrade brown boxboard to WTL with minimal capex.
- **Barriers** MFC forms a barrier layer which greatly improves oil and grease resistance and oxygen barrier properties for food packaging, is a recyclable and compostable alternative to PFAS.
- **Specialty papers** various (e.g. low porosity improves coating holdout in thermal papers; significant increases in wet web strength enables low GSM papers on machines configured for much higher GSM).
- **Construction materials** binders in furniture (MDF, particle boards, substitutes), ceiling tiles.
- **Rheological additives** highly shear-thinning, robust to pH / salt / degradation.

Use of MFC in paper and board

Typically, use of MFC in a web-based system is associated with:

- Improved performance stability
- Increased initial wet web strength
- **Minimal impact on wet end chemistry**
- Overall positive impact on drainage (when there is a filler increase)
- **Improved dry mechanical properties**
- **Improved opacity**
- A much tighter sheet (reduced porosity)
- Improved coating hold out
- **Improved smoothness**
- Maintaining bulk when fibre is replaced is a challenge but can be managed

Innovative by Nature.

Barriers: Scanning Electron Microscope (SEM) Imaging of MFC coated papers

 0 g/m² (No coating) 4 g/m² (MFC coating) 501

12 q/m^2 (MFC coating)

- The lowest coat weight, 4 g/m² provided substantial changes to the surface topography and structure.
- By 12 g/m², the MFC has \Box formed a film and reached sufficient thickness to achieve high barrier properties.

Barriers: Heptane vapour transmission

MFC Coat Weight vs. HVTR (23°C, 50% R.H.) Various MFC samples coated onto paper

Technologies Innovative by Nature.

Regulatory clearances are essential for many applications

Current status

USA

EPA – existing substance under TSCA. Not subject to reporting under EPA nano rule

Food contact clearance through FDA (5wt.% fibrils in packaging), FCNs 1582 and 1887

Covers all ratios of mineral: MFC including mineral-free

Food coating FCN 2022

FDA GRAS – in progress, part of Vireo led consortium. For food use

Canada

Environment and climate change Canada – existing substance under CEPA

Health Canada opinion – "…we see no reason to object…to the use of FiberLean in food contact packaging, under conditions as described on the FDA website in the FCN 1582"

Covers all ratios of mineral: MFC including mineral-free

China

The National Health Commission of the People's Republic of China approved microfibrillated cellulose pulp (CAS 65996-61-4) as an additive in paper and paperboard used for contact with all types of food, subject to a maximum usage of 5% (based on the dry weight of fiber) and no specific migration level requirement

Covers all ratios of mineral: MFC including mineral-free

Germany

Acceptance confirmed for BfR XXXVI and XXXVI/2 at up to 5 wt.% fibrils when produced with minerals at between 50% and 83% mineral content

Mineral-free application has been filed with BfR

Netherlands

Cellulose microfibres produced with calcium carbonate, kaolin and/or other permitted mineral fillers are included in Chapter 2 (Paper and board) of the Dutch commodities act regulation at up to 5wt.% fibrils

- PTS-RH 021:2012 Recyclability testing was carried out by PTS
- Two samples tested: MFC coated paper with bleached and unbleached base sheet

• OECD 301B Biodegradability testing was carried out by RespirTek Inc

- ISO 20200 (precursor to EN13432) packaging compostability standard testing was carried out by Impact Solutions
- Two samples tested: MFC coated paper with bleached and unbleached base sheet
- Still await compostability data but high level of disintegration is observed.

- **E** Life Cycle Analysis (LCA)
	- Cradle to grave LCA for the use of FiberLean MFC in paper applications with different pulp sources and plant locations is in progress with IVL
	- Cradle to gate analysis illustrates the importance of electricity consumption and sourcing
	- Used to focus Process Research work on energy reduction

Conclusions

- *MFC and mineral / MFC composites* are produced from *virgin and recycled pulps*, and are important additives for a wide range of paper, board, and other applications.
- Stirred media mills efficiently and continuously produce MFC at large scale.
- Their nature allows for effective *decoupling of fibre breakage and fibrillation.*
- Stirred media mills are *highly tuneable*, giving flexibility for a *wide range of product characteristics* depending on application need.
- Although *conceptually simple*, they are *complex to optimise*.
- *Efficient optimisation requires an intimate understanding of the feedstock and process physics.*
- *Several key fibre characteristics influence optimum operating conditions*, and adapting the process accordingly has yielded substantial efficiency and quality benefits.
- There are a wide range of applications for MFC in paper and board, building material and other applications.
- A range of regualtory clearances are in place for MFC and the products are both biodegradable and recyclable

Thank you for your attention

Any Questions / Comments?

Presented by: David Skuse FiberLean Technologies Limited david.skuse@fiberlean.com

