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ORNL's Unigue Capabillities

Advanced

Characterization

SNS: World's most intense
pulsed neutron beams

HFIR: world’s highest flux
reactor-based neutron
source

Zeiss Enclosure:
comprehensive powder-to-
part methodology for
manufacturing-born
gualified components

Nuclear & Advanced
Manufacturing

Manhattan Project: 76 years
of nuclear research

Radioisotope: projection,
fusion, and fission

TCR Program: revitalizing the
nation’s capabilities in
nuclear power by
substantially reducing the
cost and accelerating the
deployment of new reactors

World-Renowned
Computing

$QKRDG

PR

,;‘-“———.—

Frontier: next-level exascale
system >1 quintillion
calculations per second

Summit: nation’s most
powerful open-science
supercomputer

Visualization Lab: Voxel-
based approach to
inspecting, evaluating, and
understanding AM and
composite components

Materials

Development

400+ researchers, scientists,
and engineers across a
range of material systems

Cutting-Edge Research
activities in materials for
harsh environments, new Al
alloys, ceramics, metals,
fiber production, and bio-
derived polymers

Multiphase, hybrid, and
advanced materials R&D



Manufacturing Demonstration Facility

Core Research and Development

Leveraging ORNL's fundamental
research to solve challenges in
advanced manufacturing

QO FY20 80% of the MDF Budget
U 80-100 publications annually

Industry Collaborations

Cooperative research to develop
and demonstrate advanced
manufacturing with industry and
universities

Q FY20 10% of the MDF Budget

Q 22 licensed technologies; >50
patent applications

Education and Training

Internships, academic collaborations,
workshops, training programs, and
course curriculum for universities and
community colleges

U Incorporated into our projects
U 1,000 student internships

MDF by the numbers

>100 staff members and ~200 people
total when including interns, students and
co-located industry partners

1,000 internships from 700 unique
students since 2012

>180 partnerships

>50 university collaborations

>130 honors/awards since inception

>80 advanced manufacturing systems
with 60% placed at the MDF by no-cost
leasing (i.e., CRADA)
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The sustainable biocomposite
manufacturing research program
will enable high stream utilization
of forest products & cellulose fibrils
to develop renewable, low cost,
energy-efficient bio feedstocks for

large-scale AM and other
composite applications.
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_ : Molds
Building materials : . Precast concrete structures
(marine applications)

Infrastructure Toolin
(utility poles) J
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Advantages:

Abundant, renewable
resource with price stability
compostable ebiocompatible
* high strength and modulus e
lightweight e shear thinning
thickener (stable against
temperature and salt addition)

Lamm, M.E. et. al. Polymers, 2020, 12 (9), 2115. Carbon Cellulose Cellulose
Fiber (CF) | nanofibrils (CNF) | nanocrystal (CNC)
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« Adsorption (interact with surface)

 Molecular grafting
CNF (covalently attached small molecules)

Challenge: Very hydrophilic surface
of CNF can lead to incompatibility
with hydrophobic polymer matrices

« Polymer grafting
(covalently attached large molecules)
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X

PETG: polyethylene terephthalate-glycol modified

O
O

Modifying the surfaces of CNFs can:

» Reduce surface energy and hydrophilicity

; - : » Reduce agglomeration during drying

Solution: Surface modification > Reduce energy requirement for drying CNF

» Improve the compatibility with polymers and
lead to high performance bio-composites
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Experimental Design
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CNF Imine @ CNF

SOOI PSe
Glutaraldehyde ~ R Ry 2"\'%f

4,4'-Oxydianiline

e Fast react rate
hydrophillic: soluble in water, able to interact with CNF in aqueous phase .
hydrophobic: prevent water solubility of the formed imine ° UnStable N Water and tend to

hydrolyze back into reactant
— Imine-dynamic covalent bond

Incorporation of second hydrophobic portion forces the newly
formed polyimine to co-precipitate with the entwined CNF,
preventing the reverse hydrolysis reaction
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Verification of Imine
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Morphology Changes

» Incorporation of polyimine produced
more fibrillar morphology in drop-cast
samples

» Presence of N confirmed using EDX

C
CNF [N w': CNF Imlne «
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Structure of Polyimine Confirmed by *H-NMR
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PETG composites

A) B)
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10% CNF-Imine

PET(G)

@ %) Aromatic stacking

[ between side chains
E) ) J

20% CNF-Imine

PETG composites feature
better interface between
G) H) filbers and polymer matrix,
regardless of fiber content

30% CNF-Imine
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Filter press

Wash material and
press to 20% solids

Mill
Grind oven-dried material
in fluffy fibers

3 wt.% CNF in
water

Dried, modified CNF
ready for melt
compounding

Allows us to surface-modify up to 3 Ibs. of CNF

(solid content) at a time.




Compounding Conditions

Temperature: 150-220 C
Torque: 50-65 Produced 10 kqg. of

Melt Temperature: 220-225 C composite pellets

Throughput: ~8 kg/hr
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=== >~ Print Slice Setup

 Nozzle Size: 4mm

 Bead profile: 6mm x 1.5mm
 Feed rate: 850mm/min

« Screw speed: 10 rpm

« Forward Tip Wipe: 0.25"

*  Wipe speed: 350.00mm/min
« Travel Lift: 0.25"

Z-direction

X-direc’tion
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« Scale-up produced no difference in properties
* Fiber alignment observed in printed samples
 Need to optimize injection molding procedure
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Fiber Alignment

Randomly
oriented fibers

Aligned Aligned
parallel to perpendicular to
print direction print direction
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o Agrees with tensile properties
« Scale-up produced no difference Iin properties
e Fiber alignment observed Iin printed samples
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HDT Properties

 HDT: heat deflection temperature

* Increased minimally with fiber alignment during printing
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CTE Properties

o CTE: coefficient of thermal expansion
 Decreased significantly with addition of fibers
* Provides more applications for this material
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> Polyimine formed and entangled with the surface of CNF as the presence
of the imine prevented agglomeration and maintained fibrillar
morphology

> Synthesis was scaled-up to produce > 3 kg of modified fibers and ~10 kg
of composite pellets for 3D-printing trial

> Scale-up produced similar properties

> Properties compared between compression molding, injection molding,
and 3D-printed

» 3D-printed samples and injection molded samples displayed fiber alignment
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