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Foreword

“Production and Applications of Cellulosic Nanomaterials” was intended to help organize 
and highlight the wide range of research being conducted worldwide on the science and technology 
of cellulose nanomaterials. The format of this book consists of short research summaries, targeted 
for a level where they can be understood by non-specialists in the research fields, and with a lot 
of figures and pictures to help convey the science. Although we have tried to be thorough and 
inclusive in searching out authors, the world is still a big place in the 21st century, and we can 
guarantee that we have missed a lot of good science. The book has 106 contributions from about 
45 institutions and 10 countries. Science on cellulose nanomaterials that is not included in the book 
is simply the result of limited time and limited resources. We believe there is sufficient on-going 
science on cellulose nanomaterials to support two or three books of this nature, maybe more, and 
encourage others to take up that challenge.

The book is organized into two main chapters, based on the two general cellulose nanoparticle 
types used to date: cellulose nanocrystals (rod-like particle types) and cellulose nanofibrils (fibril-
like particle types). Each chapter is itself divided into several main sections: Preparation and 
Characterization, Health and Safety, Coatings-Films-Optics, and Composites. The chapter on 
cellulose nanocrystals also contains a section on modeling. This deviates somewhat from the main 
chapters in that most of the summaries deal with molecular modeling of cellulose crystals, but 
several papers deal rather with models of composite products and the interface. This latter group 
tends to be agnostic on material form and in general works well within the CNC chapter, but 
anyone with interests in composite models should make sure to check the modeling section of the 
CNC chapter.

Coupled with the irrational exuberance of taking on a book, the editing job is at times exhilarating, 
at times exasperating, exhausting, and ultimately when complete, rewarding, not in a personal or 
financial sense but with a real sense of achievement and contribution. Those emotions were increased 
in all of us when we realized that the initial response to the request for summaries was a book of 300 
to 400 pages, approximately twice the initial target. But that response is a testament to the level of 
interest within the scientific community, and that knowledge helped propel us through that list of E’s 
(exuberance, emotion, exasperation and exhausting). We hope that we have served this community 
of scientists well. We thank them all for their contributions and for bearing with us as we tried to 
assemble the book. Now it is for you to decide whether the effort was worthwhile. We hope you enjoy 
and learn.

This project has been a joint cooperation between the USDA Forest Products Laboratory 
(FPL), DOC National Institute of Standards and Technology (NIST), the University of Maine, 
and the Technical Association of the Pulp and Paper Industry (TAPPI). Inspiration for this book 
came from Michael Postek of NIST, while connections within the community and expertise with 
cellulose nanomaterials came from Robert Moon and Alan Rudie of FPL and Mike Bilodeau of 
the University of Maine. Having embraced TAPPI as publisher, the editors also loosely based the 
original distribution list of the call for summaries on the contributors to the TAPPI International 
Conference on Nanotechnology for Renewable Materials. In addition, the TAPPI Nanotechnologies 
Division became the formal book sponsor, and we would like to thank the Chairman, Sean Ireland, 
and the Division Council for their enthusiastic support.
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Cellulosic Nanomaterials: Sustainable Materials of 
Choice for the 21st Century

Theodore H. Wegner1, Sean Ireland2 and J. Philip E. Jones3

1 USDA Forest Service, Forest Products Laboratory, Madison, WI, USA
2 Verso Paper Corp., Bucksport, ME, USA

3Imerys, Roswell, GA, USA

Introduction

“Production and Applications of Cellulosic Nanomaterials” is intended to bring together current leading-edge 
knowledge and information on cellulosic nanomaterials from worldwide expert sources. This has been a joint coop-
eration between the USDA Forest Products Laboratory (FPL), DOC National Institute of Standards and Technology 
(NIST), the University of Maine, and the Technical Association of the Pulp and Paper Industry (TAPPI). This book 
is needed because during the past several years, discovery of the properties and performance of these materials has 
accelerated. However, by comparison with some other nanomaterials, the level of funding and effort has been mod-
est, largely because most scientists and government bodies are unaware of their existence. The scope and breadth of 
the knowledge and information outlined in this book span the range of cellulosic nanomaterials research, process and 
product development, and commercial exploitation and include standards development and environmental, health, and 
safety issues. It is hoped that this book will help spread the knowledge of cellulosic nanomaterials and lead to further 
efforts in the broader scientific communities.

It is difficult to imagine anything on 
our planet more ubiquitous and environ-
mentally friendly than plants—they grow 
using sunlight, carbon dioxide, water, and 
soil nutrients. What many people may not 
know is that plants, from the smallest al-
gae cell to the largest redwood tree, contain 
cellulose. Cellulose is the most abundant 
polymer on Earth, representing about 1.5 
x 1012 tons of total annual biomass produc-
tion [1]. It consists of glucose-glucose link-
ages arranged in linear chains where C-1 of 
every glucose unit is bonded to C-4 of the 
next glucose molecule as shown in Fig. 1 [2,3]. These chains aggregate along the chain direction with intermolecular 
hydrogen bonds and hydrophobic interactions. They form fibrous structures called nanofibrils 2 to 20 nm wide de-
pending on biological species. These nanofibers make up the structure of all plants as well as some fungi, animals, 
and bacteria [4]. Because these cellulosic nanodimensional building blocks have crystalline regions, they have unique 
distinguishing properties. They have strength properties greater than Kevlar®, piezoelectric properties equivalent to 
quartz, can be manipulated to produce photonic structures, possess self-assembly properties, and are remarkably uni-
form in size and shape. In addition, because of their abundance, we can sustainably and renewably produce them in 
quantities of tens of millions of tons.

Plants have been a major source of raw materials and products for humankind for millennia. For example, prod-
ucts derived from trees, such as wood and paper, have been with us so long and are used so widely in society that 
they are largely taken for granted as part of traditional industries with no new science to learn. However, the op-
posite is true. Because of the complex cascading hierarchical structure of wood (Fig. 2), many of the technologies 
used in the forest products industry were first developed through experience. The complexities of wood are just now 
yielding to newer and more robust qualitative and quantitative analytical tools. We are beginning to see and track

Figure 1. Cellulose Schematic. Adapted from reference [3]. 
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Figure 2. Wood structure schematic

how the mechanical, optical, and other physical properties 
of wood are related to its discrete hierarchical structures 
ranging from nanoscale to microscale to macroscale. As 
a result, we are now seeing growing but disjointed efforts 
worldwide to move research, development and deploy-
ment forward to commercialize cellulosic nanomateri-
als. Several small-scale pilot and pre-prototype facilities 
have been built to produce working quantities of cellulosic 
nanomaterials to support research and product applications 
development. Several different forms of cellulosic nano-
materials are being pursued. One form, cellulose nanocrys-
tals, consists almost exclusively of nanodimensional cellu-
lose crystals. Another form, cellulose nanofibrils, consists 
of regions of crystalline as well as amorphous cellulose. In 
addition, production methods that include acid hydrolysis, 
enzymatic treatments, chemical treatment, and mechanical 
treatment are being pursued. All this activity and more is 
leading to exciting but challenging times in the commer-
cial development of cellulosic nanomaterials.

Materials of the 21st Century Revisited

As we move forward in the 21st Century, we are see-
ing an explosion in demand for materials, energy, food, 
and water driven by growing world population and the 

emergence of large numbers of middle-class consumers 
in emerging economies wishing to consume at Western-
world levels. The supply of material building blocks as we 
know them today will not be sufficient, and we will have 
to revisit and look to materials from forest and agricultural-
based resources as major sources of materials for products. 
In addition, for similar reasons, the rapidly increasing de-
mand for higher-quality food types will require enhanced 
packaging performance to minimize loss of food in the sup-
ply chain. Sustainable, renewable cellulose-based nanoma-
terials have excellent oxygen barrier properties and can fill 
this need. Concerns about climate change are leading to 
a resurgence of interest in cellulose due to the increased 
focus on renewable materials that meet the material needs 
of society while at the same time sequestering carbon. The 
use of cellulose-based materials to produce products in a 
sustainable and ecologically preferable manner is furthered 
by the need to adhere to the principles of Green Chemistry 
and Green Engineering [5]. The forest products industry 
has substantial infrastructure already in place to harvest 
sustainably grown trees and transport them to centers for 
debarking, chipping, and pulping. Such a sustainable sup-
ply base will enable the rapid scaleup of nanocellulosic 
materials based on this existing platform.

Nanocellulose as a Green Material

Society requires scientists and manufacturers to fo-
cus research on sustainable materials and develop them 
so they are easy to manufacture, affordable to the con-
sumer, and widely available. A term, “Green”, has been 
developed not just as a label, but as a new measure of 
materials, technologies, and products. “Green” generally 
refers to materials, technologies, and products that have 
less impact on the environment and/or are less detrimen-
tal to human health than traditional equivalents [6]. For 
example, green products might be produced from sus-
tainable raw materials, be manufactured in a more en-
ergy-conservative or environmentally friendly way, pose

Cellulose is the most
abundant polymer on

Earth, representing about
1.5 x 1012 tons of

total annual biomass
production
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few, if any, health and safety problems, sequester carbon, 
be recyclable, be compostable, be supplied to the mar-
ket using less material, or all the preceding. Cellulosic 
nanomaterials have the capability to meet almost all the 
requirements for being “green” and with further respon-
sible and thoughtful research, development, and deploy-
ment, have the opportunity to become sustainable materi-
als of choice for the 21st Century.

Nanotechnology can also play an important role in 
the production of liquid biofuels from lignocellulosic 
biomass. For example, nanoscale cell-wall structures 
within trees could be manipulated so they are more eas-
ily disassembled into their constitutive materials through 
bio-conversion, thermo-conversion, or catalysis. Another 
approach would be to use nanocatalysis to break down re-
calcitrant cellulose. Recalcitrant cellulose is on the order 
of 15–25 percent of wood, and failure to convert this to 
sugars reduces bioconversion yields.

Nanocellulose Form and Function

The various forms of nanomaterials that can be 
produced from cellulose are often collectively referred 
to as cellulosic nanomaterials or nanocellulose. For ex-
ample, the extraction of cellulose nanofibrils (CNF) and 
cellulose nanocrystals (CNC) from plants, bacteria, and 
some animals (e.g., tunicates) is leading to a wide ar-
ray of worldwide research to use these nanomaterials in 
product applications [3, 7–10]. Examples include using 
CNFs as reinforcing agents in composites due to their 
high strength properties, relative low cost, and availabil-
ity, or CNCs due to their incredibly high strength (Fig. 3), 
renewability, lightweight, high surface area, and unique 
photonic characteristics.

As you will see when reading this book, research 
and development is currently taking place worldwide 
within academia, industry, and government agencies to 
study, characterize, and use these highly complex cellu-
losic nanomaterials. Nanocellulose in its various forms 
contains unique structures and self-assembly features 
that we can exploit to develop new nano-enabled green 
products. A specific example is use of cellulosic nano-
materials in lightweight, high-performance composites. 
Such nanocellulose-enabled composites could eventu-
ally replace carbon fiber mats and strands by weaving 
cellulose-derived nanomaterials and fiber into mats. 
This could lead to replacement of the nonrenewable and 
fossil-based materials currently used to make automo-
tive parts such as dashboards, seats, floor mats, and even 
body panels or frames. The world may not be ready yet to 
step back into a wooden airplane, but the day will come 
when aircraft will have wings and fuselage components 
containing lightweight, high-performance nanocellulose- 
enabled composites. Fiberglass is a common compos-
ite with which most people have experience. It is used 
to manufacture diverse products including tool handles, 
sporting goods, bike frames, boats, and even the bodies 
of some sports cars. Fiberglass cannot be made transpar-
ent and is a heavy material for a composite. Replacing 
fiberglass mat with nanocellulose-containing mat could 
lead to new lighter-weight materials and the eventual 
replacement of nonrenewable products with sustainable 
and renewable cellulosic materials 

Another valuable feature of cellulosic nanomaterials 
is their compatibility with human tissue, as evidenced by

Figure 3. Tensile strength properties of selected wood-based 
products and constitutive hierarchical structures versus steel. 
Note—When using a linear scale, the allowable stress for 
lumber and the tensile strengths of construction lumber, clear 
wood, and wood fiber are barely distinguishable on the Y-axis.

“Green” generally refers 
to materials, technologies, 

and products that 
have less impact on the 
environment and/or are 

less detrimental to human 
health than traditional 

equivalents
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a number of research studies focused on their use as a 
tissue scaffold [10].

The area of nanomanufacturing science and technol-
ogy has not received sufficient attention despite its being 
one of the most critical pathways to applying the benefits 
of nanotechnology. It is absolutely critical to build the 
nanomanufacturing science and technology base to the 
point where nanomaterials exhibiting unique nanoscale 
properties can routinely be placed into components or 
systems, retaining and combining their unique properties 
in a matrix of other materials and resulting in superior 
and controllable composite performance.

Partnering Nationally and Internationally

To scientists, everything meets at the atom. All of us, 
whether we are scientists, engineers, materials producers, 
industrial product producers, or consumers, have some-
thing to learn from new technological advancements in 
nanoscale and atomic-scale science. These new advance-
ments cannot come to fruition without focused and re-
sponsibly targeted efforts in research, development, and 
deployment led by government and industry in conjunc-
tion with academia. This also requires increased interna-
tional cooperation due to the worldwide importance of 
trade, the need to engage collectively the best minds to 
achieve rapid use of cellulosic nanomaterials for the ben-
efit of humankind, the need to meet the needs of all peo-
ple sustainably, and the shared responsibility we all have 
to live within the carrying capacity of our planet Earth.

Nanotechnology and the development of the sci-
ence and technology for producing and using cellulosic 
nanomaterials, although promising, are still high-risk 
and expensive. Cooperation, pooling of resources, and 
openly sharing of pre-competitive information is criti-
cal to moving the science and technology for exploiting 
cellulose nanomaterials expeditiously forward. In North 
America, Europe, and Asia, governmental agency part-
nerships with industry and academia are becoming com-
mon. For example, in the United States (U.S.), Federal 
government emphasis on renewable materials has led to 
increasing emphasis on these specific materials. The U.S. 
National Nanotechnology Initiative (NNI), which brings 
together 25 federal agencies and departments, serves as a 
natural focal point for government and industry to work 
collaboratively [11]. Within NNI, the U.S. Department 
of Agriculture (USDA) Forest Service is the lead federal 
agency advocating for cellulosic nanomaterials from for-
est biomass. The forest products industry, through the 
Agenda 2020 Technology Alliance, has also formed a re-
lationship with the NNI. In addition, the NNI has recent-
ly developed a sustainable manufacturing  “signature”   
initiative which includes renewable and sustainable  

cellulosic nanomaterials [12]. These NNI signature ini-
tiatives are aimed at enhancing the commercialization of 
nanomaterials and nano-enabled products for the benefit 
of humankind.

In Canada, ArboraNano has served as the focal point 
for public-private partnerships [13]. ArboraNano is the 
Canadian Forest NanoProducts Network, made possible 
through the Government of Canada’s Business-led Cen-
tres of Excellence program, FPInnovations, and Nano-
Québec. Its mission is to create new business opportuni-
ties using renewable forest resources and the advances 
made in nanotechnology, especially cellulosic nanoma-
terials, to develop novel or superior products with en-
hanced performance attributes.

Similarly, in Finland, the Finnish Centre for Nano-
cellulose Technologies was established as a public-pri-
vate partnership by the federal VTT Technical Research 
Center of Finland, Aalto University, and UPM (one of the 
world’s leading forest products groups) [14]. The focus of 
the Center is to create new applications for nanocellulose 
as a raw material, substance, and end product.

To translate fundamental knowledge developed by 
investment in nanotechnology into manufacturing and 
create jobs, it will be necessary for industry to partner 
with national laboratories and academia both nationally 
and internationally. This is a critically important link-
age. National laboratories and academia have the ex-
pensive infrastructure in place to conduct needed work 
on nanoparticles as well as the ability to carry out basic 
research. University faculty and students also bring enor-
mous intellectual capacity to bear in providing innovative 
solutions and advancing the underlying science. To be ef-
fective, the work of academia and national laboratories 
must be focused and adequately funded. With respect to  

....to create new business 
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funding, government often supplies the bulk of the funding 
for the basic underlying science and technology. Industry 
often supplies leadership to focus government spending 
in a manner that leads through research to development 
and manufacturing for the consumer. Additionally, indus-
try involvement ensures that material development will 
be in alignment with modern manufacturing processes 
and workplace and consumer product regulatory require-
ments. When technically and economically viable path-
ways to commercialization become clearer the result is 
that, industry funding increases exponentially and gov-
ernment funding decreases exponentially as the science  
moves into commercial development and deployment. 
Industry generally funds commercial deployment, which 
is very expensive, on the order of 12 to 20 times the cu-
mulative research and development costs.  

The Path Forward

In responsibly and efficiently moving cellulosic 
nanomaterials through research, development, and de-
ployment in partnership, we need to concentrate our ef-
forts in the following five general areas:

• Economically viable and environmentally pref-
erable production of the various forms of cellulose 
nanomaterials

• Characterizing cellulosic nanomaterial morphol-
ogy and properties

• Exploring new applications for using cellulosic 
nanomaterials and tailoring them to perform well 
in those applications

• Elucidating and quantifying EHS (environment, 
health, and safety) and ELSI (ethical, legal, and 
social implications) information for responsible 
use, recycling, and disposal

• Developing national and international codes and 
standards to support responsible use and trade

There is ample opportunity for national and inter-
national cooperation, sharing resources and avoiding 
needless duplication of efforts to develop and commer-
cialize uses of cellulose nanomaterials. TAPPI, through 
its annual International Conference on Sustainable 
Nanomaterials, has created a welcoming forum to share 
information and convene like-minded people seeking to 
advance research, development, and deployment of cel-
lulosic nanomaterials to make them a material of choice 
for the 21st Century [15].  

The uniqueness, abundance, and potential low cost 
of cellulosic nanomaterials from trees will serve many 
industrial materials needs. In our immediate future, we 
can envision automobiles and trucks made with cellulos-
ic nanomaterials, wind turbines producing green power, 
ships crossing the oceans, and medicines and medical 
diagnostics. Electronic devices, including photovoltaics, 
electrical storage devices, and sensors, all will be made 
with cellulose nanomaterials produced from trees. We 
hope the vision that we and others share will open your 
mind to the potential opportunities presented by this new 
material. Hundreds of millions of dollars are being spent 
worldwide in a race to discover and patent the capabilities 
of cellulosic nanomaterials. Small-scale facilities to pro-
duce limited quantities of cellulosic nanomaterials have 
already been built in Asia, North America, and Europe. 
Governments cannot stand by and leave the rewards to 
international competitors; academia cannot do research 
without support; and industry has to step up and work 
cooperatively with others to exploit these materials. We 
need to reach out to others, work collaboratively, and 
share information. The potential benefits of using cellu-
losic nanomaterials are too great for us to fail to harness 
them for the benefit of humankind.

Everything meets at the atom—unless you are a 
physicist, in which case, it all comes down to quarks...
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Cellulose Nanocrystals – A Material with Unique 
Properties and Many Potential Applications
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Introduction 
Cellulose nanocrystals (CNCs) are cellulose-based 

nanoparticles that can be extracted by acid hydrolysis 
from a wide variety of natural source materials (e.g., 
trees, annual plants, tunicates, algae, bacteria) [1-7]. 
These rod-like or whisker-shaped particles (Fig. 1, 3–20 
nm wide, 50–2000 nm long) have a unique combination 
of characteristics: high axial stiffness (~150 GPa), high 
tensile strength (estimated at 7.5 GPa), low coefficient 
of thermal expansion (~1 ppm/K), thermal stability up 
to ~300°C, high aspect ratio (10–100), low density (~1.6 
g/cm3), lyotropic liquid crystalline behavior, and shear-
thinning rheology in CNC suspensions. The exposed –
OH groups on CNC surfaces can be readily modified to 
achieve different surface properties and have been used 
to adjust CNC self-assembly and dispersion for a wide 
range of suspensions and matrix polymers and to control 
interfacial properties in composites (e.g., CNC-CNC and 
CNC-matrix). This unique set of characteristics results in 
new capabilities compared to more traditional cellulose-
based particles (wood flakes, pulp fibers, etc.) and the de-
velopment of new composites that can take advantage of 
CNCs’ enhanced mechanical properties, low defects, high 
surface area to volume ratio, and engineered surface chemistries. CNCs have been successfully added to a wide vari-
ety of natural and synthetic polymers [2] and have been shown to modify composite properties (mechanical, optical, 
thermal, barrier). Additionally, CNCs are a particularly attractive nanoparticle because they have low environmental, 
health, and safety risks, are inherently renewable, sustainable, and carbon-neutral like the sources from which they are 
extracted, and have the potential to be processed in industrial-scale quantities at low costs.

Processing of Cellulose Nanocrystals

Although there are many variants of the process to isolate CNCs from a given cellulose source material, this pro-
cess generally occurs in two primary stages. The first stage is a purification of the source material (plants, tunicates, 
algae, bacteria, etc.) to remove most of the non-cellulose components in the biomass. These include lignin, hemicel-
lulose, fats and waxes, proteins, and inorganic contaminants. The second stage uses an acid hydrolysis process to 
deconstruct the “purified” cellulose material into its crystalline components. This is accomplished by preferentially re-
moving the amorphous regions of the cellulose microfibrils [3,8]. The resulting whisker-like particles (3–20 nm wide, 
50–2000 nm long) are ~100% cellulose, are highly crystalline (62%–90%, depending on cellulose source material and 
measurement method), and have been referred to in the literature as cellulose nanocrystals (CNCs), nanocrystalline 
cellulose (NCC), and cellulose nanowhiskers (CNW) to name a few. The variations in CNC characteristics (e.g., 

Figure 1. Transmission electron microscopy (TEM) image of 
CNCs extracted from microcrystalline cellulose.

C
ellulose N
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particle morphology, surface chemistry, percent crystal-
linity, etc.) are strongly linked to the cellulose source 
material and the acid hydrolysis processing conditions. 
Subsequent chemical treatments can be carried out to al-
ter the CNC surface chemistry.

Research Areas in Cellulose Nanocrystals

Research on CNC materials covers a wide range of 
topics, including, but not limited to, CNC extraction pro-
cesses, CNC suspension (dispersion, modification, liquid 
crystallinity, rheology, etc.), CNC surface functionaliza-
tion (chemical, polymer grafting, nanoparticles, metal 
cations, DNA, etc.), CNC structural and property char- 
acterization, CNC composite processing (self-assembly, 

dispersion, network formation, interface engineering, 
films, continuous fibers, foams, etc.), CNC composite 
properties (mechanical, optical, thermal, barrier proper-
ties, etc.), predictive modeling (multi-length scale, struc-
ture, properties, etc.), life-cycle analysis, and environ-
mental health and safety. Many of these topics will be 
covered in subsequent summaries within this section of 
the book.

Potential Applications

Potential applications of CNCs can be loosely 
grouped based on some unique combinations of CNC 
characteris-tics; several of these are listed below.

Rheology modifiers. Addition of CNCs can alter the rhe-
ology [9] of various media (liquids, polymer melts, par-
ticle mixtures) that are used in many industrial applica-
tions, such as paints, coatings, adhesives, lacquers, food, 
cosmetics, drugs, and cements.

Reinforcement for Polymer Materials. Addition of 
CNCs to various polymer matrix materials alters the me-
chanical properties of the resulting composites and can 
be used in the development of robust, flexible, durable, 
lightweight, transparent, and dimensionally stable films 
which may be used in packaging or structural composite 
applications.

Barrier Films. CNC-based composites incorporating tai-
lored CNC surface chemistry and spacing between CNCs 
have attracted interest as barrier films with potential uses 
in selective filtration, batteries, and packaging applica-
tions [2-4,6].

Optical Films or Coatings. The liquid crystallinity of 
CNC suspensions, coupled with the birefringent nature 
of the particles, leads to interesting optical phenomena 

Figure 2. a) Photograph of CNC film showing iridescent/pearlescent optical behavior [courtesy of FPInnovations], b) TEM image of 
a tunicate CNC surface functionalized with silver nanoparticles[16], c) Photograph of CNC foam [courtesy of Shaul Lapidot, Hebrew 
University of Jerusalem, Israel], d) Scanning electron microscopy (SEM) image of 15wt% CNC-polyvinyl alcohol (PVA) electrospun 
continuous fibers [courtesy of Prof . Orlando Rojas [15]].
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their research on the properties and applications of this 
fascinating material.
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pearlescent optical behavior for unique optical patterning 
of surfaces (Fig. 2a) [5,9,10].

CNC-Hybrid Composites. CNC composites that inte-
grate inorganic nanoparticles (or chemical species) onto 
CNC surfaces (Fig. 2b) and/or into CNC networks have 
added chemical functionality which could be of use in 
biosensors, catalysis, photovoltaics, drug delivery, filters, 
and antimicrobial applications [4,6].
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rous materials (densities = 0.01–0.4 g/cm3, surface area = 
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Summary

The unique set of characteristics of CNCs and CNC 
suspensions and the recent advances in CNC production 
capability have accelerated fundamental and applied 
research and development of CNC materials for a 
number of industrial applications. In the following pages, 
scientists working with CNCs will summarize aspects of 
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Cellulose Nanocrystals: Extraction from Bio-Residues

Abstract. The aim of this study is to explore the use of in-
dustrial bio-residues as a source of raw material, for the 
industrial production of cellulose nanocrystals. For this 
purpose, cellulose nanocrystals have been isolated from 
bio-residues from ethanol and specialty cellulose produc-
tion to analyze their properties.

Keywords. Cellulose nanocrystals, bio-residues.

Martha Herrera, Aji Mathew, and Kris-
tiina Oksman

Division of Materials Science, Luleå University of Technol-
ogy, Luleå, Sweden

Introduction. The continuously increasing amount of in-
dustrial bio-residues and the rising cost of their manage-
ment are forcing us to make better use of the residues of 
the bio-based industries. The economics of forest-based 
industries like ethanol and specialty cellulose production 
can be improved with the co-production of chemicals and 
bio-based products from their residues. The most com-
mon co-products obtained from the ethanol industry are 
lignin, furfuryl, phenolic, epoxy, and isocyanate resins, as 
well as heat recovery for the main process [1]. However, 
another interesting co-product from these bio-based in-
dustries may be cellulose nanocrystals (CNC). CNC are 
the crystalline part of the cellulose, which is the structural 
component of the cell wall of green plants and some algae 
[2,3]. CNC are rod-shaped nano-sized crystals which can 
be separated by acid hydrolysis from cellulosic materi-
als and residues from forest-based industries [4-6]. These 
crystals have attracted great interest as a novel nanostruc-
tured material during recent years and are expected to be 
used as reinforcement in polymers, in pharmaceutical 
products, and in barrier films [7,8].

Methodology. The methodology followed for the iso-
lation of CNC from ethanol residues (CNCER) was 
previously reported by Oksman et al. in 2011 [4]. The 
first step is the purification of the bio-residue to remove 
the extractives. For this purpose, a Soxhlet apparatus is 
used, as described in TAPPI test method T204 [9]. The 
samples are extracted for 6 h at 150°C using a mixture 
of toluene and ethanol in the ratio 2:1. The process is 

stopped and allowed to cool after 6 h. The sample is 
then placed in a Buckner funnel and vacuum-dried at 
room temperature to remove excess solvents. The sam-
ple is then re-extracted under the same conditions after 
drying with ethanol to remove traces of toluene. Finally, 
the sample is vacuum-dried at room temperature for 24 
h to remove traces of residual solvents. Then the sample 
is reweighed and placed in a conical flask to proceed 
with the bleaching step. A conical flask containing 700 
ml deionized water is preheated to 70°C, after which 1.5 
ml of acetic acid and 6.7 g of sodium chlorite are added, 
and the samples are kept at 70°C for 12 h. During the 12 
h, four further additions of acetic acid and sodium chlo-
rite are made at 2 h intervals, and after the fourth addi-
tion, the mixtures are kept at 70°C for 12 more hours. 
After 24 h, deionized water is added to the mixture, and 
centrifugation is then continued to remove any excess 
residual chemicals. The cellulose nanocrystals are iso-
lated from the purified cellulose using high-pressure ho-
mogenization at a pressure of 500 bars.

To separate CNC from reject cellulose (CNCRC) 
from specialty cellulose production, the procedure report-
ed by Bondeson et al. in 2006 [7], with minor differences,  

Figure 1. Photo and TEM images of reject cellulose and CNC-
ER (left), and ethanol residue and CNCER (right). 

Figure 2. Diagram showing the increase in tortuosity of films 
due to the addition of cellulose nanocrystals.
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was followed. The first step was to place the rejected cel-
lulose in a solution of 65% sulfuric acid at 40°C under 
mechanical stirring for 30 min. The suspension was then 
diluted with deionized water and centrifuged several times 
in cycles of 5 min at 6,000 rpm. The supernatant was re-
moved from the sediment and replaced by new deionized 
water and mixed. The centrifuge step was stopped after 
at least five washings or when the supernatant became 
turbid. This turbid supernatant was collected and dialyzed 
against deionized water until reaching a constant pH. The 
samples were then sonicated for 2 minutes in an ice bath 
to avoid overheating.

Flow birefringence was used to confirm the pres-
ence of isolated nanowhiskers in the suspension.

Results. The first result obtained was the observation of 
flow birefringence in both samples. With this test, it could 
be proved that cellulose nanocrystals were obtained from 
the isolation processes in both materials [6].

After a naked-eye inspection of the flow birefrin-
gence, the CNC were observed in a transmission electron 
microscope (TEM). With these images, a similar morphol-
ogy could be observed in both samples. Both CNCER and 
CNCRC had a whisker appearance, as shown in Figure 1. 
The length of the crystals could also be determined from 
these images, yielding the data shown in Table 1. Both 
crystals had similar lengths, approximately 300 nm for 
CNCER and 377 nm for CNCRC. However, the length 
distribution of CNCRC was in the range of 375–449 nm 
and that of CNCER between 300 and 374 nm [6].

UV/Vis spectroscopy revealed that the films were 
not transparent in the UV and visual spectra and that 
CNCRC displayed more interference in all the ranges 
studied, confirming the presence of longer crystals as ob-
served in the TEM study [6].

The results of X-ray diffraction analysis showed 
that both materials exhibited cellulose I structure. The 
crystallinity of the crystals extracted from reject cellu-
lose, as shown in Table 1, was approximately 86%, and 
that of the CNC from ethanol residues was somewhat 
lower (78%) [6].

The thermo-gravimetrical analysis (TGA) data, 
shown in Table 1, indicate that the crystals extracted from 
ethanol residues were more thermally stable than those 
extracted from reject cellulose. The reason might be that 

several washing steps were used in the extraction of the 
CNCER [6].

Conclusions. The properties of cellulose nanowhiskers sep-
arated from two different industrial residues, sludge from 
cellulose production and lignin residues from wood bio-
ethanol production, were studied. The nanocrystal isolation 
procedures used on these sources varied according to the 
specific needs of each bio-residue. Sulfuric-acid hydrolysis 
was used for the reject cellulose, and bleaching and high-
pressure homogenization were used for the ethanol residues.

This work demonstrates that reject cellulose from 
specialty cellulose production and residual ethanol from 
wood bioethanol production can potentially be used as 
raw materials to produce value-added products from bio-
residues, (i.e., cellulose nanocrystals) thereby increasing 
the value of forest resources. The results are relevant for 
bringing added value to the forest resource. Our aim is 
also to use these nanocrystals as gas barriers or gas sepa-
ration membranes. The idea is to increase the tortuosity 
in the path of the gas through the film by increasing the 
CNC content, as illustrated in Figure 2. [11].
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