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 Bird migration is the regular seasonal movements between breeding and 

nonbreeding grounds. In general, birds that breed in the Northern Hemisphere tend to 

migrate northward in the spring to take advantage of increasing insect populations and 

lower predation pressures and fly south when food availability and weather conditions 

decline.  Embarking on a journey that can stretch a thousand miles round trip is a 

dangerous and arduous undertaking. While en route migrants must stop and feed to 

replenish their depleted energy reserves, often in unfamiliar locations with unknown 

predation pressures. They also must react to weather conditions during flight and while 

on the ground. Additionally, areas of high quality habitats where birds can refuel 

efficiently and safely may be few and far between. Therefore, it’s not surprising that 

mortality rates can be higher during migration than at any other period of the year. 

Behavioral decisions such as when and where to stop, how long to stay, and when to 

leave all involve costs and benefits with an ultimate goal to balance the costs and benefits 

on order to achieve a successful and efficient migration. Optimal migration theory, aims 



 

to explain how migrants balance behavioral and physiological parameters of migration 

that minimize total time spent on migration, total energy expended, or mortality risk. The 

eventual result of these optimization pressures is thought to be a gradient of behavioral 

strategies that optimize different combinations of the three currencies: time, energy, and 

risk. I investigated how migratory behaviors of North American songbirds in the autumn 

balance the three currencies. More specifically I 1) explored how stopover site selection 

varies across migratory strategies at the landscape (Chapter 2) and habitat-patch (Chapter 

3) scale; 2) investigated the importance of wind for the evolution and maintenance of 

migratory routes (Chapter 4); and 3) explored how selection of wind conditions for 

migratory departure affects overall behavioral strategies (Chapter 5). With this research, I 

hope to further our predictive abilities of migratory behaviors under various 

environmental and geographic situations using an optimal migration framework.
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CHAPTER 1: INTRODUCTION 

 

1.1. Overview of migration  

 Migration differs from ordinary flight in both the greater length of the journey and 

in the greater altitude at which it usually occurs (Newton 2008). Further, while en route 

migrants must stop and feed to replenish their depleted energy reserves, often in 

unfamiliar locations with unknown predation pressures (Moore and Aborn 2000). They 

must also respond plastically to prevailing weather during flight and while on the ground. 

Moreover, areas of favorable habitat where birds can refuel efficiently and safely may be 

few and far between. It’s not surprising that mortality rates can be higher during 

migration than at any other period of the year (Sillett and Holmes 2002).   

 One of the main advantages of flight over other modes of migratory locomotion is 

speed (Newton 2008), which facilitates longer distance travel. Nevertheless, the lengths 

and types of migratory flights can be greatly modified by endogenous factors (e.g., 

genetics, body size, morphology, physiology) and exogenous factors (e.g., prevailing 

weather conditions, geography) (Moore et al. 2005). The above factors can constrain the 

decisions birds make during migration, thereby affecting migratory route, airspeed, the 

length of re-fueling breaks between bouts of migratory movements (i.e., stopover), and 

fuel load. All decisions involve costs and benefits, and the goal of migration ecology 

broadly is to predict the behaviors birds use to balance the costs and benefits to achieve a 

successful migration. 



  2 

1.2. Optimal migration theory 

 The use of optimization approaches to bird migration was pioneered by 

Pennycuick (1969) and has since been a cornerstone for interpreting flight adaptations 

and strategies in migrating birds (Alerstam and Lindstrom 1990). In coining the term 

“Optimal Migration Theory”, Alerstam and Lindstrom (1990) aimed to establish 

relationships between the main behavioral and physiological parameters of migration 

(stopover duration, frequency, and flight energy consumption) that minimize the 

expenditure of total time spent on migration, total energy expended, or mortality risk 

(Chernetsov 2012).   

 Generally, birds that gain an advantage in arriving to their wintering or breeding 

grounds before competitors employ a time-minimizing strategy. These species are 

predicted to exhibit shorter stopover durations, faster refueling rates, and higher fuel 

loads upon departure (which allow for longer flights between stopovers). Birds migrating 

under the energy-minimization strategy, on the other hand, should exhibit behaviors that 

reduce the rate of energy expenditure (Chernetsov 2012; Hedenstrom and Alerstam 

1997). Typical behaviors include longer stopover durations, slower refueling rates, and 

lower fuel loads (to increase flight efficiency). Minimization for overall mortality risk is 

discussed less in the literature probably because it is a difficult parameter to quantify 

(Chernetsov 2012). Much of the theoretical and empirical studies are centered on 

minimization of predation risk. However, as Alerstam and Lindstrom (1990) state, in a 

risk minimization strategy birds should reduce the total mortality risk during migration as 

low as possible.   
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 For my dissertation, I investigated how migratory behaviors of North American 

songbirds in the autumn balance the three aforementioned currencies: time, energy, and 

risk. With this research, I hope to further our predictive abilities of migratory behaviors 

under various environmental and geographic situations using an optimal migration 

framework. More specifically I 1) explored how stopover site selection varies across 

migratory strategies at the landscape (Chapter 2) and habitat-patch (Chapter 3) scale; 2) 

investigated the importance of wind for the evolution and maintenance of migratory 

routes (Chapter 4); and 3) explored how selection of wind conditions for migratory 

departure affects overall behavioral strategies (Chapter 5).     

 

1.3. Stopover site selection   

 A successful migration depends heavily on stopover habitat.  Stopover habitat 

provides birds with a place to rest, refuel, and avoid predation, and stopover site selection 

thus has consequences for all three of the main migration currencies (time, energy, and 

risk, respectively). Factors influencing habitat selection, however, is most often scale 

dependent (Hutto 1985).  At large regional scales, stopover habitat use is primarily 

governed by extrinsic factors, those factors unrelated to habitat, such as wind patterns and 

individual energetic status (Gauthreaux 1980, Kerlinger and Moore 1989).  As spatial 

scales become smaller, intrinsic factors, such as food availability, habitat structure (Buler, 

Moore, and Woltmann 2007), and predator abundance (Moore and Aborn 2000) likely 

become increasingly important in decisions of habitat use (Hutto 1985).  

 Much of the total time spent on migration is spent on stopover (Dänhardt and 

Lindström 2001, Hedenstrom and Alerstam 1997). Therefore, stopover site selection 
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likely plays a significant role in balancing the total costs of migration for all three 

migratory currencies. Many factors contribute to a migrants choice in where to stopover, 

including 1) the migratory strategies employed by the migratory community, 2) local 

geography, 3) landscape composition and configuration, 4) predation risk, and 5) 

interactions among these factors.  

 First, migratory strategies vary among species as a function of their energetic 

constraints (Moore et al. 1995). For example, long-distance migrants, generally 

considered time-minimizers, may have substantially different stopover habitat 

requirements than short-distance migrants (i.e., energy-minimizers) due to the constraints 

of longer flight distances and the associated cumulative energy requirements and risk 

along the migratory route.  

Second, geography and landscape composition and configuration are widely used 

predictors of habitat use more broadly.  For example, major landscape features (e.g., 

coastlines, water resources) are known to concentrate both migrating landbirds and 

raptors (Aborn 1994, Valeix et al. 2009), affecting stopover site selection. The success of 

these characteristics in predicting bird behavior, however, is tightly dependent on scale.  

At large spatial scales, the proportion of vegetated lands versus un-vegetated lands may 

be a significant driver of stopover site use. Conversely, at finer scales habitat type, such 

as hardwood forest cover (Buler et al. 2007), has been shown to be a significant predictor 

of stopover site use (Hutto 1985, Moore et al. 1995).  

Additionally, predation risk can be a strong contributor to stopover habitat 

selection (Lindström 1990). Optimal foraging theory (after which optimal migration 

theory was modeled) predicts that birds choose feeding sites and habitats that allow them 
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to meet their energetic requirements while minimizing predation risk (Chernetsov 2012).  

Individuals are predicted to avoid areas with high predation risk, even if these areas 

would maximize foraging efficiency.  In times of high energetic demand, such as 

migration, added predation risk may be outweighed by the costs of decreased foraging 

efficiency in safer habitats. These added challenges during migration are likely to alter 

the optimal solution to the foraging versus predator-avoidance trade-off.  Studies of 

landbirds (Moore 1994, Cimprich et al. 2005) and shorebirds (Metcalfe and Furness 

1984) have demonstrated that individuals in migratory condition decrease predator 

avoidance behavior relative to individuals that are not migrating. 

 

1.4. Evolution of migration divides  

 All else being equal, energy costs should favor birds taking the shortest, most 

direct route between breeding and wintering grounds, yet many birds take longer, 

circuitous routes (Newton 2008). An example of a circuitous migratory pattern can be 

found along the many migratory divides around the world. Migratory divides are where 

hybrid zones or areas of contact between sister species overlap across taxa (Helbig 1996, 

Bensch, Andersson, and Akesson 1999, Delmore, Fox, and Irwin 2012, Ruegg and Smith 

2002, Rohwer and Irwin 2011, Møller et al. 2011) but have very different headings and 

migratory routes.  

 One such divide can be found in Central Europe. Along this divide populations 

migrate either southwest or southeast to circumvent the Mediterranean Sea to the west or 

east, respectively, on their way to their wintering grounds in Africa (Helbig 1991, Helbig 

1992, Helbig 1996, Berthold and Helbig 1992, Berthold and Terrill 1988). Another is the 
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Siberian divide north of the Tibetan Plateau (Irwin and Irwin 2005) where the two 

pathways circumvent the inhospitable terrain of the Plateau. The Canadian Rockies in 

North America also possess a divide where eastern and western species breed adjacent to 

one another yet exhibit different migration routes (Ruegg 2008, Ruegg and Smith 2002, 

Delmore, Fox, and Irwin 2012, Kelly and Hutto 2005, Toews, Brelsford, and Irwin 2011, 

Rohwer and Irwin 2011). 

 Hypotheses concerning the formation of migratory divides and the evolution of 

circuitous migratory routes in general posit a range of potential causes, including post-

glacial range expansions out of shared refugia (Remington, Charles 1968, Swenson and 

Howard 2005, Anderson 1948), proximity to geographic barriers (Remington, Charles 

1968, Swenson and Howard 2005), and meteorological factors such as wind patterns 

(Richardson 1978, Alerstam 1979, Gauthreaux et al. 2005). The ultimate cause of each of 

the above-mentioned selection pressures, however, is likely the differential costs of 

migration in terms of time, energy, or risk (Helbig 1996). 

 

1.5. Wind selectivity 

 Currents can be strong selective forces on the movements of migratory animals 

(Kemp et al. 2012, Richardson 1990, Chapman et al. 2010, Melià et al. 2013, Xue et al. 

2008, Incze et al. 2010, Alerstam et al. 2011, Srygley and Dudley 2007). Wind is thought 

to be one of the most important factors affecting bird migration timing, orientation, 

energy expenditure, and flight speed (Alerstam and Lindstrom 1990, Erni et al. 2002; 

McLaren, Shamoun-Baranes, and Bouten 2012).  
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 Winds flowing in the intended migratory direction can increase flight speed 

dramatically (Bruderer and Liechti 1998). Thus, birds can almost double flight speed and 

save half the energy required for its migratory journey if they can take advantage of wind 

assist (Liechti and Bruderer 1998). Selectivity of wind conditions should be behaviors 

that are under strong selection, although the precise form of this selection should be 

dependent upon which migratory behavioral strategy they employ. To minimize flight 

time and energy, a bird should migrate only in favorable winds. High selectivity, 

however, restricts departure opportunities and potentially increases the cumulative time 

spent on migration (Alerstam 2011, Bruderer, Underhill, and Liechti 1995, McLaren, 

Shamoun-Baranes, and Bouten 2012).  

 In the chapters that follow, I use a diversity of empirical and modeling approaches 

to investigate migratory behavior in an optimal migration framework. The over-arching 

goal of this work is to predict behavior under varying geographic, environmental, and 

taxonomic conditions. Specifically, I address the factors that influence stopover site 

selection at both regional (Chapter 2) and local (Chapter 3) scales, those that explain 

differences in migration route along a migratory divide (Chapter 4), and factors that 

explain variation in wind selectivity across varying taxa and migration strategies (Chapter 

5). 
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CHAPTER 2: LANDSCAPE-SCALE HABITAT AVAILABILITY, AND NOT 

LOCAL GEOGRAPHY, PREDICTS MIGRATORY LANDBIRD 

 STOPOVER ACROSS THE GULF OF MAINE 

2.1. Summary 

 While it is clear that many migratory behaviors are shared across taxa, 

generalizable models that predict the distribution and abundance of migrating taxa at the 

landscape scale are rare.  In migratory landbirds, ephemeral concentrations of refueling 

birds indicate that individual behaviors sometimes produce large epiphenomena in 

particular geographic locations.  Identifying landscape factors that predict the distribution 

and abundance of birds during migratory stopover will both improve our understanding 

of the migratory process and assist in broad, regionally relevant conservation.  In this 

study we used autumnal passerine stopover data from a five-year period and eleven 

stopover sites across coastal Maine, USA, to test four broad hypotheses of migrant 

distribution and abundance that have been supported in other regions: a) the community 

characteristics of the pool of potential migrants, b) a site’s local geography, c) landscape 

composition and configuration measured at different spatial scales, and d) interactions 

between these factors.  Our final model revealed that birds concentrate at “habitat 

islands”, sites that possess a disproportionate percentage of the vegetated habitat in the 4-

km surrounding landscape.  The strength of this pattern, however, was inversely 

proportional to a species’ remaining migratory distance.  Our results corroborate several 

studies that emphasize the importance of land cover composition at finer spatial scales 

(<80 km2) for predicting the stopover distribution and abundances of migratory birds.  

This suggests that different migrants likely assess stopover sites with similar mechanisms 
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along their migratory route, and these commonalities may be broadly applied to identify 

stopover locations of conservation importance across the continent.  

 

2.2. Introduction 

 Stopover sites are extraordinarily important for birds making the costly journey 

from breeding grounds to nonbreeding grounds.  The majority of total migration time for 

passerines is spent on stopover (Dänhardt and Lindström 2001, Hedenstrom and Alerstam 

1997), although stopover habitat selection has only recently been explicitly modeled 

(Cohen et al. 2014).  To predict the effects of future landscape alteration on migratory 

birds, we need to understand how individual choices made during migratory stopover 

produce population and community-level patterns of abundance.  Here we present a 

community-scale comparison of stopover habitat use over five years across eleven 

monitoring stations spanning a 15,000 km2 region of coastal Maine, USA.  We use this 

broad-scale dataset to test the efficacy of a number of hypothesized drivers of stopover 

abundance that have been identified by previous studies along the major North American 

migratory flyways.  These factors include a) the characteristics of the taxa that are 

available to use a site for stopover (hereafter the “migratory community”), b) local site 

position relative to major landforms (i.e. local geography), c) the landscape 

characteristics at multiple spatial scales, and d) interactions among these various factors 

(Table 2.1).  Together, these taxa-, landscape-, and site-related factors likely combine to 

determine stopover site use each migratory season.  Using a suite of previously unstudied 

stopover locations, we tested whether a set of these factors could predict the integrated 

seasonal use of a site by the entire landbird migratory community over the autumnal 
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migratory season.  Integrated seasonal use is an estimate of the total number of migrants 

that stop at a given site throughout an entire migratory season, and it is thus a proxy for a 

site’s importance to a migratory bird taxon or regional community. 

 One potential determinant of the distribution of migrants during stopover at a 

locale is the variety of migratory strategies employed by the migratory community.  

Landbirds differ in their energetic constraints and consequently in their need for 

migratory stopover (Moore et al. 1995) as a function of the distance to their non-breeding 

locale (Table 2.1: Migratory Strategy Hypothesis 1, M1), foraging guild (Table 2.1: M2), 

and other unique characteristics of their phylogeny (taxonomic family) (Table 2.1: M3).  

Ultimately, however, these strategies affect whether an individual will use a specific 

stopover site, and the integrated use of a site by all migrants should be partially 

determined by the composite strategies of the entire migratory community. For example, 

species traveling over 5,000 km may have considerably different stopover habitat 

requirements than species spending the non-breeding season within 1,500 km of their 

breeding grounds (M1).  Similarly, site use is influenced by energetic constraints, and 

migrants that are plastic in their dietary behavior (Parrish 2000) may exhibit different 

stopover choices than birds that are dietary specialists (M2).  In New Jersey, broad 

stopover habitat use was similar by taxonomic family, with most families preferring 

similar successional stages and different families choosing different habitat types (M3) 

(Suthers et al. 2000). 

 Migrant use of a locale during stopover may also be determined by local 

geography, including a site’s distance from a major coastline (Table 2.1: Geographical 

Hypothesis 1, G1), its position along a coastline (Table 2.1: G2), and whether or not the 
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site is found on an island (Table 2.1: G3) of a given size (Table 2.1: G4).  Coastlines, for 

one, are known to concentrate migrant landbirds unwilling to cross open water without 

suitable weather conditions (Gauthreaux 1971a).  Even in favorable weather conditions, 

however, migrants use coastal habitats in large numbers (Kuenzi et al. 1991), especially 

during the fall in eastern North America, when the prevailing winds drive migrants 

toward the coast (Williams et al. 1977, Moore et al. 1995).  This effect may be 

augmented in the fall because the migratory community is dominated by young of the 

year, which use the coast to visually orient during their first passage south (Ralph 1981).  

We might expect then, that distance from the coast would correlate inversely with 

stopover site use (G1).  Further, the northeast–southwest orientation of Maine’s coastline 

has the potential to concentrate large numbers of birds.  As birds traveling from the 

northwestern US reach the coast at various points, but all continue southwest along the 

coastline (Drury and Keith 1962, Richardson 1978), we may detect more birds at sites 

within the southwestern extent of the region than within the more northeastern extent 

(G2).  Islands may produce different patterns of stopover relative to continuous coastal 

shorelines as well (G3), as has been reported along two different stretches of North 

American shoreline (McCann et al. 1993).  Similarly, island size may be correlated with 

bird abundance in migration (Suomala et al. 2010, Martin 1980) (G4), as it is in the 

breeding season (Freemark and Merriam 1986, Blake and Karr 1987, Suomala et al. 

2010). 

 Landscape characteristics are a third broad category of factors that have been 

found to predict patterns of migrant stopover.  Landscape characteristics can be broken 

into two, more specific groups; landscape composition and landscape configuration.  
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Landscape composition includes variables describing the relative amount of various land 

cover types such as the total percentage of vegetated lands (Table 2.1: Landscape 

Characteristic Hypothesis, L1), the total percentage of various broad land cover types 

found within the landscape (Table 2.1: L2), and the proportional habitat availability (the 

proportion of any type of land cover versus all other cover types: L3 & L4).  To our 

knowledge, habitat availability has not been tested directly as a driver of migrant 

stopover behavior, but it is a keystone of habitat selection theory more broadly (e.g. 

Johnson 1980, McDonald et al. 2005). There is considerably more research on the 

importance of the landscape configuration for migrants.  In landscapes where resources 

are patchy, migrant foraging and habitat use can vary by patch size or patch density 

(Table 2.1: L5).  Several studies in the Midwestern US have found differential use of 

habitat patches and their edges during migration (Wilson et al. 1982, Vitz and Rodewald 

2007).   

 Landscape composition and configuration are widely used predictors of habitat 

use more broadly, but success in their use is tightly dependent on scale.  At large spatial 

scales (> 450 km2), the proportion of vegetated lands versus un-vegetated lands may be a 

significant driver of stopover site use (L3).  Many authors have recognized the 

importance of finer scale habitat availability in predicting migrant habitat use (Hutto 

1985, Moore et al. 1995). Buler et al. (2007) reasoned that hardwood forest cover in the 

northern Gulf of Mexico region might be a proximate cue for birds selecting a stopover 

site.  Mathematical formulations have confirmed these predictions (Farmer and Wiens 

1998, Simons et al. 2000), although empirical support is lacking (Buler et al. 2007).  If 

birds use vegetation composition as a cue for habitat use at finer scales, migrant stopover 
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distribution may vary by the local availability of certain land cover types relative to the 

availability in the larger region (L4).   

 Patterns of migratory stopover may also be influenced by the interactions among 

factors (Table 2.1: Interaction Hypothesis 1, I1).  In a review of migratory habitat 

selection studies, Petit (2000) reported an interaction between stopover habitat use and 

foraging guild in three of five studies.  During fall migration in the Rocky Mountains, 

Carlisle et al. (2004) found differential habitat use between neotropical and temperate 

migrants, suggesting an interaction between migration distance and habitat type.   

 In this study we test the ability of these four broad, previously identified factors 

(Migrant Community, Geography, Landscape Characteristics, and their Interactions) to 

predict the distribution and abundance of 50 common migratory landbird species among 

11 previously unstudied stopover locations across five autumn migration seasons.  
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Table 2.1. Citations that found support for each general hypothesis of migrant distribution 

tested in this study (non-exhaustive).  The right column indicates whether or not our 

study supported the referenced hypothesis. 
Hypothesis Explanatory Variables Citation Supported 

Migratory community 

characteristics (M) 

M1: Migration strategy Carlisle et al. 2004  Yes 

 M2: Foraging guild Parrish 2000  

Rodewald & Brittingham 2004 

Wilson et al. 1982  

No 

 M3: Taxonomic group Suthers et al. 2000 

 

Yes 

    

Local geography (G) G1: Distance from the coastline Bonter et al. 2009  

Buler and Moore 2011  

Ralph 1981  

(Stewart, R.M., Mewaldt, L.R., 

and Kaiser 1974)  

Alerstam and Petterson 1977 

 

No 

 G2: NE to SW position within 

the Gulf of Maine 

Drury and Keith 1962  

McCann et al. 1993  

No 

 G3: Mainland vs. island site McCann et al. 1993  No 

 G4: Island size Suomala et al. 2010 

Martin 1980  

No 

    

Landscape characteristics 

(L) 

Landscape Composition 

L1: Total percentage of 

vegetated habitat 

 

L2: Total percentage of four land 

cover types 

 

 

 

 

L3: Proportional vegetated 

habitat availability 

 

This study 

 

 

Bonter et al. 2009  

Buler and Moore 2011  

Buler et al. 2007  

Moore et al. 1990  

Cohen et al. 2014 

 

This study 

 

 

 

No 

 

 

No 

 

 

 

 

 

Yes 

 L4: Proportional availability of 

four land cover types 

This study No 

 Landscape Configuration 

L5: Vegetation patch dynamics 

(patch density & patch area) 

 

Martin & Karr 1986  

Rodewald and Brittingham 2004  

Vitz and Rodewald 2007  

Matthews and Rodewald 2010  

Wilson et al. 1982  

Cohen et al. 2014 

 

No 

    

Combinations and 

interactions of above 

hypotheses (I) 

I1: Combination of variables Bonter et al. 2009  

Vitz and Rodewald 2007  

Wislon et al. 1982  

Buler and Moore 2011 

 

Yes 
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2.3. Methods 

2.3.1. Study region and sites  

 We used fall migrating-landbird data from eleven monitoring stations in the 

Downeast and Midcoast regions of Maine, USA from August – October 2007 – 2012 

(excluding 2008) that used regionally standardized, passive mist-netting (Table 2.2).  The 

stations are located along 180 km of coastline (Figure 2.1).  These sites span both sides of 

the mouth of the Penobscot River (the longest river system within Maine and the second 

longest river system that enters the Gulf of Maine).  Birds often utilize rivers as migratory 

corridors (Skagen et al. 1998, Bagg 1923, Lehnen and Krementz 2005, Martell et al. 

2001), and with its north-south orientation the Penobscot River may serve as an important 

landmark for birds migrating along the Atlantic flyway.  Wherever possible, nets were 

erected in five main habitat types (forest, shrub, mowed or grazed field, and transitional 

edges in field-shrub and shrub-forest) within each site to prevent confounding the habitat 

of capture with the stopover site of capture.  One of our eleven sites did not possess a 

field component (Cross Island) and two sites did not possess forest components (Seal and 

Petit Manan islands).  

 Five of the eleven monitoring sites were located on the mainland or on islands 

separated from the mainland by less than 1/20 of their width (Figure 2.1).  The site 

furthest from the coast, McFarland Hill, is located 3 km west of Frenchman Bay (9 km 

from the Gulf of Maine) in the interior of Mount Desert Island (MDI).  Mount Desert 

Island has an area of 280 km2, is the largest island off the coast of Maine, and is located 

only 800 m from the mainland at its closest.  Our second mainland site, Seawall, is 
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located on the headlands of the southernmost tip of MDI, 16 km southwest of McFarland 

Hill.  Three additional mainland sites, Petit Manan Point, Schoodic Point, and Schoodic 

Head, are located on peninsulas to the northeast of MDI.  

 We monitored migrants on six, off-shore islands (Figure 2.1).  Great Duck Island 

is a 0.75-km² island located 11 km further out into the Gulf of Maine from the Seawall 

site.  Petit Manan Island and Cross Island are both located northeast of MDI (Figure 2.1).  

All other island sites (Isle Au Haut, Seal Island, and Metinic Island) are located to the 

southwest of MDI at varying distances from the mainland.   

 

 
Figure 2.1.  Diagram of our coastal transect of migration monitoring stations in the 

Downeast and Midcoast regions of Maine, USA. Note there are two migration monitoring 

stations located on Schoodic Peninsula.  
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2.3.2. Bird captures  

 Each fall mist-nets were opened 30 minutes before sunrise and closed six hours 

after opening, when the conditions permitted.  The number of nets opened on any given 

day varied by weather conditions (e.g. wind and rain), and we therefore used normalized 

daily capture rates with each site’s daily total net-hours (the time each net was open 

summed daily across all nets at a site) instead of raw number of birds captured.  We 

banded all birds with uniquely numbered aluminum bands during their initial capture.  

 We described patterns of bird abundance across our sampling region using 

“integrated seasonal use”, which we define as the mean detection rate of each species (n 

= 50) at each site during each year a site was operated.  We only included a species’ 

seasonal use when it was not present in our region year round and we captured > 10 

individuals across all sites within a given year. Not all commonly captured species were 

captured at each site during each year. Specifically, the individual sampling unit (n = 

667) was measured as the detection rate (captures divided by net-hours) of each species 

detected within each site per year (n = 20 site-years: Table 2.2).  

Because habitat selection and the integrated use of the community is partially a 

function of the number of individuals available for stopover, we calculated the integrated 

seasonal use using only detections during the “peak” of migration for each species and 

year.  To standardize our estimate of peak-migration time, we pooled daily capture rates 

for each species from all sites operated in a specific year, obtained the quartile passage 

dates (the date at which 25% and 75% of the individuals of a particular species had been 

captured), and calculated site-specific annual mean capture rates using only the two 

middle observation quartiles. Because the assigned inner-quartile passage window 
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(“peak”) varied for each species with each year, this method not only centers our analyses 

of habitat use during the periods when more of the preferred habitats will be filled, it also 

controls for variation in migratory phenology among both years and species.  Table 2.3 

describes variation in the number of days for the “peak” migration of each year across all 

species.  

  



  

 

 

Table 2.2. Operating organization, years of operation, and percentage of broad land cover types within the site (100 meter 

buffer surrounding all mist-nets). Also included is the value of proportional habitat availability (vegetated versus non-

vegetated spaces) at the 4 km scale.  Organizational abbreviations: University of Maine (UMaine), Acadia National Park 

(ANP), Maine Coastal Island National Wildlife Refuge (MCINWR), Biodiversity Research Institute (BRI). 

 
Site Operating 

Organization(s) 

Year(s) 

Operated 

% Conifer 

forest 

% 

Mixed 

forest 

% Human 

development 

% 

Shrub-

land 

% Grass-

land 

%  

Non 

-habitat 

Proportional 

Hab. Avail. 

(4 km) 

Cross 

Island 

UMaine 

MCINWR 

2013 65 0 0 3 0 32 9.65 

Great Duck 

Island 

UMaine 

ANP 

2010-2011 8 29 0 0 22 41 34.64 

Isle Au 

Haut 

BRI 2009 85 6 0 0 0 9 3.08 

McFarland 

Hill (MDI) 

UMaine 

ANP 

2010-2011 1 74 3 8 10 4 1.11 

Metinic 

Island 

UMaine 

MCINWR 

2009-2011 41 0 0 0 59 < 1 36.84 

Petit 

Manan 

Island 

MCINWR 2009 0 0 0 0 29 71 106.31 

Petit 

Manan 

Point 

MCINWR 2010-2012 0 90 0 0 10 0 4.76 

Seal Island MCINWR 2007 & 

2009 

0 0 0 14 1 85 61.28 

Seawall 

(MDI) 

UMaine 

ANP 

2010-2012 18 59 12 1 0 10 2.32 

Schoodic 

Peninsula 1 

UMaine 2009 63 0 24 0 0 13 3.88 

Schoodic 

Peninsula 2 

UMaine 

ANP 

2012 46 49 0 0 0 5 3.76 

  

1
9
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Table 2.3.  The range of capture days and the species corresponding to the range for 

“peak” migration for each year and the yearly median of capture days. 
Year Minimum # of days  

(species) 

Maximum # of days 

(species) 

Median # of days 

2007 1 (Traill’s flycatcher) 28 (Hermit thrush) 11 

2009 4 (Black-throated green 

warbler) 

24 (Yellow-shafted flicker) 13 

2010 6 (Chestnut-sided warbler) 38 (Song sparrow) 18 

2011 7 (Palm warbler) 49 (Song sparrow) 20 

2012 6 (Myrtle warbler) 44 (Hermit thrush) 22 

 

2.3.3. Migratory community characteristics  

 We tested for the ability of three metrics of the migratory community to predict 

habitat use: migratory strategy (Table 2.1: M1), foraging guild (M2), and taxonomic 

group (M3).  As an additive effect, each of these three variables tests whether the average 

relative use across our entire region differs by taxa.  We used migration distance as an 

index for migratory strategy (M1) by calculating the difference between the latitude at the 

center of our region (MDI) and the latitudinal midpoint of the nonbreeding range (as 

defined by Erickson et al. 2011).  This method estimates the median distance remaining 

in migration for each species and provides a continuous variable for migratory distance as 

birds pass through our region.  Species were further grouped based on their diet during 

fall migration (M2) as insectivores, granivores, frugivores, and generalists using previous 

categorizations created from three sources (Parrish 1997, Suomala et al. 2010, Erickson 

et al. 2011).  Finally, we included taxonomic family (M3) as a covariate to control for 

phylogenetic differences in stopover behavior independent of the other species 

characteristics. 
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2.3.4. Local geographic characteristics 

 We tested for the ability of four geographic variables to predict stopover 

distribution and abundance: distance from the coastline (Table 2.1: G1), the northeast-

southwest position of each site along the coast of the Gulf of Maine (G2), mainland 

versus island (G3), and island size for island sites (G4).  These four variables each 

attempt to explain variation in bird use among sites within our sampled region.  Each 

site’s distance from the coast and distance from a reference point along a northeast-

southwest axis was calculated using the linear referencing toolbox within ArcGIS 10 

(ESRI 2011).  Island sizes (m2) were obtained from Maine Coastal Island National 

Wildlife Refuge and Acadia National Park.  We nested island size within the binomial, 

dummy variable for island so that island size was only included in the model when the 

dummy variable equaled one (island). 

 

2.3.5. Landscape characteristics 

 We also attempted to explain variation in bird use among sites using landscape 

composition and landscape configuration metrics.  Our eighteen landscape-characteristic 

variables included the total percentage of vegetated lands (Table 2.1: L1), total 

percentage of each of four land cover types (coniferous forest, mixed coniferous-

hardwood forest, shrubland, and human development: L2), the proportional availability 

of all vegetated habitats (L3) and of each of the four more specific land cover types (L4) 

within the sampled site versus the surrounding landscape, and indices for patch size and 

patch density for each of the four cover types (L5).   
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 We assessed each of these eighteen metrics at multiple spatial scales, given that 

birds may respond to landscape features while landing (Ktitorov et al. 2008) from a 

variety of altitudes.  To do so, we first defined each stopover site as the area within a 100 

m buffer of all mist-nets.  Because of uncertainty in the appropriate spatial extent to 

consider as available habitat for migrants moving through an area, we then calculated 

land cover percentage and proportional habitat availability for each of the eighteen 

landscape-characteristic variables at four scales.  The largest scale was established using 

a buffer of the maximum visibility (16 km) gathered from a weather station centrally 

located within the study region and along the coast (Hancock County - Bar Harbor 

Airport), and we defined three finer scales at 75% (12 km), 50% (8 km), and 25% (4 km) 

of this distance.  

 We delineated land cover types using the Maine Land Cover Dataset (MeLCD).  

The MeLCD dataset is the most current layer with the highest resolution encompassing 

the entire study region.  The MeLCD layer was derived from Landsat Thematic Mapper 5 

and 7 imagery (1999-2001) and refined to the State of Maine requirements using SPOT 5 

panchromatic imagery from 2004 with a spatial resolution of 5 x 5 m to create a land 

cover classification with 23 land cover types.  We aggregated land cover from the 22 

MeLCD classes by similarity in vegetation height (i.e. how they would presumably 

appear to a bird from the air) and the vegetation descriptions provided in the layer’s 

metadata (www.maine.gov/megis/catalog/metadata/melcd.html).  This resulted in six 

broad land cover types (coniferous forest, mixed coniferous-hardwood forest, shrubland, 

human development, grassland, and non-habitat).  We did not calculate either raw 

percentages or proportional availabilities for both the grassland (which included 
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agricultural lands) and non-habitat cover types (e.g. open water, bare land, 

roadway/runway), because they comprise such a small percentage of the landscape 

relative to other habitats (4.5% and 3.2% respectively).  Further, grasslands do not 

provide similar quality and abundance of food resources for autumnal landbird migrants 

relative to the other habitat types (Yong et al. 1998, Hutto 1998).  

 Total percentage of land cover for each coverage type was calculated by dividing 

the area of each type by the total area of all land within each of the four spatial scales.  

Proportional habitat availability was calculated by dividing the percent of each land cover 

type within a site (the 100 m buffer around nets) by the percent of each land cover type 

found within each of the four spatial scales (including the area within the site).  We 

calculated patch size and density using FRAGSTATS (McGarigal et al. 2012).  

Specifically we determined the degree of fragmentation (patch density) and patch size 

(patch area weighted mean) for each of our four habitat types within each stopover site 

and spatial scale described previously.   

 

2.3.6. Interactions  

 Regional patterns of migratory stopover are most likely driven by an assortment 

of factors interacting together.  For example, different foraging guilds may be captured 

differently among sites.  For this reason we considered all possible two-way interactions 

between migratory community characteristics and both the local geography variables and 

the landscape characteristics (Table 2.1: I1).   
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2.3.7. Statistical analysis 

 To test the ability of parameters identified by past migration studies to explain 

migratory habitat use within an untested region (the Gulf of Maine), we initially 

calculated 79 explanatory variables within our hypotheses as described above.  To reduce 

this initial candidate set of fixed effects for model selection, we performed a random 

forest analysis (Liaw and Wiener 2002, R Development Core Team 2012).   

While also used for regression and machine learning, random forests can rank 

candidate variable importance by quantifying each variable’s ability to classify a 

dependent variable (log10-transformed mean annual species capture rate, in this case) 

using iterative subsets of a data set (Cutler et al. 2007).  Random forests show high 

predictive accuracy and are applicable even in high-dimensional problems with correlated 

variables.  Because random forests are constructed with regression trees, they inherently 

account for interactions by allowing variables to occur multiple times within a tree at 

different nodal levels.  We selected variables to include in our final model selection by 

identifying a cut-off in the scree plot of variable importance values produced by a random 

forest.  We tested all variables that produced a decrease in nodal purity greater than 4.0 

(Figure 2.2).   

 We then constructed a series of linear mixed-effects models (n = 6) using 

maximum likelihood (package 'nmle' in R; Pinheiro et al. 2012).  We used all single 

variables and all possible combinations of the interactions between the highly ranked 

migratory community characteristics (migratory distance and foraging guild) and 

landscape variables (proportional vegetated habitat availability at 4 km).  Capture rates 

and proportional habitat availability at 4 km were log10 transformed to meet model 
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assumptions. All models, including the null, included taxonomic family as a fixed effect 

to account for family-specific capture probabilities. Since we are trying to predict site 

use, site was our primary sampling unit.  Since site is pseudoreplicated across years we 

included year as a fixed effect (along with family) in all models and site as the highest-

level random effect to control for the pseudoreplication. Further we sampled species 

within each site as indicators of the use of that site by the entire migratory community. 

Species nested within site was included as a random variable in all models as we 

considered each species a random sample of all the species that were likely to use that 

site in a given year. We than selected the top model using AIC model selection (Burnham 

and Anderson 2004).   

 To validate this model ranking (and account for ranking stability), we used a 

bootstrap method on each model with AIC  < 5.0 (n = 3).  Each of the three top models 

were bootstrapped twenty times, using a different bootstrapped dataset (with 

replacement).  The AIC scores for each, twenty-model iteration were then averaged 

before we compared mean AIC scores to determine our final model ranking.  Because our 

initial variable reduction technique (the random forest) removed all of our candidate 

variables representing local geography, we added each geographic variable into the final 

model separately and examined the resulting model performance using AIC scores as a 

test of our geographic hypotheses.   
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2.4. Results 

 On average, 36 species with sufficient detections were observed each fall season 

(range of species = 18 – 47; range of the number of detections per species per year = 10 – 

4072).  Of the species detected, approximately 70% were neotropical migrants.  We 

operated mist-nets for a total of 58,304 hours over 20 site-years.  

 The random forest technique identified four single variables: migratory distance, 

taxonomic family, foraging guild, and proportional vegetated habitat availability (at the 

finest spatial scale – 4 km) for use in our candidate model set (Figure 2.2).  Our 

bootstrapped model selection process identified one top model (Table 2.4) that included 

five fixed effects (in addition to the random effect of species nested within site).  This 

top-ranked model included four single variables (taxonomic family, year, migratory 

distance, and proportional vegetated habitat availability at the 4-km scale) and one 

interaction term (migration strategy by habitat availability).  No single geographic 

variable (i.e., distance from mainland, island versus mainland, or island size) improved 

the fit of the final model; in fact, all geographic variables increased the AIC value of the 

final model (∆AIC = 0.8 – 1.9).  Our top model contained five variables predicting log10-

transformed detection rates of migrant bird species (Table 2.4).  Of the five variables, all 

had significant effects: taxonomic family, year, migratory distance, vegetated habitat 

availability at the 4 km scale, and the interaction between migratory distance and 

vegetated habitat availability (Table 2.5).   
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Figure 2.2.  Random forest scree plot indicating variable importance. Depicts the top 15 

predictors of yearly detection rates of each species at each site (of 79 variables explored) 

produced by a random forest of 500 regression trees.  
 
 
Table 2.4. AIC model selection results for all bootstrapped models and the null model 

predicting migrant stopover site selection within the coastal region of Maine, United 

States (2007, 2009-2012). Also shown is the difference in AIC relative to the top model 

and number of model parameters (k).  Distances within parentheses following the 

variables below indicate the scale at which they were calculated.  
model AIC ΔAIC k 

Taxonomic Family + Year + Migratory Distance + Habitat Availability (4 km) + 

Migratory Distance x Habitat Availability (4 km)  

 

857.5 0 5 

Taxonomic Family + Year + Migratory Distance + Habitat Availability (4 km)  859.7 2.2 4 

    

Taxonomic Family + Year + Migratory Distance + Habitat Availability (4 km) + 

Foraging Guild+ Migratory Distance x Habitat Availability (4 km) x Foraging 

Guild x 

Habitat Availability (4 km) 

872.1 14.6 7 

    

Null: Taxonomic Family + Year 883.2 25.7 2 
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Table 2.5. Comparison of parameter estimates and 95% confidence intervals of the final 

selected model.  Parameter estimates are based on the log10-transformed detection rates.  

Parameter estimates of categorical variables are calculated in reference to the baseline 

listed.  The number of species within each categorical variable is shown in the 

parentheses.  Significant parameters are indicated by *. 
          Final model 
Variable Parameter Estimate 95% Confidence 

Interval 

Migration Distance 7.75x10-08 2.09x10-09, 1.53x10-07  * 

Proportional habitat avail. 4-km 0.42 0.21, 0.64           * 

Year    

2007 Reference   

2009 -0.20 -0.42, 0.03 

2010 -0.40 -0.63, -0.17          * 

2011 -0.46 -0.69, -0.23           * 

2012 -0.43 -0.67, -0.19           * 

Family    

Cardinalidae (n = 2) Reference   

Cuculidae (n = 1) -1.89 -1.18, 0.20 

Emberizidae (n = 8) -0.14 -0.58, 0.31 

Fringillidae (n = 1) -0.30 -0.93, 0.33 

Icteridae (n= 1)  -0.39 -1.00, 0.21 

Mimidae (n = 1) -0.52 -1.07, 0.03 

Parulidae (n = 20) -0.32 -0.73, 0.10 

Picidae (n = 2) -0.38 -0.88, 0.12 

Regulidae (n = 1) 0.18 -0.36, 0.71 

Tryglodytidae (n = 1)  -0.85 -1.76, 0.05 

Turdidae (n = 5) -0.45 -0.89, -0.02          * 

Tyrannidae (n = 4) -0.32 -0.76, 0.12 

Vireonidae (n = 3) -0.20 -0.67, -0.19 

Migration strategy x habitat 4-km -8.05x10-8 -1.40x10-7, -2.16x10-8 * 

 

 

Proportional vegetated habitat availability at the 4-km scale was significant as a 

single predictor (Table 2.5 and Figure 2.3).  As proportional habitat availability 

increased, so did captures of the total migratory community, regardless of migratory 

distance, such that use was highest at sites that possessed high amounts of habitat in a 

landscape relatively devoid of habitat (i.e. habitat islands).  We also found a significant 

interaction between migratory distance and vegetated habitat availability.  Stopover 

habitat use for the shortest distance migrants was most strongly associated with 

proportional vegetated habitat availability.  As the median migratory distance of a species 
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increased, however, the funneling effect of vegetated habitat availability decreased (Table 

2.5 and Figure 2.4).  

Migratory distance and year were also significant single predictors of site use. We 

captured, on average more short distance than long distance migrants and more birds per 

unit effort in 2007 and 2009 than in later years (Table 2.5).  

The mean detection rates of taxonomic families were remarkably similar, despite 

wide variation in the total number of individuals captured for each species.  Among all of 

the species considered, only capture rates of the Turdidae were different than those of the 

reference family (Cardinalidae: Table 2.5).  We suggest that this pattern occurred because 

of two major reasons.  First, variation among species within each category dampened the 

variation among species overall.  Second, our calculations for detection rate using only 

“peak” migration periods (the middle two quartiles of passage time for each year) was 

successful in creating directly comparable detection rates at the family scale.  In general, 

longer distance migrants are assumed to migrate faster than short distance migrants 

(Ellegren 1993).  In support of this, species with lower total capture abundances tended to 

pass through the study region in a shorter time period, such that capture rates during their 

brief peak were similar to more abundant species during their wider migratory peak 

(Table 2.3).  
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Figure 2.3. The predicted log10-transformed detection rates (± 95% CI) of migratory 

songbirds as a function of the proportional availability of habitat (versus non-vegetated 

spaces) across eleven migration monitoring stations.   

 

 

 

 
Figure 2.4. The predicted log10-transformed detection rates (± 95% CI) of migratory 

songbirds as a function of the proportional availability of habitat (versus non-vegetated 

spaces).  Data from eleven migration monitoring stations for species in each of the four 

quartiles of migratory distance (the distance from the region of capture to the midpoint of 

the nonbreeding range).   
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2.5. Discussion  

 Our analysis of migrant landbird stopover patterns in coastal Maine revealed that 

landscape composition at fine spatial scales (< 4 km, i.e. close to landing) in combination 

with a species’ relative remaining migratory distance explained stopover site use across 

space and among years.  Our predictive abilities were not improved by considering larger 

scale landscape variables or a site’s local geographical position.  Specifically, more 

isolated habitat patches (i.e. habitat islands) concentrated migrants, and this pattern was 

strongest among shorter distance migrants.  This pattern was not driven by an oceanic 

island effect, as islands of habitat showed similar patterns of bird use regardless of the 

specific make-up of the non-vegetated matrix (e.g., open water, bare ground, & roads).  

Further, models with an indicator variable for oceanic island did not perform better than 

those with the habitat availability metric.  Studies in urban parks such as Central Park in 

New York City (Seewagen and Slayton 2008) and desert oases in North Africa (Bairlein 

1988) have revealed that habitat islands in any non-vegetated matrix are important 

stopover sites, which suggests that proportional habitat availability may be widely 

applicable for predicting stopover distributions globally. 

 The importance of habitat at the 4-km scale supports the broader hypothesis that 

migratory animal decision-making is hierarchical (Hutto 1985, Moore et al. 1995).  At 

large regional scales, this migratory paradigm suggests that the primary drivers of 

stopover habitat are factors extrinsic to habitat, such as weather and individual energetic 

status (Moore et al. 1995).  Our results agree; we found no relationship between larger 

landscape characteristics and stopover site use within our region.  At finer spatial scales, 

like the one we have identified here, factors intrinsic to the habitat itself, such as food 
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availability (Olsen et al. 2015), structure (Sherry and Holmes 1985, Moore and Aborn 

2000, Winker et al.1992), and predator risk likely become increasingly important in 

decisions of habitat use (Hutto 1985).  It is reasonable to assume that the important 

landscape characteristics in our model are very coarse cues for these intrinsic habitat 

factors, as seen in studies conducted along the Gulf of Mexico (Buler and Moore 2011, 

Buler, Moore, and Woltmann 2007).  Buler et al.’s (2007) work found that hardwood 

forest cover at a finer (5 km radius) spatial scale predicted migrant use best. While our 

study corroborates the fine spatial scale at which migrants are making decisions, we 

found that proportional habitat availability and not forest cover is most important for 

migrants in the Gulf of Maine. This leaves open the possibility that even finer scale 

selection occurs within stopover sites (although we did not measure that explicitly in this 

study).  We hypothesize that gross, vegetated habitat availability within a few kilometers 

influences site selection upon landing, and this selection is further refined among habitat 

patches at finer spatial scales during stopover (Hutto 1985, Martin and Karr 1986).   

In a similar way to spatial scale, habitat use is also controlled by additional factors 

at shorter time scales than the seasonal use metrics investigated here.  Nightly weather 

conditions such as the magnitude and direction of wind, precipitation, and cloud cover 

have all been shown to affect the numbers of birds stopping over at a particular site 

(Moore et al. 1995, Dänhardt and Lindström 2001, Adams 2014), especially off-shore 

islands where its thought many birds using them were blown there (Richardson 1978a).  

Unless weather conditions are consistently different among sites, which is unlikely given 

the spatial scale of our study, daily variation in these weather conditions and their 

associated effects on migrant behavior should cancel out over the length of a migration 
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season.  Previous study within the Gulf of Maine, however, has hypothesized that site-

specific variation in weather produces consistent differences in stopover behavior.  

Specifically, off-shore islands should concentrate birds more than other sites as birds are 

blown off course into the Gulf (Richardson 1978). Our study found no evidence for 

meteorological forcing in this way over a migratory season, as an indicator variable for 

island and the distance of islands to the coast did not improve our predictions of site use 

over our top models.  While it remains possible that particular storm systems could 

produce this pattern in the short term, our results suggest that these events do not drive 

site use by landbird migrants at the scale of a full migratory season.  From a land 

prioritization and conservation standpoint, local habitat availability should do a better job 

at maximizing benefit for migratory populations. 

 Our results are also consistent with the hypothesis that landbird migration occurs 

as a broad front over both land and water at sub-continental scales (Nisbet 1970, 

Richardson 1976 and 1978, Alerstam and Pettersson 1977).  The ability of relatively rare 

habitats to concentrate birds is expected when spatially homogeneous migrating flocks 

are attracted to the nearest visible landscape features prior to stopover.  If birds were 

distributed more heterogeneously during migratory flights (i.e. not in a “broad front”), 

this concentrating effect could still occur, but local geography would also be needed to 

explain site use due to the initial heterogeneity in birds available for stopover.  We found 

no support for such a two-step explanation across our coastal transect.  

 We recognize that bird use of a stopover site occurs not only directly after a 

nocturnal migratory flight but also after relocation flights during stopover within the 

broader landscape as individuals search for more suitable habitat (Mills et al. 2011, 
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Taylor et al. 2011, Woodworth, Francis, and Taylor 2014, Chernetsov, Bulyuk, and 

Ktitorov 2007).  Our study confounds these various types of use.  Both categories of 

movement, however, are important contributors to overall site use and should be 

considered in discussions of stopover habitat use at any scale.  

 Many predictors of stopover habitat use from previous studies were not important 

for the Gulf of Maine.  These factors are thus not universal predictors, but they could still 

be important regionally (Table 2.1).   For instance, we did not find a difference between 

migrant abundance on islands versus the mainland as McCann et al. (1993) did.  The 

proportional habitat availability effect we show here, however, predicts higher use for 

any relatively rare habitat on the landscape, which would include islands of habitat in 

water as well as islands in any other non-vegetated landscapes.  We might have found a 

similar island effect as McCann et al. (1993) had we not controlled for landscape 

characteristics (which they did not).  The overall inability of other local geographic 

variables to predict site use may be a function of the scale of our region.  For instance, we 

may have detected an effect of distance to the coast on site use if we had monitored areas 

further inland. 

 

2.5.1 Landscape characteristics and migratory distance 

 The ability of stopover oases to concentrate shorter distance migrants more 

readily than longer distance migrants, as we show here, remains untested elsewhere. Our 

reported concentration in site use was attributable to all vegetated habitat types and not to 

any specific vegetation component (unlike Buler et al. 2007).  Our results suggest that the 

conservation consequences of habitat fragmentation, at least in our region, are likely 
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different for shorter versus longer distance migrants as a result of their habitat selection 

behaviors during migration. 

Because our sites are relatively close to the breeding grounds for many species 

captured within the Gulf of Maine, the longest distance migrants may be less 

energetically strained early in their migration, and thus not driven to stop in landscapes 

where suitable habitat is rare.  Short to medium distance migrants, however, stop more 

frequently along their routes (Newton 2008) and thus may be more likely to search for 

habitat even in areas where it is less available.  This behavioral difference (likely 

produced by different physiological constraints) would cause areas with less available 

habitat to concentrate shorter distance migrants more.  As longer distance migrants travel 

further south and become increasingly energetically compromised, we would predict that 

the relationship between proportional habitat availability and stopover site use would 

approximate the pattern we show here for shorter distance migrants.  Indeed, the 

concentrated use of North African oases by longer distance migrants after crossing a 

water barrier (Bairlein 1988) appears to support this prediction.   

 

2.5.2. Conservation implications 

 Moore et al. (2005) emphasized that the conservation of migratory habitat should 

be scale dependent.  Our study found migratory landbirds were strongly associated with 

habitat characteristics at scales where governmental and other agencies are able to focus 

their conservation efforts.  The greatest gains for stopover use by all bird guilds are thus 

to be made by maximizing vegetated habitats (vs. non-habitat).  This also means that in 

areas where there is little vegetated habitat (urban landscapes and offshore islands), the 
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remaining small patches may be disproportionately important for the local migratory 

community relative to similarly sized patches in areas of more contiguous habitat.  When 

increasing habitat widely across the landscape is not possible, the conservation of these 

small patches should be a priority for migratory stopover habitat use.  
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CHAPTER 3: TRADEOFFS BETWEEN PREDATION RISK AND FRUIT 

RESOURCES SHAPE HABITAT USE OF LANDBIRDS  

DURING AUTUMN MIGRATION 

3.1. Summary 

 While foraging, animals often trade off between food and safety, reducing feeding 

in response to increased predation risk.  This response, however, may not be a viable 

option for animals that are energetically compromised.  Many single-species studies have 

shown that hungry animals select habitats where foraging opportunities are greater even 

if predation pressures are higher, but it is unclear how generalizable these patterns are to 

entire communities.  Here we examined the stopover habitat use of 28 frugivorous 

landbird species along the coast of Maine, USA, during an energetically demanding 

period of the annual cycle, fall migration.  Across six stopover sites we determined 

whether or not a trade-off existed between safe habitat patches (patches with high plant 

stem density) and patches with high food resources (patches with high fruit abundance). 

Controlling for raptor abundance at a site, landbird migrants were captured at higher rates 

at sites without a trade-off, suggesting that birds avoid staying at sites were there is a 

predation risk – foraging trade-off.  At all sites, regardless of the presence of a trade-off, 

longer distance migrants used patches with high food availability more frequently, 

whereas patch use by shorter distance migrants was explained by habitat cover alone.  

Our findings suggest that for the Gulf of Maine birds alleviate predation risk at the scale 

of a stopover site, and differences in habitat selection at finer patch scales are mediated 

by migratory strategy.  

 



 38 

3.2. Introduction 

 Food acquisition and predator avoidance are fundamental components of the 

survival strategies of most animals (Houston, McNamara, and Hutchinson 1993, 

Hebblewhite and Merrill 2009, Brown and Kotler 2004, Metcalfe and Furness 1984, 

Cowlishaw 1997).  To maximize fitness, animals often trade off between foraging and 

either increased vigilance for predators (Brown et al. 1999), flocking behaviors 

(Lindström 1989), time spent in a patch (Ydenberg et al. 2004), or crypsis (reduced rates 

of movement or protective cover: Thaler et al. 2012). In situations where animals are 

energetically constrained, however, the costs of reducing time spent foraging to decrease 

predation risk may be prohibitively high (Krebs 1980).  

 Predation risk can be a strong modifier of animal habitat selection (e.g., Gotceitas 

1990, Hebblewhite and Merrill 2009, Lima 1988a, Lindström 1990, Thaler et al. 2012, 

Yasué et al. 2003).  As a rule, animals choose feeding habitats that allow them to meet 

their energetic requirements while minimizing predation risk (Yasué, Quinn, and 

Cresswell 2003), avoiding areas with high predation risk, even if these areas would 

maximize foraging efficiency (Gotceitas 1990, Pomeroy, Butler, and Ydenberg 2006).  In 

times of higher than average energetic demand, however, added predation risk may be 

outweighed by the costs of decreased foraging efficiency in safer habitats.  

Migration may be such a period where the trade-off between foraging and 

predation risk shifts predictably.  Migration is energetically expensive and suitable 

habitats for rest and refueling are critical for a successful migration (Hutto 1985, Moore 

et al. 1995, Rodewald and Brittingham 2007).  The large scale of migration further 

increases risks to survival, because individuals find themselves in unfamiliar 
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environments with unknown predation pressures while trying to balance predator evasion 

(Moore 1994) and food acquisition (Moore and Aborn 2000) under higher than average 

energetic demand.  Predation risk varies both spatially and temporally (Sih 1992), so 

migrating animals must renegotiate the trade-off between predation risk and energetic 

demand across an abundance of sites en route.  Further, major landscape features (e.g., 

coastlines, water resources) are known to concentrate both migratory animals and their 

predators (Aborn 1994, Valeix et al. 2009). Therefore, the benefits of optimal behaviors 

are likely greatest at these choke points, as they concentrate landbirds (often before over-

water flights) and their aerial predators (Aborn 1994, DeSorbo et al. 2012, Schmaljohann 

and Dierschke 2004).  Predator risk is thus increased at the same time as energetic 

demand. 

Together, these added challenges during migration are likely to shift the optimal 

solution to the foraging vs. predator avoidance trade-off.  For example, studies of both 

Passerine songbirds (Moore 1994, Cimprich et al. 2005) and Charadriiform shorebirds 

(Metcalfe and Furness 1984) demonstrate that individuals in migratory condition 

decrease crypsis and vigilance relative to individuals that are not migrating. 

 Further, the high energetic demands of migration affect an individual’s energy 

stores, which control behavioral responses to the predation risk – foraging trade-off 

(Pomeroy et al. 2008, Cimprich and Moore 1999).  Fat stores can alter flight performance 

(Hedenström 1992, Cimprich and Moore 2006) and motivation to forage (Krebs 1980), 

such that fatter birds increase vigilance while leaner birds take more risks (Koivula, 

Rytkonen, and Orell 1995, Lima and Dill 1990, Cimprich and Moore 2006).  Lindström 

and Alerstam (1992), however, state that each individual may have a “set point” or 
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optimal fuel load at which point their motivation to forage decreases, which may disrupt 

any correlation between fuel load and anti-predator behavior. 

In this study we assessed stopover habitat use for 28 species of Passeriform and 

Piciform birds (hereafter, “landbirds”) under the increased risk and energetic demand of 

migration along the coast.  While single-species studies are invaluable in determining 

specific behavioral and physiological reactions to predation, it is difficult to translate that 

information into multi-species migratory habitat conservation and management efforts.  

To understand the community-level response to trade-offs between predation risk and 

foraging demand, we examined the habitat use of the entire migratory landbird 

community during fall migration along the coast of Maine, USA at two types of stopover 

sites: 1) sites where the local habitat composition forces birds to trade-off predator 

avoidance and food availability, and 2) sites where such a trade-off does not exist.  In 

sites of the first type, habitat patches with the highest food availability have relatively 

little protective cover.  In the second site type, birds do not experience a trade-off 

between predation avoidance and foraging, because patches with the highest food 

availability are also patches with the highest structural cover at the site.  We used weekly 

relationships between fruit and cover to allow the presence (or absence) of a trade-off 

between fruit availability and cover at a particular site to vary throughout the season as 

fruit availability changes.  

Our study design explicitly tests how well fruit availability predicts habitat patch 

use within a stopover site each week as a function of A) the structural cover present 

within the same patch, B) whether the stopover site as a whole possesses or lacks a trade-

off between cover and fruit availability, and C) the site-level abundance of avian 
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predators.  Further, because we examined all 28, commonly caught species in our migrant 

community, we are able to assess whether migratory distance, which likely varies with 

energetic demand (Bairlein and Gwinner 1994), affects the interactions among these three 

patch- and site-level covariates. 

More specifically, we predicted that birds presented with a trade-off between fruit 

availability and cover would accept more risk (use patches with relatively less cover) 

than those not facing such a trade-off, given the high energetic demand of migration.  

Further, we expected that low raptor abundances should increase the impact of fruit 

availability on patch use within sites with a trade-off, relative to sites with no such trade-

off.  Finally, we predicted that these two differences between trade-off and non trade-off 

sites would be greatest for species with longer migratory distances, as they are presented 

with the greatest energetic constraints.  

 

3.3. Methods 

3.3.1. Study location and general design  

 We sampled fall-migrating landbirds and their stopover habitat in the Downeast 

and Midcoast regions of Maine during 2011-2012 at six monitoring stations, including 

two coastal headland and four island sites (Figure 3.1). We considered each monitoring 

station as a largely independent stopover site.  Each station was no closer than 10 km to 

the nearest station (mean nearest station distance ± SE is 23 ± 10 km; mean pairwise 

distance among all stations is 46 ± 9 km). Within each of our monitoring sites we 

sampled habitat use through bird captures, using passive mist-nets placed in a variety of 

different habitat types (see below).   
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 We defined a 4-m buffered area around each mist net as a habitat patch within the 

stopover site. Within each site, nets were placed 4 – 398 m apart (μ ± SE = 119 ± 3 m).  

Four-meter-wide belt transects were established parallel to each net.  While capture 

within a patch does not require that an individual be using a patch for foraging or crypsis 

(e.g., passage use during movement between other patches), capture rates should increase 

as individuals spend longer within a patch, and there is no reason to suspect that any 

other type of use would correlate with either structural cover or fruit availability.  Capture 

rates should thus serve as an adequate index of patch use. 

We sampled three islands ranging in size from 0.75 km² (Great Duck Island: 

2011) to 1.30 km² (Metinic Island: 2011) to 280 km² (Mount Desert Island).  We sampled 

two locations on Mount Desert Island: one at the most southern coastal headland 

(Seawall: 2011-2012) and one 16-km to the north in the interior of the island (McFarland 

Hill: 2011).  The three islands vary in their distance from the nearest mainland (Mount 

Desert Island = 1 km, Metinic Island = 8 km, Great Duck Island = 23 km).  We also 

sampled the headlands of two peninsulas: Schoodic Peninsula (2012) and Petit Manan 

Point (2011-2012).  The entire sampled region stretches 114 km from Metinic Island in 

the southeast to Petit Manan Point to the northeast.  All six migration stations possess 

four broad vegetation types: forest dominated by Picea species (with Alnus, Larix, 

Betula, Acer, and Populus species); shrubland dominated by Alnus, Aronia, Sorbus, and 

Ilex species; mowed or grazed grassland; and a mixture of edge habitats among these 

broader types.  These stations were all located on protected conservation lands and 

operated in collaboration with researchers at Acadia National Park, the Maine Coastal 

Islands National Wildlife Refuge, The Nature Conservancy, and the University of Maine.   
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Figure 3.1. Diagram of six migration monitoring site locations within the Downeast and 

Midcoast regions of Maine. 

3.3.2. Bird surveys  

 We surveyed migrant landbirds during fall migration in 2011 (16 August to 28 

October), and 2012 (18 August to 18 October) using passive mist-netting.  Nets were 

opened 30 minutes before sunrise and closed six hours after opening, weather conditions 

permitting.  The specific nets and the total number of nets opened on any given day 

varied with weather conditions, most commonly with the presence of strong winds or 

rain.  Number of nets at the sites ranged from 14 – 20.  The range of site area (summed 4-

meter buffer areas around all nets) was 2143 – 2912 m2.  We fit all captured birds with a 

uniquely numbered aluminum band. 
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Foraging habitat use was defined as the number of birds caught per week for each 

species, patch, and year.  Birds recaptured within the same season were excluded from 

the dataset.  Due to the difficulty of separating resident individuals from migratory, we 

removed all species found year-round at our sites from analyses. We also removed all 

species whose migratory diet did not include fruit, because we used fruit availability as 

our index of food resources.  Species’ diets were determined using previous 

categorizations created from three sources (Erickson et al. 2011, Parrish 1997, Suomala 

et al. 2010).  We further excluded species when we captured fewer than 50 birds across 

all sites and years, because rare species introduced many zero weekly capture counts, 

causing overdispersion.  To account for the hierarchical nature of habitat selection in 

migratory birds (Hutto 1985), we kept all zero counts at nets when species were caught at 

that net sometime during the migratory season (i.e., birds are available to use the patch, 

but the patch was not selected during a given time period). However, we dropped all zero 

counts at nets when a given species was either never captured at that site during a given 

year (i.e., birds never selected the site and were therefore unavailable to select a patch 

secondarily) or never captured at that net during any time period within the year (i.e., 

birds may have selected the site, but it is impossible to distinguish between the lack of 

patch selection due to a preference for another patch or the lack of patch selection due to 

its unsuitability to the species’ niche more broadly).  

 Together with species, age, sex, and morphological measurements, the amount of 

subcutaneous fat in the furculum and abdomen was recorded. Fat was scored on a scale of 

0-5; 0 = none; 0.5 = trace; 1 = lining furculum; 2 = filling furculum; 3 = mounded in 

furculum and beginning to cover abdomen; 4 = mounded on breast and sides of abdomen; 
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5 = covering breast and abdomen (no or very little skin visible).  Although individual fat 

load has been shown to affect anti-predator behavior and foraging in other migration 

studies, we did not include a metric for individual energy reserves in our analysis.  

Preliminary data exploration indicated that there is not a biologically significant 

difference in the mean fat scores across trade-off versus non trade-off sites (μ ± SD: 

trade-off group 1.46 ± 1.75, non trade-off group 1.06 ± 1.37).  Therefore, any reported 

differences between patch use at trade-off and non trade-off sites cannot be due to a 

difference in the mean energy reserves of the population selecting patches.   

 

3.3.3. Migratory distance  

 Landbird species differ in their energetic constraints and consequently in their 

habitat needs at migratory stopover (Moore et al. 1995).  These energetic differences may 

drive differential habitat use by species. We included each species’ migratory distance as 

a potential predictor of habitat use to capture this variation with energetic demand.  

Migratory distance was calculated by obtaining each species’ most northern and southern 

non-breeding range limits based on Cornell Lab of Ornithology range maps (Erickson et 

al. 2011), determining the latitudinal midpoint of each species non-breeding range, and 

calculating the latitudinal distance from the capture region to this midpoint (McCabe and 

Olsen 2015).  This method provides a continuous estimate of the median distance left to 

travel for each species.   
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3.3.4. Raptor abundance 

 Predation pressure was measured in the field by recording all birds of prey seen 

utilizing, not merely flying over, the migration banding stations during hours of banding 

operation.  Our raptor abundance variable is a weekly raptor total for each banding site 

divided by the total number of hours nets were open at each site to control for the varying 

effort.  The most common avian predator species observed at our sites were merlin 

(Falco columbarius), sharp-shinned hawk (Accipiter striatus), and peregrine falcon (F. 

peregrinus), predators that do not hunt in dense cover (Fransson and Weber 1997, Niles, 

Burger, and Clark 1996, Raim, Cochran, and Applegate 1989).   

 

3.3.5. Habitat patch measurements 

 Within each habitat patch, two 4-m wide belt transects running parallel to the net 

were established.  The transects were placed outside the areas directly affected by the 

maintenance of the net lanes.  

 Woody stem density was measured down the center of each 4-m belt transact by 

counting stems in one-meter intervals at two heights (0.5 m and 1.5 m).  We then 

summed the stem counts across both transects along each net for each height and 

averaged the sums from the two heights to provide us with a single continuous stem 

density count per patch. 

 We used ripe fruit abundance as a measure of food availability.  While the use of 

patches with high fruit abundance does not necessitate that birds are foraging on fruit, 

there are few obvious alternative behavioral mechanisms that could produce a positive 

relationship between patch use and fruit availability among frugivorous birds that are not 
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related to foraging behavior (or flocking with those species that are), especially once we 

control for habitat structure (using the multivariate approaches described below).   

We recorded ripe fruit abundance weekly along the two belt transects for each 

mist net.  We assessed fruit abundance for several shrub species, including chokeberry 

(Photinia melanocarpa), wild raisin (Viburnum sp.), pin cherry (Prunus pensylvanica), 

low and high bush blueberry (Vaccinium sp.), huckleberry (Gaylussacia sp.) and two 

Rubus species.  We excluded bayberry (Myrica pensylvanica) because only one species, 

Yellow-rumped Warbler, is able to digest its waxy fruits (Borgmann et al. 2004, Place 

and Stiles 1992).  Chokeberry, wild raisin, and pin cherry were the majority of fruiting 

species at all sites.  The numbers of individual fruits were estimated for each species 

using a modified scale with eight abundance categories, first developed by Smith and 

McWilliams (2009).  Abundance categories where defined as 1 (≤ 10 ripe fruits), 2 (11-

25 ripe fruits), 3 (26-100 ripe fruits), 4 (101-250 ripe fruits), 5 (251-1,000 ripe fruits), 6 

(1,001-3,000 ripe fruits), 7 (3,001-10,000 ripe fruits), and 8 (≥ 10,000 ripe fruits).  To 

attain our continuous fruit availability variable we summed the categorical midpoints of 

estimated ripe fruit abundance across both transects for each week.  

 

3.3.6. Statistical analysis 

3.3.6.1 Identifying site trade-offs   

 For each week we modeled ripe fruit availability as a function of stem density 

across all habitat patches for each site using quantile regression (τ = 0.80), using the R 

package “quantreg” (Koenker 2013, R Development Core Team 2012).  We used quantile 

regression to describe the relationship between the 80th percentile of fruit availability for 
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a given stem density.  This allowed us to identify sites with patches that had both high 

cover and abundant fruit versus sites that lacked such patches during a given week.  Site-

weeks (hereafter “sites”) for which there was a negative relationship between fruit 

availability and stem density were labeled as trade-off sites, and sites with a positive 

relationship were categorized as non trade-off sites.  Although banding stations have 

similar broad habitats, fruiting plant species diversity, abundance, and fruiting phenology 

differ within and among sites.  By modeling weekly relationships between fruit and 

cover, we thus allow patches to exhibit trade-offs between fruit availability and cover 

variously through time with patch fruiting phenology.  

 

3.3.6.2. Model selection 

Based on a priori hypotheses about the differences in foraging habitat use 

between trade-off and non trade-off sites, we constructed a set of candidate models.  We 

then used model selection to determine which combination of predictors explained patch 

use best and whether use differed for sites with or without a trade-off between food and 

cover.  To test our hypotheses we constructed a series of generalized linear mixed effects 

models with weekly species counts modeled as a negative binomial distribution with a 

log-link function and an offset of weekly net hours (to account for effort).  We used a 

negative binomial distribution to account for overdispersion and zero-inflation in our 

capture data. We repeatedly measured captures of 28 species at 144 patches weekly over 

two years; therefore, species and patch identity were included as random effects.  We fit 

the generalized linear negative binomial mixed models with the R package “lme4” (Bates 

et al. 2014).  All models included year and week as fixed effects accounting for the 
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differences between years and to control for variation in the phenology of the migratory 

community. Weekly fruit availability measurements were heavily skewed, thus we 

square-root transformed the variable.  The relationship between bird abundance and week 

is non-linear; therefore we added a quadratic term for week in all models. As our 

hypotheses were concerned only with relative foraging patch use for the migratory 

community in sites with and without a trade-off between food and cover, we did not 

disentangle differences in captures due to true abundance versus detection probability.  

We should note, however, that our methods assume that detection probability is similar 

within a given site, year, and species for all nets within a site.   

The candidate model set consisted of eight models (Table 3.1).  All models aside 

from the null model included year (2011 or 2012), week (linear and quadratic terms), 

fruit availability, trade-off (yes or no), raptor abundance, stem density, and migratory 

distance as single variables.  Additive models of these single variables describe each 

variable’s overall effect on patch use.  For example, fruit availability as a single variable 

only explains whether more or fewer birds were captured at patches with varying fruit 

availability.  To test our hypotheses that the relationship between bird use and fruit 

availability varies with risk and migratory strategy, we used a series of two and three-way 

interactions. 

Specifically the model set contained: A) three models, each with one two-way 

interaction between fruit availability and either stem density, migratory distance, or 

raptor abundance; B) three, three-way interaction models formed by interacting trade-off 

with each of the two-way interactions above (plus their associated two-way interactions 

and main effects); C) one model containing only the single variables: fruit availability, 
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migratory distance, trade-off status, stem density, and raptor abundance; and D) a null 

model, containing only year and week as fixed effects.  The three two-way interactions 

test whether the relationship between fruit availability and patch use varies by risk 

(indicated by raptor abundance and the inverse of stem density) and energetic strategy 

(indicated by migratory distance).  The three-way interactions then test whether any of 

these relationships differ between sites with and without a tradeoff between food and 

cover. 

We standardized all of our continuous candidate variables by subtracting the 

mean and dividing them by the standard deviation.  By standardizing the variables we can 

directly compare the parameter estimates among our candidate variables to describe the 

strength of the difference between trade-off and non trade-off sites. 

We used Akaike’s Information Criterion (AIC) to rank models based on their 

ability to explain variance in the data and used Akaike weights (wi) to estimate the 

relative likelihood of each model given the data (Burnham and Anderson 2002).  We 

considered models with AIC < 2.0 to be equivalent (Burnham and Anderson 2002).  We 

assessed model fit (including the random variables) by calculating the conditional R2.  

We used the “Wald” method to calculate 95% confidence intervals around the parameter 

estimates of the top model.  

 

3.4. Results 

 During the 2011 and 2012 fall migration seasons, we captured 9,649 migrant birds 

belonging to 28 species of 7 families.  We operated nets for 27,544 hours over 144 net-

years.  The number of sampling days for each site during a given year ranged from 33 – 
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55 days (μ ± SE = 43 ± 3.1 days).  Yearly net effort for individual banding stations 

ranged from 2,122 – 4,363 net hours.  The weekly predation pressure averaged 0.033 

(SD=0.004, n=24 site-weeks, range=0-50 raptors per site-week) and 0.005 (SD=0.036, 

n=35 site/weeks, range=0-11 raptors per site/week) raptors per net hour for 2011 and 

2012 respectively.  

 A trade-off between cover and fruit availability was present during 15 site-weeks 

and the trade-off was absent during 46 site-weeks.  Fruit availability and stem density 

differed between years and by trade-off group.  Stem density varied between years 

because the sites operated varied between the two years.  Fruit availability was higher in 

2011 (μ ± SE = 21.76 ± 1.56 fruit/effort) than 2012 (6.74 ± 0.72) and higher among trade-

off sites (22.17 ± 2.44) versus non trade-off sites (13.27 ± 1.02).  Stem density was 

slightly lower among patches measured during 2011 (7.29 ± 0.22 stems) than 2012 (7.97 

± 0.22) and lower at the trade-off sites (6.19 ± 0.30) versus the non trade-off sites (8.05 ± 

0.18).  

 Our top-ranked model predicting variation in patch use contained a two-way 

interaction between fruit availability and migratory distance (and the associated main 

effects), controlling for the single variables for raptor abundance, trade-off status, stem 

density, year, and week (model weight = 0.82: Table 3.1).  Our final model fit the data 

reasonably well (conditional R2 = 0.40) and was not overdispersed, with a ratio of the 

sum of squared Pearson’s residuals to residual degrees of freedom of 1.08.  

 Within the top-ranked model we found important effects of week, year, trade-off 

status, raptor abundance, stem density, and the interaction between fruit availability and 

migratory distance (Table 3.2).  The largest effect on predicted capture rates was week; as 
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the season progressed, captures increased toward the beginning at all sites and decreased 

at the end (Table 3.2).  Model-predicted capture rates were higher at non trade-off sites (μ 

± SE = 0.018 ± 0.0001) versus trade-off sites (0.011 ± 0.00007) during 2011 and 2012 

(non trade-off: 0.011 ± 0.00006 versus trade-off sites: 0.009 ± 0.00006), and at sites with 

high raptor abundances (Table 3.2).  Controlling for all other factors, birds preferred 

patches with higher stem density (Table 3.2).  Fruit had little effect on the capture rates of 

shorter distance migrants; however, as migration distance increased, species were 

captured more and more preferentially in patches with high fruit availability (Table 3.2 

and Figure 3.2).   
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Table 3.1. AIC model selection results for all models explaining migrant landbird 

stopover use of patches. All models include the variable “year” and “week”.  “Fruit 

Avail.” is an index of ripe fruit abundance within a habitat patch; “Trade-off” indicates 

whether or not there is a negative relationship between stem density and fruit abundance 

among patches within a site during a given week; “Stem Den.” is an index of vegetative 

cover within a patch; “Migration Dist.” is the median latitudinal distance left to travel for 

each species; and “Raptor Abund.” is an index of predation risk to landbirds at each site 

during a given week.  

 
Model AIC ∆AIC wi 

1. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund.  

    + (Fruit Avail. x Migratory Dist.) 

24816.7 0 0.815 

 

 

2. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund.   

    + (Fruit Avail. x Migratory Dist. x Trade-off) + (Fruit Avail. x   

    Migratory Dist.) + (Trade-off x Fruit Avail.) + (Trade-off x Migratory  

    Dist.) 

 

 

24819.8 

 

3.1 

 

0.173 

3. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund 

    + (Fruit Avail. x Raptor Abund.)  

 

4. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund. 

+ (Fruit Avail. x Raptor Abund. x Trade-off) + (Fruit Avail. x Raptor 

Abund.) + (Trade-off x Fruit Avail.) + (Trade-off x Raptor Abund.) 

 

24825.6 

 

 

24828.9 

8.9 

 

 

12.2 

0.010 

 

 

0.002 

5. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund.  

   + (Fruit Avail. x Stem Den.)  

 

6. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund. 

   + Stem Density 

 

7. Fruit Avail. + Trade-off + Stem Den. + Migration Dist. + Raptor Abund. 

   + (Fruit Avail. x Stem Den. x Trade-off) + (Trade-off x Fruit Avail.) +  

    (Trade-off x Stem Den.) 

 

8. Null 

24831.8 

 

 

24832.2 

 

 

24836.3 

 

 

24904.9 

15 

 

 

15.5 

 

 

19.5 

 

 

88.2 

<0.0001 

 

 

 <0.0001 

 

 

< 0.0001 

 

 

< 0.0001 
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Table 3.2. Parameter estimates with 95% confidence intervals for all variables within the 

top model predicting capture rates at migratory stopover sites within the Gulf of Maine.  

Bold represents parameters where the 95% confidence intervals do not bound zero. 

Parameter Estimate 95% CI 

Intercept -4.28 (-4.53 -4.03) 

Week (linear) 0.73 (0.55, 0.90) 

Week (quadratic) -0.39 (-0.57, -0.21) 

Year -0.15 (-0.26, -0.04) 

Stem Density  0.08 (0.01, 0.15) 

Trade-off Status -0.24 (-0.34, -0.13) 

Raptor Abundance 0.22 (0.17, 0.28) 

Fruit Availability -0.01 (-0.05, 0.04) 

Migratory Distance  -0.05 (-0.30, 0.19) 

Fruit Avail. x Migration Dist. 0.08 (0.04, 0.11) 

 

 
Figure 3.2.  Effect of fruit availability (square-root transformed) on predicted capture 

rates (± 95% CI) for four different migratory guilds (split by quartiles of the latitudinal 

distance from our study region to the mid-point of the non-breeding range) at all stopover 

sites.  
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3.5. Discussion 

 Animals have been repeatedly shown to modify their foraging choices to reflect 

both foraging success and predation risk (Lima and Dill 1990).  In situations where 

individuals are food deprived or engaged in energetically costly events, however, they 

may make more “risky” foraging decisions (Pomeroy et al. 2008, Metcalfe and Furness 

1984).  In a community of species actively engaged in migration, we predicted that 

capture rates would be higher at patches with higher fruit abundance among sites where 

individuals had to choose between patches with high food availability or high cover.  

Further, we predicted that at sites without a trade-off, capture rates would be positively 

correlated with both fruit abundance and cover.  Instead we found that birds preferentially 

used patches with high cover regardless of the presence (or absence) of a trade-off at the 

site, once we controlled for predator abundance.  Further, fruit availability was only 

predictive of patch use among the longest distance migrants, again regardless of the 

presence of a trade-off between food availability and cover.  Overall bird abundance, 

however, was highest at sites without a trade-off.   

Migrants approaching stopover are constantly assessing their surroundings and 

making decisions at finer and finer spatial scales (Hutto 1985). Our results are consistent 

with this hierarchical stopover decision-making process and suggest that site selection 

may be more important than patch selection to explain habitat use at time scales of a 

week or greater.  We hypothesize that migrants rapidly assess the relative safety and 

productivity of a site, departing sites more rapidly if there is a trade-off between foraging 

and safety.  Assuming similar landing densities among our sites, longer stopover times at 

higher quality sites would explain the patterns we report here. 
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 Patch use among longer distance migrants was explained by fruit availability 

across all sites (Figure 3.2), which is concordant with our assumption that these birds 

have higher energetic demands (i.e., are likely to accept more risk during foraging).  This 

pattern could also be explained by a bias in more specialized frugivory (during migration) 

among the longest distance migrants.  Given the advantages of a more frugivorous diet 

during stopover that have been reported in a number of landbird species (Bairlein 1998, 

Long and Stouffer 2003, Newton 2008, Parrish 1997, 2000), long-distance migrants may 

select habitats higher in fruit resources, regardless of their diet during non-migratory 

periods, in order to gain weight more efficiently during stopover.  Such behavior 

minimizes the time spent on stopover, in turn shortening total migratory passage time, 

and is one of the hallmarks of a “time minimizer” migration strategy (Alerstam and 

Lindström 1990, Hedenström and Alerstam 1997).  Short-distance migrants are generally 

assumed to be less constrained by time and to depart stopover sites with lower mass loads 

(Hedenström and Alerstam 1997).  Doing so allows them both to be more cautious on 

stopover (Metcalfe and Furness 1984) and increases their escape velocity and 

maneuverability (Kullberg, Fransson, and Jakobsson 1996), both of which lessen 

predation risk at a cost to migration time (Alerstam and Lindström 1990, Seewagen and 

Guglielmo 2010).  Here we support this overall paradigm, showing that shorter distance 

migrants prioritized patches with high cover (low predation risk) at all sites, whereas 

longer distance migrants compromised between cover and food availability when 

presented with a trade-off. 

 It’s important to note that our measure of fruit availability was a weekly 

calculation, and the timing and composition of fruiting plants at a stopover site may vary 
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at even finer time scales.  However, using similar data collected at the same sites as this 

study, Olsen et al. (2015) found that food resource phenology, along with other 

ephemeral resources (deciduous leaf drop and soil moisture), predicted patch use 

throughout the migratory season better than static habitat structure (i.e., vegetation cover 

and height).  Ripe fruit abundance was positively associated with the capture rates of 

Parulidae, Emberizidae, and Vireonidae but was unrelated to capture rates of Tyrannidae.  

Results from Olsen et al. (2015) and this study confirm the importance of within-season 

variation in resource availability for predicting migrating songbird habitat use. 

 Vegetation structure is an essential factor shaping birds’ habitat choices (Wiens 

and Rotenberry 1981), as it can provide information regarding shelter from predators 

(Deppe and Rotenberry 2008, Sapir et al. 2004).  To assess habitat use of the migrant 

community, we used woody stem density as a proxy for protection from predation risk, 

where high stem density was assumed to equate to lower predation risk (Savino and Stein 

1989).  It is possible that individuals utilize other characteristics to select cover, such as 

percent vegetation cover or height, when searching out protection.  Vegetation cover, 

height, and density, however, are often highly correlated (Vitz and Rodewald 2007), 

although this remains untested at our study sites.  Previous fall migratory studies have 

found correlations between stem density and bird abundances (Suthers, Bickal, and 

Rodewald 2000, Rodewald and Brittingham 2002), although whether these correlations 

can be attributed to perceived protection or an association with food resources is 

unknown. Cimprich et al. (2005) found that both American redstarts (Setophaga ruticilla) 

and blue-gray gnatcatchers (Poliopitla carerulea) moved deeper into the shrubs when 

presented with a predation risk, demonstrating that migrants are indeed relying on 
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vegetation as protection and perceive increased cover as increased protection.  Additional 

behavioral studies are needed to determine the precise behavioral mechanisms 

responsible for the patch associations presented here.   

 Across all sites, capture rates were higher at sites with greater raptor abundances. 

Aborn (1994) also found a positive correlation between raptor and landbird abundances 

during spring migration along the Gulf of Mexico coastline.  Correlations in abundances 

may be due to migratory behaviors that are similar across both avian groups, to predator 

movements tracking prey resources, or both.  Beneficial weather patterns for migrating 

raptors are also advantageous for migrating landbirds (Aborn 1994, Moore and Kerlinger 

1987, Woltmann and Cimprich 2003); neither group prefers to fly into a headwind or 

heavy precipitation.  Also, landbird abundance along the Gulf of Maine is directly 

proportional to the amount of vegetated land available for stopover at the scale of a few 

kilometers (McCabe and Olsen 2015).  It is reasonable to assume that similar behavioral 

processes are at work among raptor species.  Since landbirds are an important food 

source for migrating raptors (Ydenberg, Butler, and Lank 2007, Aborn 1994), raptor 

movements might also track the abundance of their prey.  For these reasons we 

hypothesize that increased landbird captures at high raptor sites is not related to landbird 

movements in response to raptor abundances.  If, however, landbirds are unable to avoid 

sites with high raptor abundances due to these mechanisms, avoiding sites with a trade-

off between cover and food might be the adaptive solution to a predatory constraint. 
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3.5.1. Conclusion 

 Migration is a critical event in the life cycle of most North American landbirds. 

With increases in both predation risk and energetic demand relative to stationary periods 

of the annual cycle, migration is inherently costly (Moore et al. 1995).  Balancing 

predator avoidance with foraging is critical because of direct mortality risk and the costs 

of arriving late to either non-breeding or breeding grounds (Moore 1994).  We suggest 

that migrating landbirds universally prioritize habitat patches with high cover but avoid 

sites where this cover is not correlated with the presence of food resources.  Further, 

increased energetic demand (as indicated by migration distance) is associated with 

increased use of patches with abundant food resources regardless of cover.  Our 

community-scale results thus corroborate past single-species behavioral research 

demonstrating that migrants prioritize foraging when energetic demand is high (Metcalfe 

and Furness 1984, Hebblewhite and Merrill 2009, Yasué, Quinn, and Cresswell 2003).  

 Important stopover habitat for the entire migratory community may be difficult to 

define (Hutto 2000).  In this study, however, we found that when given the opportunity 

migrants prefer habitats with both high vegetative protection and high fruit resources.  

Both resources are typically found in edge-dominated, early successional habitats, which 

are not considered high quality breeding habitats for many of the species we studied here 

(Rodewald and Brittingham 2007, Suomala et al. 2010, Vitz and Rodewald 2007).  Thus, 

landbird conservation efforts should consider not only prime breeding habitats, but also 

habitats where migrants can find protection from aerial predators while efficiently and 

safely refueling.  Additionally, habitats with fruit resources that occur during the 
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migration seasons may be particularly important.  More study is needed to quantify the 

costs to bird condition and survival in sites that lack these resources. 
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CHAPTER 4: WIND PATTERNS AS A POTENTIAL DRIVER IN THE 

EVOLUTION AND MAINTENANCE OF A NORTH  

AMERICAN MIGRATORY SUTURE ZONE 

4.1. Summary 

 Suture zones are areas where range contact zones and hybrid zones of multiple 

taxa are clustered. Such zones have been regarded as strong evidence for allopatric 

divergence. Migratory divides, contact zones between divergent populations that breed 

adjacent to one another but use different migratory routes, are a particular case of suture 

zones seen in many North American migratory songbirds. One major divide is along the 

eastern flank of the Canadian Rocky Mountains. The factors responsible for migratory 

divides, however, are not well understood. Hypotheses include geographic barriers, Late 

Pleistocene habitat expansions, and meteorological factors, specifically wind. We tested 

for the ability of wind alone to explain the evolution and maintenance of the Canadian 

Rocky Mountain migratory divide using individual-based models. Specifically, we 

examined the effects of atmospheric winds on populations of birds with breeding range 

boundaries on either side of the divide, by modeling their autumn migratory flight paths. 

Empirical observations of eastern birds suggest a circuitous migratory route, where birds 

cross Canada before heading south along the Atlantic coast. Western breeders, however, 

travel more directly south along the Pacific coast to their wintering grounds. We modeled 

bird flights by allowing them to float at elevation during the fall using modeled wind data 

from the European Center for Medium-range Weather Forecast, over ten random years 

between 1979-2012. Modeled eastern birds had mean trajectories toward the east while 

western breeders showed a mean orientation significantly more to the south. We also 



 62 

determined that a mean bird airspeed of 18.5 m s-1 would be necessary to eliminate this 

difference in trajectory, resulting in the breakdown of the migratory divide. This airspeed 

is achieved only by the larger and stronger migratory bird species, such as shorebirds and 

waterfowl, species that do not show a migratory divide in this region. These results lend 

support for the importance of wind as a dominant influence on the maintenance of 

migratory divides in North America for songbirds. 

 

4.2. Introduction 

 Hybrid zones and areas of contact between sister taxa often overlap across 

multiple, unrelated phylogenetic pairs (e.g. birds, trees, and mammals) across the world 

(Remington, Charles 1968, Hewitt 1996, Swenson and Howard 2005, Godfrey M Hewitt 

1999, Swenson and Howard 2004). Using only spatially coincident hybrid zones, 

Remington (1968) proposed that there are 13 of these so-called suture zones in North 

America. Swenson and Howard's (2005) more recent work included both hybrid zones 

and contact zones between closely related taxa in their definition of suture zones and 

found support for these zones across North America. Multiple hypotheses for the 

formation and locations of suture zones have been proposed, including biotic range 

expansions out of shared glacial refugia (Remington, Charles 1968, Swenson and 

Howard 2005, Anderson 1948) and proximity to geographic barriers (Remington, Charles 

1968, Swenson and Howard 2005).  

 Migratory divides are a special case of suture zones where the proximate cause of 

divergence is known, namely the distinct migratory routes of each population (Helbig 

1996, Bensch, Andersson, and Akesson 1999, Delmore, Fox, and Irwin 2012, Ruegg and 
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Smith 2002, Rohwer and Irwin 2011, Møller et al. 2011). The ultimate cause of a 

migratory divide, however, must be a mechanism that maintains migratory route 

divergence in the face of parapatry (or sympatry in some extreme cases) and potential 

gene flow.  A similar problem is presented by attempts to explain any suture zone, but in 

the case of migratory divides, the explanation must explain divergence among 

populations where individuals possess significant dispersal abilities.  Mere geographic 

isolation is unlikely the ultimate cause.  An understanding of migratory divides, 

therefore, provides a window into the mechanisms producing not only suture zones but 

also parapatric divergence more broadly.   

 Migratory divides have been identified for Passerine songbirds across the world. 

The most well studied is the Central European divide, where populations migrate either 

southwest or southeast of the Mediterranean Sea on their way to their wintering grounds 

in Africa (Helbig 1991, Helbig 1992, Helbig 1996, Berthold and Helbig 1992, Berthold 

and Terrill 1988). Irwin and Irwin (2005) noted a Siberian divide north of the Tibetan 

Plateau where 85% of breeding species either migrate east or west around the plateau. Of 

the species that utilized both eastern and western routes, about half showed subspecific 

divergence that aligned with migratory route (Irwin and Irwin 2005).  

  The Canadian Rockies in North America also possess a divide where eastern and 

western taxa breed parapatrically or sympatrically and exhibit different migration routes 

and wintering grounds (Ruegg 2008, Ruegg and Smith 2002, Delmore, Fox, and Irwin 

2012, Kelly and Hutto 2005, Toews, Brelsford, and Irwin 2011, Rohwer and Irwin 2011). 

Empirical observations of diverse eastern migrants suggest a circuitous migratory route, 

where birds fly even further east before heading south. Western breeders, however, travel 
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more directly south. For example, Kelly and Hutto (2005) found that of the 51 North 

American wood warblers, 41 have distinct eastern and western routes, eight have distinct 

eastern and western haplotypes, and only two, American redstart (Setophaga ruticilla) 

and black-and-white warbler (Mniotilta varia), have ranges that span the divide. Using 

geolocators, Delmore et al. (2012) were able to confirm a Canadian Rocky Mountain 

migratory divide between eastern and western subspecies of Swainson’s thrushes 

(Catharus ustulatus). For a compiled species list associated with this divide and their 

related references see Tables 1 and 2 in Rohwer and Irwin (2011). 

 Selection pressures that maintain differential migratory behaviors in the face of 

gene flow could be the result of differential costs of migration in terms of time, energy, or 

survival (Helbig 1996). Natural selection often optimizes migratory behaviors to 

minimize time spent traveling or total energy expended on migration (Alerstam and 

Lindstrom 1990). Both ecological barriers (Rappole et al. 1979, Alerstam 1979, 

Gauthreaux 1980, Moore et al. 1995, Gauthreaux et al. 2005) and meteorological factors 

(e.g., wind) (Richardson 1978a, Alerstam 1979, Gauthreaux 1980a, Moore et al. 1995, 

Liechti and Bruderer 1998, Chapman et al. 2011) simultaneously affect the timing and 

energy expenditures of migrants, in turn influencing the evolution and maintenance of 

migratory routes (Irwin and Irwin 2005). As such, divergence in these factors is a logical 

hypothesis for the evolution and maintenance of migratory divides. 

 While no single hypothesis for the maintenance of migratory divides is mutually 

exclusive, there has been no direct test of the importance of wind or water currents. This 

mechanism, however, would be widely applicable to the maintenance of population 

structure and parapatric divergence for any organism that relies on the movement of a 
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fluid for dispersal. In this study we created an individual-based model to simulate the 

autumn migration of bird populations from either side of the Canadian Rocky Mountain 

divide. We used this model for two objectives: first, we tested for a wind divergence 

along the migratory divide by modeling the movement of birds with no flight trajectory 

(i.e., “floating”); second, we solved for the airspeed necessary for a bird’s vector 

(magnitude and direction) to overpower any wind divergence along the divide and cause 

the migratory divide to collapse. These tests will determine whether wind divergence 

alone is an adequate mechanism for maintaining distinct migratory directions and to 

predict which taxa fly at sufficiently slow speeds to experience differential selection on 

migratory orientation.  

  

4.3. Methods 

4.3.1. Individual-based model  

 We developed a spatially explicit, individual-based model in MATLAB 

(Mathworks 2012), simulating avian migration from populations located on either side of 

the Canadian Rocky Mountain migratory divide. The model’s domain encompasses most 

of North America from eastern Alaska, USA to western Labrador, Canada (Figure 4.1) 

during fall migration (September – October) over 33 years (1979-2012).  

 In the model birds are given an elevation (via air pressure) and an explicit starting 

location and time (local sunset) and are then allowed to interact with the modeled wind 

data for a migratory flight each night (6 hours), followed by a stopover period during the 

following day.  Using values from the literature we defined the time of flight start, length 

of migratory flights, and air pressure of flight elevation. 
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We modeled bird migration starting from explicit locations on either side of the 

migratory divide.  We subsampled the two sides by randomly choosing 12 starting 

locations within a 15,082 km2 area on either side of the suture zone represented by the 

breeding range margins of 25 phylogenetic pairs of avian taxa (Figure 4.1; Tables 1 & 2 

in Rohwer and Irwin 2011).   

We modeled bird movement at each location starting at sunset and continuing for 

six hours nightly, because nearly all North American songbirds are nocturnal migrants 

(Able 1973). Observational and radar studies indicate that nightly migration begins near 

sunset and ends before sunrise, with a peak near midnight (Drury and Keith 1962, 

Gauthreaux 1971, Able 1973, Alerstam 1976, Richardson 1978, Kerlinger and Moore 

1989).    

We modeled bird flights in the wind stream at three isobaric levels, 925 mb, 850 

mb, and 750 mb, corresponding to altitudes of approximately 750 - 2,500 m above sea 

level. We chose these three isobaric levels both to encompass the altitudinal range with 

the highest densities of migrants in studies from both North America and Asia (Kerlinger 

and Moore 1989, Liechti et al. 2000, Gauthreaux et al. 2005) and also to test the 

sensitivity of our results to changes in flight altitude, about which little is known.  

 Autumn (September – October) atmospheric horizontal wind components were 

obtained from the European Center for Medium-Range Weather Forecast (Dee et al. 

2011) for ten randomly selected years between 1979-2012 at a spatial resolution of 0.85o 

latitude and longitude. This selection of years maximized data quality and consistency. 

Since global circulation patterns have remained moderately steady from glacial times to 

the present (Williams and Webb 1996, Preusser et al. 2002, Gauthreaux et al. 2005), 
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however, the last 30 years of wind patterns should adequately represent circulation 

patterns from as far back as 10,000 years ago. Wind data were linearly interpolated in 

time from the original 6-hour resolution to predict hourly conditions and bilinearly 

interpolated in space for a finer spatial resolution.  

 

4.3.2. Testing for the effects of wind  

 First, we simulated the effect of wind on the headings of the eastern and western 

populations by allowing them to float passively at each of the three isobaric levels. A 

drag force, or air resistance component was not considered in the model. The model 

recorded the heading of each individual bird as they crossed a radius of 500 km from 

their starting location, a distance corresponding to a flight of at least one complete night 

(Hedenström and Pettersson 1987, Bensch, Andersson, and Akesson 1999) beyond the 

starting location. If a bird did not reach 500 km after one night’s flight (6 hours), the 

model omitted the daytime hours and began again at sunset the next night, and so on until 

the birds reached 500 km. We than tested for significant differences between the headings 

of the two populations and the time it took to reach 500 km at each air pressure level. We 

were interested in any differences in time as faster times equate to shorter migration 

lengths and more efficient energetic expenditure during migration.  Any differences in 

time could therefore suggest how wind currents apply selection to the evolution of 

migrant behavior. 
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Figure 4.1. Map illustrating model starting locations representing the migratory divide 

among many North American sister species and subspecies.  Western migrant’s starting 

locations (n= 12) are denoted as stars, while eastern migrants (n = 12) are x’s.  

 

  

 Second, we calculated the bird airspeed necessary to eliminate any differences 

between the headings of the two modeled populations (and thus the airspeed necessary to 

prevent a migratory divide). Typical airspeeds of migrating songbirds range from 10-15 

m s-1 (Bloch and Bruderer 1982, Bruderer and Boldt 2001), although other groups like 

shorebirds and waterfowl migrate at faster speeds (mean 20 m s-1: Williams 1985, 

Bruderer and Boldt 2001). We ran the model again from the same starting locations and 

times of the previous “floating” test, giving each bird a heading equal to the midpoint 

between the two population headings from the first analysis (102.5o).   

We tested airspeeds of 0-30 m s-1 in intervals of 0.5 m s-1 at the median altitude of 

850 mb. Due to the minimal variation between model results at the three isobaric levels 

(see results) we used only 850 mb for this second simulation. We chose 850 mb over the 

other altitudes for two specific reasons. First, many migration modeling studies use 

similar isobaric levels (McLaren, Shamoun-Baranes, and Bouten 2012, Erni, Liechi, and 
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Bruderer 2005). Second, the atmosphere within altitudes close to the surface is exposed 

to topographic distortion by the Rocky Mountains, while 850 mb is typically found above 

the planetary boundary layer in the lower troposphere, where the effects of surface 

friction are negligible. This is important because we were interested in isolating the effect 

of wind from geography. 

We introduced random stochasticity into the birds’ headings at the start of every 

nightly flight based on variation observed in previous field studies.  We selected a 

random heading from a wrapped normal distribution with a mean equal to 102.5o and an 

angular deviation of 38o (Erni, Liechi, and Bruderer 2005, Moore 1984), corresponding to 

a mean vector length, r, of 0.803 (Batschelet 1981, Fisher 1993). We ran the model ten 

times to incorporate sampling error and averaged the results to determine the speed at 

which the migratory divide would collapse. Thus, in the first model birds were influenced 

only by the wind, while birds in the second simulation were influenced by their own 

airspeed, endogenous orientation, random stochasticity, and wind currents. 

 

4.3.3. Statistical analysis   

 We used the Rayleigh test of uniformity (Batschelet 1981) to calculate whether 

the mean angle of orientation differed from a random distribution for each group of 

modeled floating birds. The difference in mean angle of orientation between the two 

populations was analyzed at each flight altitude using the Watson’s U2 test (Batschelet 

1981, Agostinelli and Lund 2013). We also tested for significant differences in the 

variance of the headings for both eastern and western populations. This was done by first 

rotating the distributions so the mean vectors coincided (allowing any differences in the 
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distribution to be due to scatter) and then running a Watson’s U2 test on the rotated 

distributions.  

 We used a nonparametric Levene’s test (Levene 1960) to test whether the length 

of time the two groups of modeled birds took to reach 500 km by floating in the wind 

differed from each other at each of the three isobaric levels.  As our simulations involved 

a large number of modeled birds (n=1200 for each population), we have an increased risk 

of type 1 statistical error and the detection of differences that are not biologically 

relevant. To prevent this bias, we tested for significance in population mean headings and 

the time it takes to reach 500 km in ten subsets (n = 100 per population) of our full 

dataset, at each isobaric level.  

 To determine at what speed the migratory divide collapses in our second 

simulation, we found the speed at which the eastern and western populations no longer 

showed significantly different mean migratory headings for each of the ten model runs. 

We considered the mean headings to be similar when the 95% confidence intervals 

around the difference between the eastern and western populations mean headings 

included zero. We then averaged, across the ten model runs, the speeds where the 

confidence intervals first overlapped zero to estimate the airspeed of migratory divide 

collapse. 
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4.4. Results 

4.4.1. Wind divergence across a migratory divide 

 We found a statistically significant difference at all three isobaric levels between 

the mean heading of populations on either side of the migratory divide after a migratory 

flight with a Euclidean distance of 500 km (Table 4.1 and Figure 4.2), indicating a wind 

divergence along the migratory divide. The mean direction of floating heading for eastern 

migrants differed from that of western migrants at 750 mb (east = 73o, west = 107o; 

Watson’s U2 = 8.5, P < 0.001), 850 mb (east = 79o, west = 126o; Watson’s U2 = 12.4, P < 

0.001), and 925 mb (east = 87o, west = 139o; Watson’s U2 = 15.3, P < 0.001) (Table 4.1 

& Figure 4.2).  Eastern birds moved more directly east while western birds showed a 

mean orientation significantly more to the south (Table 4.1 & Figure 4.2). All ten subset 

datasets resulted in significantly divergent headings (Table 4.1). At the two lower 

elevations (the two higher air pressure levels: 850 & 925 mb), the variance in the heading 

of the eastern birds was significantly greater than at 750 mb (925 mb: Watson’s U2 = 0.6, 

P < 0.001 & 850 mb: Watson’s U2 = 1.2, P < 0.001), while the reverse was true for the 

western birds (925 mb: Watson’s U2 = 1.2, P < 0.001 & 850 mb: Watson’s U2 = 1.5, P < 

0.001) (Table 4.1 & Figure 4.2).  
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Table 4.1. Mean headings (mean resultant vector with bootstrapped 95% confidence 

intervals) of simulated birds from two populations (n=1200 birds per population). The 

length of the arrow (r), as calculated using the Rayleigh test, is proportional to the 

strength in which the mean represents the sample (Batchelet 1981). Differences between 

the two population mean headings at each isobaric level were tested with the Watson’s U2 

test, and the asterisk indicates that the heading difference was also statistically significant 

with 10 subset datasets (n = 100/population).  

 

Isobaric 

level 

(mb) 

Population Mean 

heading 

(o) 

95% CI (o) r Difference in 

mean 

heading (o) 

Watson’s U2 

p value 

750 Eastern 73 (75, 71) 0.85 34 < 0.001 * 

       

 Western 107 (109, 104) 0.72   

       

850 Eastern 79 (81, 77) 0.80 47 < 0.001 * 

       

 Western 126 (128, 124) 0.81   

       

925 Eastern 87 (89, 85) 0.83 52 < 0.001 * 

       

 Western 139 (142, 138) 0.86   
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Figure 4.2. Bird headings (solid dots, in relation to geographic north) of modeled birds, 

from two populations on either side of a migratory divide, as they crossed a 500 km 

distance from their starting location. The mean direction (α) is represented by the arrow. 

The length of the arrow, r (the mean resultant vector length), was calculated using the 

Rayleigh test and is proportional to the strength in which the mean represents the sample 

(Batchelet 1981), the sample size (n), and the P value obtained from the Rayleigh test. 

The 95 % confidence intervals around the means can be found in Table 4.1. 
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 As seen in Table 4.1 and Figure 4.2, the difference between the mean headings of 

the two populations was similar among isobaric levels. The smallest difference was seen 

at 750 mb (34º ± 0.02º), which corresponds to the highest elevation, and the greatest 

difference was found at 925 mb (52º ± 0.01º).  

 

4.4.2. Floating time  

 Modeled eastern birds reached 500 km significantly faster than the western birds 

at all isobaric levels (Table 4.2). 

Table 4.2. Mean number of hourly times steps, standard deviation (sd), and mean number 

of nights taken to travel. The F-value and P-values were obtained from the Levene’s test 

of the difference between the two populations at each of three isobaric levels and the 

asterisk indicates that the heading difference was also statistically significant with 10 

subset datasets (n = 100/population) 

Isobaric 

level (mb) 

Population Mean # of 

time steps 

sd Mean # of 

nights 

F - value p - value 

750 Eastern 28.58 19.93 4.76 55.06 < 0.001 * 

       

 Western 36.29 27.26 6.05   

       

850 Eastern 58.64 47.67 9.77 10.04 0.002 

       

 Western 77.81 48.87 12.97   

       

925 Eastern 95.88 59.5 15.98 174.82 < 0.001 * 

       

 Western 138.72 80.92 23.12   

       

 

  



 75 

  

4.4.3. Divergence maintained under moderate airspeeds  

 At an average airspeed of 18.5 m s-1, birds with an orientation of 102.5o were able 

to overcome the wind currents and eliminate any difference in the headings due to 

starting location (Figure 4.3).  

  

 
Figure 4.3. Modeled mean headings (± 95% CI) of migrants from either side of a 

migratory divide for airspeeds ranging from 0 to 30 m s-1 and an orientation direction of 

102.5o (indicated with horizontal black line). The vertical black line indicates the speed 

(18.5 m s-1) at which the populations no longer differ by their heading (i.e., migratory 

divide collapses). 
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4.5. Discussion 

 Results from this modeling exercise support wind as a driver in the evolution and 

maintenance of the Canadian Rocky Mountain divide for songbird species. Our first test 

revealed that the wind divergence was present at all three isobaric levels tested (Figure 

4.1 & Table 4.1) and ranged from a 34º-52º difference between sites to the east and west 

of the divide. Similar differences in the migratory orientation directions of songbirds 

have been reported from wild populations that straddle a European migratory divide (39º: 

Bensch et al. 1999). Our second analysis tested what airspeed, with a given heading of 

102.5o, would cause the migratory divide to collapse. We found that birds with airspeeds 

at or exceeding 18.5 m s-1 could overcome the wind vector and should therefore not 

exhibit a migratory divide on the eastern flank of the Canadian Rocky Mountains (Figure 

4.3). The averaged speed, 18.5 m s-1, is within the migration speed of both waterfowl 

(Bellrose and Crompton 1981, Meinertzhagen 1955) and shorebird species (Williams 

1985), but above the flight speeds of songbird species who migrate below 15 m s-1 

(Videler 2005, Bruno Bruderer and Boldt 2001). To our knowledge North American 

migratory waterfowl and shorebird breeding ranges do not demonstrate the same east – 

west pattern as we see with songbirds. We cannot confirm that the ability to overcome the 

wind is the mechanism behind the lack of a suture zone among these species, but the 

evidence does support that hypothesis. Our findings do not discount ancestral habitat 

expansion following deglaciation or geographical barriers as contributing factors in the 

formation and maintenance of this North American migratory divide; they merely 

provide strong support for wind as an influencing factor.  
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 Across the northern hemisphere, there is ample evidence supporting the 

divergence of plant and animal species in isolated refugia during the Late Pleistocene 

(Pielou 1991, Ruegg and Smith 2002, Weir and Schluter 2004). Divergence in habitat 

preferences during these periods of refugia has been hypothesized to prevent populations 

from interbreeding freely upon secondary contact.  Along the Rocky Mountain suture 

zone we investigated here, habitat is transitional between mixed-wood boreal forest east 

of the divide and conifer-dominated cordilleran forests to the west (Ruegg 2008, Toews, 

Brelsford, and Irwin 2011). Habitat preference differences have been shown across this 

divide in many warbler species complexes (Kelly and Hutto 2005, Toews, Brelsford, and 

Irwin 2011) and Swainson’s thrush subspecies (Delmore et al. 2012). Hybrids between 

these two populations are presumed to exhibit intermediate habitat preferences that are 

not successful in either forest type (Toews, Brelsford, and Irwin 2011), thereby 

ecologically isolating the sympatric or parapatric breeding populations. Habitat 

preference divergence, however, cannot be the sole explanation in maintaining the divide, 

since the avifaunal suture zone is only present for migratory species. Year-round resident 

taxa in many taxonomic families (e.g. corvidae and picidae) do not show structure at the 

level of species or subspecies across the divide, while migratory taxa do. Further, only 

migratory taxa with flight speeds below 18.5 m s-1 align with the suture zone. Divergent 

habitat preferences cannot explain the taxonomic differences in alignment with the suture 

zone.  Toews et al. (2011) also refuted habitat as the only driver of divergence at the 

hybrid zone between migratory Townsend’s warblers (Setophaga townsendi) and black-

throated green warblers (Setophaga virens), reporting that the two species defend 
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territories next to each other and implying that pre-mating isolation based on habitat 

alone is unlikely. 

 Migratory divides are also thought to form when there is more than one optimal 

route around an ecological barrier (Irwin and Irwin 2005, Helbig 1992). Irwin and Irwin 

(2005) report two adjacent populations of the greenish warbler (Phylloscopus 

trochiloides) breeding in the northern forests of central Siberia that migrate to either side 

of the Tibetan Plateau. Hybrids are presumed to possess intermediate migratory 

directions over the Tibetan Plateau (Irwin and Irwin 2005), where survival would be 

dramatically reduced.  

 Birds breeding on either side of the Canadian Rocky Mountain divide may face 

similar restrictions on intermediate migratory directions, which would cause some 

species to travel over the Rocky Mountains and the deserts of the southwestern United 

States. Inland breeding populations of Swainson’s thrushes from Alaska and British 

Columbia, however, appear to migrate over equally large mountain ranges as they 

migrate east (Ruegg and Smith 2002), making it unclear how a similar barrier would 

cause a migratory divide in one location and not another for the same species. Further, 

many songbirds take direct routes across habitat barriers that are larger and more 

inhospitable than the southwestern American deserts, such as the Gulf of Mexico (Moore 

and Kerlinger 1987, Yong and Moore 1993, Simons et al. 2000) and the Sahara desert 

(Biebach, Friedrich, and Heine 1986).   

 Wind, however, remains a strong candidate driver of the Rocky Mountain 

migratory divide.  It explains which taxa are members of the suture zone and which are 

not; it has likely been a consistently operating force on the continent since deglaciation; 
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and optimality migration theory can explain why hybridization between taxa on either 

side of the divide is selected against. Birds should modify their behavior to minimize the 

expenditures of three main currencies: total migration time, total energy spent on 

migration, and predation risk (Alerstam and Lindstrom 1990, Chernetsov 2012). 

Assistance from wind can aid in both reducing energy expenditures and total time spent 

on migration (Richardson 1978b, Gauthreaux 1980b, Liechti and Bruderer 1998, 

Dänhardt and Lindström 2001, Liechti 2006). Our model does not calculate energy 

expended or saved, but we show clearly that the average tail winds would differ on either 

side of the migratory divide.  In modeling and empirical studies in Europe, it is clear that 

flying downwind can net migratory songbirds large energetic gains relative to goal-

oriented navigation (McLaren, Shamoun-Baranes, and Bouten 2012, McLaren et al. 

2014, Shamoun-Baranes and van Gasteren 2011). We thus hypothesize that birds that 

align their orientation to the prevailing tailwinds of their starting location will net both 

faster and more energetically efficient migration, and that hybrids would perform worse 

than either parental population. 

The preliminary descriptions of migration length we present here support this 

hypothesis by providing a possible explanation for the circuitous migration of the suite of 

species found on the eastern side of the migratory divide (Delmore, Fox, and Irwin 2012). 

Eastern birds in our model moved 500 km in significantly less time than their western 

counterparts (Table 4.2). Further, our calculated heading for the eastern population was 

very similar to empirical measurements of birds as they travel across the Canadian boreal 

forest (Ruegg and Smith 2002). Higher wind assistance would explain a circuitous route 

in eastern birds over a more geographically direct route south to their non-breeding 
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grounds. While total distances are higher for eastern migrants using the circuitous route, 

they nonetheless arrive at their wintering grounds in comparable times to the western 

birds (Delmore et al. 2012). Our results provide a mechanism for this empirical 

observation. 

 We did find, however, some support for a combination of wind and geographic 

barriers in the maintenance of the Rocky Mountain migratory divide.  Birds floating at 

925 mb showed greater divergence in mean heading than birds modeled at our two higher 

isobaric levels (850 & 750 mb).  The most divergent migration movements were thus 

made by birds migrating within the planetary boundary layer, where wind currents are 

affected by the earth’s topography.  Birds from pressure levels chosen to represent 

altitudes not affected by the earth’s surface showed less of a difference in mean heading 

(Table 4.1 & Figure 4.1).  This suggests that interactions between local geography and 

wind currents may be a factor in maintaining the migratory divide. Wind alone, however, 

was also adequate to maintain the divide. 

 

4.5.1. Climate change and migratory divide 

 The prevailing westerly winds in North America are projected to slow by 1.0 to 

3.2% and 1.4 to 4.5% over the next 50 and 100 years respectively (Breslow and Sailor 

2002). If the prevailing winds decrease substantially, the migratory divide could collapse 

under a much lower airspeed, perhaps even for the slowest passerine species. As one 

example, the wind assistance given to the migrants on the eastern side of the divide may 

no longer be sufficient to maintain this route as optimal relative to more direct routes 

south. Genetic analysis of orientation vectors have shown that populations can shift their 
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migratory direction in only a few generations (Berthold 1990, Helbig 1991, Irwin 2009) 

when a new strategy increases fitness relative to historical strategies (Bearhop et al. 

2005). Without the migratory divide in place, we would expect to see an increase in the 

genetic mixing of the populations, in turn impacting North America’s avifaunal 

biodiversity and the current trajectory of ongoing speciation events.  

 

4.5.2. Currents and population structure 

 Fluids, such as wind and water currents, can impact genetic structure through 

migration and dispersal (Newton 2008, Shi, Kercelhue, and Ye 2005, Bohrer, Nathan, 

and Volis 2005, White et al. 2010, Szövényi et al. 2008). White et al. (2010) found that 

popular population genetics models (Kimura and Weiss 1964) that assume decreases in 

genetic dispersal probability with distance did not explain the complex genetic patterns 

found in marine systems. After accounting for currents by transforming distance into 

“oceanographic” distance, they found distance explained 50% of the variance in 

population genetics of an empirical snail larva (K. kellettii). Additionally, a simulation 

study of Aleppo pine (Pinus halpensis) dispersal confirmed that long-distance dispersal 

through strong winds enhances metapopulation survival and slows the rate of genetic 

variability loss. In our study we show that currents may also provide isolating barriers 

and be sources of divergence. Given enough time, currents are likely important 

mechanisms both for creating and maintaining genetic teleconnections among 

populations and for parapatric or ecological speciation at areas where currents diverge. 

Consequently, including fluid dynamics into ecological and biological research will assist 

in explaining the earth’s biodiversity.  
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 CHAPTER 5: THE INFLUENCE OF WIND SELECTIVITY ON  

 

MIGRATORY BEHAVIORAL STRATEGIES 

5.1. Summary 

 Weather impacts a migratory animal’s decision to initiate migration. Although 

many factors influence an animal’s choice to depart, currents are generally accepted as 

being one of the most significant. Currents have a very strong effect on the timing and 

energy expenditures of animals and therefore selection of favorable currents for departure 

is of foremost importance for optimal migratory performance. However, there is also a 

cost of waiting for favorable currents. The degree to which departure selectivity by 

nocturnal migrants influences the ultimate migratory strategies observed in wild flying 

birds remains uncertain. Here we conduct an optimality analysis to determine how wind 

selectivity affects three optimized migratory behaviors: time (total migration time), 

energy (total time spent in flight), and risk (whether or not migration was completed). To 

describe variation in these metrics under varying degrees of wind selectivity, we 

constructed an individual-based model (IBM) to simulate fall migration of small 

passerines across northeastern North America using different thresholds of wind profit, 

the distance per second the wind carries the bird towards its intended goal. A gradient of 

wind profit values were tested, from initiating flights only on nights when winds were 

directed in their preferred migratory direction (highly selective), to flying under most 

wind conditions (low selectivity). Our analysis indicated that relative mortality risk was 

lowest at intermediate selectivity and increased at both high and low threshold wind-

profit values. Birds with increasing selectivity used less energy for migratory flight; 

however, there was an upper threshold beyond which no wind conditions ever met the 
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criteria for take off. Of those who successfully completed migration, those with the 

lowest selectivity spent less time on migration. By optimizing risk, time, and energy, we 

solved for an optimal range of wind selectivity for autumn migrants in northeast North 

America that agrees well with empirical values. Overall, we show that variation in wind 

selectivity at departure can produce migratory behaviors that mimic the classic “time-

minimizer” and “energy-minimizer” strategies developed from measurements of wild 

birds.  

 

5.2. Introduction 

 Air and water currents can be strong selective forces on the movements of 

migratory animals (Kemp et al. 2012, Richardson 1990, Chapman et al. 2010, Melià et al. 

2013, Xue et al. 2008, Incze et al. 2010, Alerstam et al. 2011, Srygley and Dudley 2007). 

For instance, wind currents affect migration speed (Weber and Hedenström 2000, 

Alerstam et al. 2011), energy expenditure (Liechti 1995), resting (hereafter “stopover”) 

behavior (Åkesson and Hedenström 2000, McLaren, Shamoun-Baranes, and Bouten 

2012), and migration intensity (Van Belle et al. 2007, Erni, Liechti, and Bruderer 2002, 

Kemp et al. 2012, Åkesson and Hedenström 2000). Animals that engage in goal-

orientated movements, such as migration, can therefore be expected to have evolved 

behavioral mechanisms for identifying and exploiting favorably directed flows (Chapman 

et al. 2011).  Further, many taxa spend a considerable part of their annual cycle on 

migration, and it is therefore likely that populations experience significant selection 

pressures to optimize time, energy, and risk during migration (Dingle 1996, Thomas 

Alerstam and Lindstrom 1990, Weber and Hedenström 2000, Hedenström 2003, 
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Hedenström 2009, Srygley and Dudley 2007). The ultimate result of these optimization 

pressures has been hypothesized as a gradient of stable behavioral strategies (Alerstam 

and Lindstrom 1990) that optimize different combinations of the three currencies 

(Alerstam 1991, Mateos-Rodriguez and Liechti 2011). Here we model the consequences 

for these three currencies as a result of variation in one migratory behavior, the degree of 

selectivity of wind currents, and suggest alternate phenotypes that solve the behavioral 

tradeoff for passerine songbirds during fall migration in eastern North America. 

 The most studied strategy empirically is one that prioritizes minimization of time 

spent on migration (Dänhardt and Lindström 2001). The advantage of a time-minimizing 

strategy may be to arrive earlier than competitors to a breeding or wintering site and to 

decrease the amount of time spent in unknown stopover sites (Dänhardt and Lindström 

2001, Weber and Hedenström 2000). Alternatively, a different suite of behaviors can 

minimize energy spent in flight and on stopover (Hedenstrom and Alerstam 1997, Liechti 

1995). A energy-minimizing strategy has advantages for animals attempting shorter 

distance migrations that can afford to take shorter movements, stopover more frequently, 

and carry smaller, more efficient fuel loads (Alerstam 2011). Lastly, an animal’s optimal 

strategy may be to prioritize risk minimization. Many optimal migration analyses define 

risk specifically as predation risk (Alerstam and Lindstrom 1990, Alerstam 1990; 

Schmaljohann and Dierschke 2004). However, defining risk more broadly as migratory 

survival (i.e., does a bird complete migration or not) would better reflect classically 

supported life-history tradeoffs (Stearns 1992, Martin 1995) and capture the suite of 

correlated behaviors that minimize risk from all mortality factors (e.g. weather, food 

availability, predation, stopover site selection).  
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 The timing, magnitude, and direction of local currents can change the optimal 

solution along all three migration-strategy axes. For example, the presence of currents 

flowing in the animals preferred direction will decrease both the time and energy 

expended on migration, therefore decreasing the costs to these two currencies by further 

minimizing risk (Åkesson and Hedenström 2000). However, the magnitude and timing of 

preferred flow also has the potential to affect each axes differently. If the preferred flow 

is relatively light, compared to the speed of the animal, total migration time may decrease 

while energy spent on migration may not because the animal will have to compensate for 

the lack of current assistance. If preferred flows are few and far between, migration risk 

becomes greater because optimal conditions may not come often enough to complete 

migration (Weber and Hedenström 2000). Conversely, if preferred flows are generally 

available, then risk inherent in waiting becomes less. 

 In many migratory taxa, behavioral plasticity in relation to flow conditions, (i.e. 

current selectivity), may strongly influence the optimality of migration (Liechti and 

Bruderer 1998, McLaren et al. 2014, Schmaljohann and Naef-Daenzer 2011, Jansen et al. 

2007). Migratory success should be significantly increased for flying and swimming 

animals that possess the ability to adapt to flow conditions compared to those who cannot 

(Kemp, Gessel, and Williams 2005, Gaspar et al. 2006, McLaren, Shamoun-Baranes, and 

Bouten 2012, Scholtyssek et al. 2014). 

  For birds in particular, winds have significant influence on timing and energy 

expenditures, and therefore the selection of favorable winds at departure is critical for 

optimal migration performance (Alerstam 2011, Alerstam 1979a). Wind assistance can 

increase flight speed by 30% (Bruderer and Liechti 1998). Thus, by responding 
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adaptively to wind patterns, individuals can significantly increase flight speed and save 

nearly half the amount of energy required for migration (Liechti and Bruderer 1998). 

Given the transitory nature of winds, it is reasonable to hypothesize that migrants would 

benefit from some flexibility in their responses to winds at departure (McLaren, 

Shamoun-Baranes, and Bouten 2012, McLaren et al. 2014). These responses should be 

dependent upon which migratory behavioral strategy they employ. For instance, to 

minimize energetic expenditure on migratory flights, a bird should migrate only in the 

most favorable winds. Selectivity, however, restricts departure opportunities, potentially 

increasing risk associated with stopover and overall time spent on migration (Alerstam 

2011, Bruderer, Underhill, and Liechti 1995, McLaren, Shamoun-Baranes, and Bouten 

2012).  

 The degree to which departure wind selectivity influences the ultimate migratory 

strategies of wild nocturnal migrants remains unclear. The aim of this study was to 

evaluate the consequences of departure wind selectivity on three migratory currencies, 1) 

risk, 2) time, and 3) energy and to determine an optimal range of wind selectivity for 

autumnal passerine migrants in northeastern North America. We simulated fall migration 

along the Atlantic flyway using a spatially explicit individual-based model (IBM) and six 

years of wind data. In our analysis, we used a gradient of wind selectivity from initiating 

flights only when winds were flowing in their preferred direction (highly selective), to 

flying under most wind conditions (low selectivity).  
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5.3. Methods 

5.3.1. Model creation 

 The environment was modeled as a two-dimensional grid map with a 10 km by 10 

km resolution, defined between 57o N to 21o N and 115o W to 42o W (Figure 5.1). The 

model grid contains five layers: topography, endogenous direction, wind vectors, 

precipitation, and mean sea-level pressure. The first layer formed the topographical map. 

Each grid cell of the map was assigned a feature (land, fresh water, or ocean) that altered 

flight behavior (see below).  

The second layer was the endogenous or preferred migratory direction layer. 

Flight direction, for many songbirds, especially juveniles departing on their first 

migration, is thought to be primarily controlled by an endogenous genetic program that 

may be modified by experience (Pulido 2007, Berthold 1990, Mitchell et al. 2015). Many 

North American migration studies have shown that western breeding birds migrating east 

along the boreal forest (Holberton et al. 2015, Dunn et al. 2006, Williams et al. 1977) 

until reaching the Atlantic coast, after which they alter their heading south following the 

coastline (Buler and Dawson 2014). Ancestral range expansions post deglaciation (Ruegg 

2007, Ruegg and Smith 2002) and/or the prevailing westerly winds in autumn (Figure 

5.2; McCabe et al. in prep) are two potential reasons for why some birds take this 

circuitous eastern route during autumn. Migration routes can also follow the morphology 

of geological features such as coastlines. Coastlines are known to concentrate migrant 

landbirds (Gauthreaux, 1971, Williams et al., 1977, Moore et al., 1995), specifically birds 

born that year that may rely on coastlines to navigate on their first migration (Ralph 

1971). Hence, in our model we gave birds within grid cells over the continent a preferred 
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bearing of 135o and birds within cells along the coast (500 km buffer around the 

coastline: Figure 5.1) an endogenous bearing parallel to the eastern coast at 225o.  

 We introduced random stocasticity into the birds heading at the start of every 

flight by randomly choosing a heading from a wrapped normal distribution with an 

angular deviation of 30o, corresponding to a mean vector length, r, of 0.863 (Erni, Liechi, 

and Bruderer 2005) and a mean bearing equal to the endogenous direction.  

 The third, forth, and fifth layers comprised the weather variables: mean sea-level 

pressure (MSLP), precipitation, and wind vector data. All weather data is Climate 

Forecast System Reanalysis (CFSR) 3-hourly data from the National Center for 

Atmospheric Research (NCAR). We used weather data during autumn migration (Aug – 

Nov) 2008-2013. The CFSR data has a 0.5 degree resolution on a cylindrical equidistant 

projection. We bilinearly interpolated the weather data to produce a 10 km resolution 

layer with a Lambert Conformal projection using NCAR command Language. Weather 

data was also linearly interpolated in time from the original 3-hourly resolution to a 1-

hourly resolution, using Matlab (Mathworks 2012). 

 We used wind profit selectivity as a simple proxy for wind selectivity. Wind 

profit is defined as the distance per second the wind carries the bird towards its intended 

goal (Erni, Liechti, and Bruderer 2002, Erni, Liechi, and Bruderer 2005). Winds with 

negative profit values would carry a motionless bird away from its goal, while positive 

values would carry the bird towards its goal. At the start of each night, we set a variety of 

wind profit thresholds at the surface, such that the bird migrates only if the wind profit 

was above the threshold. Once airborne, the birds remained in the 850 mb isobaric 

pressure level for the remainder of the flight. We chose 850 mb because it lies within the 
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range of passerine migratory flight altitudes (Gauthreaux et al. 2005, Liechti 2006), and 

many migration simulation studies have used similar pressure levels successfully (Erni, 

Liechi, and Bruderer 2005, McLaren, Shamoun-Baranes, and Bouten 2012, Kemp et al. 

2010).  

 Mean sea-level pressure change was used as a proxy for the passage of a cold 

front. Rapidly decreasing pressure often signifies stormy weather (i.e. significant rain and 

winds) and winds from the south in northern latitudes, typically requiring autumn 

migrants to expend more energy (Gauthreaux 1971, Erni et al. 2002b, Gauthreaux et al. 

2005) or stay grounded. As weather passes, pressure rises, and winds begin to come from 

the north, fall migration intensity often increases (Erni et al. 2002, Richardson 1978a). To 

indicate stormy weather at the location of take off, we regressed MSLP at the time of take 

off to the pressure value from six hours prior to departure. Thus, birds did not take off 

when MSLP was low (<= 1009 mb) and the slope of the regression line was steeply 

declining (< -1.0 mb hr-1), indicating rapidly falling pressure. We also prevented birds 

from taking off when hourly precipitation accumulation values were higher than 2 mm. 

Since our objective was to understand the affects of wind selectivity, and not 

precipitation and pressure change, on departure behavior, we held the pressure and 

precipitation rules constant though all simulations, only varying wind profit thresholds. 

Therefore, all results presented are due to changes in wind selectivity.  

 Birds airspeed was set to 10.5 m s-1 for all trials, which is well within the range of 

values observed for small passerine birds (Erni, Liechi, and Bruderer 2005, Bloch and 

Bruderer 1982, Bruderer and Boldt 2001, Videler 2005). Because we are modeling 

autumn migration, which is dominated by first-time migrants, birds are subjected to full 
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wind drift and we do not consider rules for in-flight wind compensation. All migratory 

flights began at local sunset to mimic songbird behavior (Fitzgerald and Taylor 2008). 

Flight duration followed a series of systematic rules.  Flight time per night was set to 6 

hours while over land, and if after that time the bird was over the ocean, flight continued 

for an additional 4 hours. At this point, if birds are over land, they rest until nightfall, if 

not, they continue flying but change their heading directly to the west (270o) in search of 

land. If the birds are unable to find land after 24 hours of continuous flying, they perish.  

 The IBM was created in C. In our simulation birds will initiate migratory flight if, 

1) the wind profit is at or below the selectivity threshold, 2) precipitation is below 2 mm 

at the hour of take off, and 3) the MSLP has not declined sharply (< -1.0 mb hr-1) over the 

past 6 hours. Stopover strategies were not considered in this model, birds only stopped 

over longer than a day if the above rules were met. We did not consider such strategies 

for two reasons. First, there is not enough empirical evidence as to how long birds 

stopover in our study region, and the variation in stopover length is most likely species 

dependent. Second, this approach allows us to quantify variation in stopover length due 

entirely to the effect of wind selectivity, which is difficult to quantify in the wild.  

 

5.3.2. IBM simulations  

 For all simulations the birds started from locations within an area of 8,000 km2 

east of the Hudson Bay and west of Newfoundland and Labrador. Breeding birds in this 

area represent potential migrants heading south during autumn migration within the 

Atlantic Flyway. To select the starting points we first created a grid of points within the 

8,000 km2 area (Figure 5.1), one point every 100 km. We then removed all points that fell 
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within the Hudson Bay or large lakes, and then randomly chose 50 points from the 

remaining points. Lastly, we removed five points that were not located in breeding 

habitats (i.e., boreal forest habitat types), leaving 45 starting locations. Each starting 

location was given a random calendar date between Aug 15th – Sept 15th on a random 

year between 2008-2013.  

  

 
Figure 5.1. Map of the eastern United States and Canada illustrating model extent and 

random starting locations. Staring locations are indicated with red X’s (i.e., breeding 

locations of potential migrants). The yellow line indicates a 500 km buffer around the 

coastline. Endogenous migratory bearing was set to 135o for all areas west of the yellow 

line and 225o within the area between the yellow line and the coast, based on empirical 

observations. Migratory success and the time spent during migration was calculated when 

birds passed the horizontal black line and were to the west of the vertical black line. 
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Figure 5.2. Monthly mean vector plots of winds at 850 mb pressure level for September 

2008-2013 using Climate Forecast System Reanalysis (CFSR) data from the National 

Center for Atmospheric Research (NCAR). Vector arrows display wind direction (as 

angle) and magnitude (as length). The length of the reference arrow represents 10 m s-1. 

 

 

5.3.3. Statistical analysis 

 To understand how wind selectivity at departure may affect migratory behavior, 

we evaluated three variables as proxies of risk, time, and energy for wind profit values 

between -20 and 10 m s-1. We conducted 1,395 simulations, one per wind profit value at 

each of the 45 random starting locations. As a proxy of risk, we counted how many of the 

45 simulations failed for each wind profit threshold. We considered a migration to have 

failed if the bird did not make it past 38o 53’N latitude (horizontal black line in Figure 

5.1) by December 1st, or was far out to sea when it crossed the latitude (further east than 

73o32’W: vertical line in Figure 5.1), and if they were out to sea over 24 hours. As a 
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proxy of time investment, we used total number of days spent on migration, which is 

consistent with optimal migration theory (Alerstam and Lindstrom 1990). For a proxy of 

energetic investment, we counted the number of days spent flying. However, energy 

expended on migration is often considered as the summation of energy spent in flight and 

during stopover. In empirical migration studies, proxies for energy typically capture a 

refueling rate during stopover; a physiological proxy for energy expended because time 

spent in-flight is a difficult and expensive metric to acquire. Here we measure energy at a 

courser level, but with a proxy that is more tightly tied to energetic expenditure in-flight 

than is typically achieved with empirical measures. Mitchell et al. (2015), after 

controlling for tailwind component, failed to find a difference in airspeed or ground speed 

among age groups of migrating savannah sparrows (Passerculus sandwichensis), which 

suggests that differences in flight speed are unrelated to differences in frequency or 

intensity of muscular contraction. If these results are generalizable across passerine 

songbirds, differences in flight duration can thus act as a reliable proxy for energy 

expended while in flight. Both time and energy metrics were only calculated for birds 

that completed migration. 

 To explore the effects of wind selectivity on our three migration currencies, we fit 

three general linear models in Program R (R Development Core Team 2012) using each 

currency as a dependent variable and the wind profit threshold (replicated across starting 

location and date) as an independent variable. A natural log transformation was used on 

time to meet linear assumptions. The relationships between wind profit and the migration 

variables were non-linear; consequently we added a quadratic term for wind profit in all 

three models. 
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 To determine the optimum value for risk, time, and energy, we solved for the 

minimum of the polynomial relationship between wind profit and each migration 

variable. We then standardized all migration variables by subtracting the mean and 

dividing by the standard deviation. We can thus directly compare the relationships 

between each variable and wind profit. We then combined the three optimal migration 

values to create an optimal range of wind selectivity for autumn migrants in northeastern 

North America.  

 

5.4. Results 

5.4.1. IBM simulation 

 We ran the migration model at each wind profit value from 45 starting locations 

for a total of 1,395 migratory tracks. Of the 1,395 tracks, 87% failed to reach the finish 

latitude/longitude or were over the open ocean for more than 24 hours (Table 5.1 & 

Figure 5.3). At wind profits larger than 4.0 m s-1, no bird completed a migration in the 

time allotted (Table 5.1). Although the minimum and median wind profits investigated 

both include 11 completed and 44 failed migration tracks, the completed tracks show 

different patterns (Figure 5.3 A & B). The completed tracks from -20.0 m s-1 wind profit 

show a bunching along eastern Quebec and the Saint Lawrence River before heading to 

the coast, while the -8.0 m s-1 tracks show migration route that are more direct to the 

coast (Figure 5.3 C), resulting in the less selective birds expending more energy in flight 

and more time  
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spent on migration overall (Figure 5.4 B & C). All tracks from the highest selectivity 

simulation follow the preferred direction more directly over land than over the ocean. 

While the lower selectivity tracks show more scatter, as seen in the tracks flying opposite 

the preferred direction (to the northwest) (Figure 5.3). 

 

Figure 5.3. Output from three simulations for the maximum, median, and the minimum 

wind profit thresholds investigated. Red tracks are birds that did not complete the 

migration due to either not crossing the benchmark latitude or longitude before 1 

December, or due to more than 24 hours spent out at sea. Green tracks indicate birds that 

successfully completed their migration.  

 

 Our general linear models demonstrating the quadratic relationships between 

wind profit and risk (r2 = 0.13), time (r2 = 0.88), and energy (r2 = 0.61) demonstrated 

adequate fit. Wind profit had a significant effect on all three variables (Table 5.2). Our 

analysis indicated that relative risk was lowest at intermediate selectivity and increased at 

both high and low wind-profit values. Of the tracks that successfully completed 

migration, those with the lowest selectivity spent less overall time on migration but 

expended more energy (Figure 5.4 B & C), while those with the highest selectivity 

expended the least amount of energy in flight but spent significantly more time on 

migration overall (Figure 5.4 B & C). Of the three relationships with wind profit, risk 

showed the highest variance (Figure 5.4 A). Variance in energy and time was highest at 

the lower wind profit values and low at the highest wind profits (Figure 5.4 B & C). 
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 The minimum wind profit for our risk variable was -8 m s-1 (Figure 5.5). For birds 

that completed migration, the minimum wind profit value for time was -13.8 m s-1 and 4 

m s-1 for energy (Figure 5.5). The energy minimum is not the inflection point like the 

minimum for time and risk, rather is represents the minimum number of days in flight 

before no birds are able to complete the migration. By combining the optimal strategies 

we came up with an optimal range of wind selectivity for autumn migrants in northeast 

North America, -13.8 to 4.0 m s-1 (Figure 5.5).  
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Table 5.1: Output of migration simulations for each variable. Model was run 45 times at 

different randomly selected starting locations for each wind profit threshold. The means 

and standard deviation (SD) are shown for both time and energy and were calculated 

from only the completed migrations for each wind profit value. 

Wind Profit 

Value  

(m s-1) 

Risk:  

% failed  

 

Time:  

# of migration days 

 

Energy: 

# of days in flight 

 

  mean SD mean SD 

-20 76 14.64 6.17 13.82 6.11 

-19 80 11.56 4.82 11.00 4.77 

-18 84 9.14 2.54 8.29 2.43 

-17 89 16.40 5.27 15.40 5.27 

-16 98 7.00  6.00  

-15 91 9.00 2.16 8.00 2.16 

-14 87 13.00 5.55 12.33 5.47 

-13 89 8.20 1.92 7.40 1.95 

-12 82 11.38 4.34 10.50 4.13 

-11 91 9.75 3.40 9.25 3.30 

-10 80 13.22 6.28 12.44 5.77 

-9 84 9.29 1.50 8.14 1.35 

-8 76 10.27 2.37 9.45 2.46 

-7 89 11.20 3.19 9.80 2.68 

-6 87 10.17 2.40 8.50 1.64 

-5 87 14.00 4.47 10.83 5.12 

-4 75 12.82 4.07 8.55 1.44 

-3 84 15.86 60.7 9.71 2.56 

-2 78 15.90 6.57 8.40 3.10 

-1 78 20.00 9.08 7.50 2.12 

0 76 20.45 4.34 6.45 1.57 

1 71 35.31 14.68 7.69 1.65 

2 87 35.33 10.52 6.83 1.17 

3 87 54.33 21.07 6.50 1.97 

4 91 76.50 8.27 5.75 1.71 

5 100 na na na na 

6 100 na na na na 

7 100 na na na na 

8 100 na na na na 

9 100 na na na na 

10 100 na na na na 
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Table 5.2. Parameter estimates, standard errors (SE), and p-values for three models 

explaining the linear and quadratic relationships of wind profit on risk, time, and energy. 

Model Wind Profit Variable Parameter Estimate 

(SE) 

p-value 

Risk linear 0.399 (0.161) 0.02 

 quadratic 0.024 (0.011) 0.04 

Time linear 0.177 (0.015) < 0.0001 

 quadratic 0.007 (0.001) < 0.0001 

Energy linear -0.600 (0.111) < 0.0001 

 quadratic -0.021 (0.007) 0.009 

 

 

 

 
Figure 5.4. The quadratic relationships (± 95% confidence intervals shown in gray) 

between wind profit on A) risk (% failed migrations), B) energy (# of days inflight), and 

C) time (# of days to complete migration). The dots represent the mean model outputs 

across all 45 staring locations. 
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Figure 5.5. Scaled predicted values for models explaining the effect of wind profit 

thresholds (m s-1) on three migratory variables. Black dots represent the optimal wind 

profit value for each migratory currency. If optimizing only energy, birds should fly at 

wind profits of 4.0 m s-1. Time optimizers should fly at wind profits of -13.8 m s-1 and to 

optimize solely for risk, birds should migrate with a wind profit threshold of -8.0 m s-1. 

The gray rectangle is the range of optimum migratory selectivity if multiple strategies are 

being used.   

 

 

5.5. Discussion 

 Wind is thought to be one of the most important factors affecting bird migration 

timing, orientation, energy expended, and flight speed (Alerstam and Lindstrom 1990, 

Erni et al. 2002, McLaren, Shamoun-Baranes, and Bouten 2012). How selective birds are 

at departure can thus have large fitness implications, but the degree of selectivity should 

depend on their particular behavioral strategy (Alerstam 1979a). Our optimality analysis 

indicated a range of wind profits that would variously minimize time spent on migration, 

energy expended in flight, or the risk of failure to complete migration.  Further, variation 

in wind selectivity alone was able to simulate migratory behaviors that align with the 
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classic “time-minimizer” and “energy-minimizer” movements described in wild bird 

populations.  

 We found that birds with less wind selectivity flew on more nights and behaved 

more like time-minimzers, while simulated birds with the lowest energy expended in 

flight were the most selective.  The degree of wind selectivity that produced the greatest 

proportion of birds that finished migration (i.e., lowest risk) was intermediate to the 

selectivity values that optimized time and energy (Figure 5.4 & 5.5). Alerstam (2011) 

found similar behavior with long-distance migrants in Europe. He found that these birds, 

which are generally described as time-minimzers, were less selective than originally 

predicted, relaying on self-powered flight in their preferred direction, often with little or 

no wind tailwind assistance, emphasizing how time constraints within the annual routine 

can necessitate tolerance of nonsuportive winds (McLaren, Shamoun-Baranes, and 

Bouten 2012).   

 The optimization curve for risk was a convex parabola with optimal wind 

selectivity at the intermediate wind profit values (Figure 5.4 & 5.5). Because birds can 

fail for multiple reasons, risk increases at either end of the selectivity range. If they are 

too choosy, they were more likely to wait too long to complete migration in the time 

allotted (before 1 December). If birds aren’t choosy enough, they risk being blown in 

directions other than their preferred bearing. To optimize for overall migration risk, birds 

should be moderately choosy at departure and migrate at a wind profit of -8.0 m s-1. This 

result agrees well with empirical values from Erni et al. (2002b), a radar study in central 

Europe that found that migratory intensity increased at wind profits of -7.0 m s-1 and 

greater.  
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 Unlike risk, time showed a rapidly increasing curve, where the number of days 

needed to complete migration quickly accumulated for wind profits greater than -13.8 m 

s-1 (Figure 5.4 & 5.5). For our fitted quadratic curve, time-minimizers should migrate 

using a wind profit threshold of -13.8 m s-1 (Figure 5.5). Although a quadratic polynomial 

fit the data well (Table 5.2 & Figure 5.4), the total number of days to complete a 

migration may reach a bottom threshold once birds are migrating every day (Figure 5.4). 

If such a threshold exists, time-minimizers would net no decrease in time spent on 

migration for being less selective than -13.8 m s-1, and thus any wind profit selectivity at 

or lower than -13.8 m s-1 would produce similar departure behaviors and be equally 

optimal for time expenditure.  

 The energy curve resembles an inverted time curve. Birds with low selectivity 

experienced the greatest number of days in flight and flight energetic expenditure 

decreased considerably with increasing selectivity (among those birds that successfully 

completed migration) until the line reaches the global minimum at a wind profit of 4 m s-1 

(Figure 5.4 & 5.5).  For wind profit thresholds that are more selective than this, no birds 

completed migration (Table 5.1). To optimize energy expenditure, birds should migrate at 

the global minimum. If the relationship is truly quadratic, energy expenditure may 

decrease as wind profit thresholds become more negative than the range we show here, 

producing a second minimum wind profit value. There is good reason to suspect, 

however, that energy expenditure reaches some maximum threshold once birds are flying 

every night (among the subset that can still complete migration). 

 Variance in each of the three model outputs differed as well. For risk, the variance 

was relatively high compared to the other two currencies at all wind profit values (Figure 
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5.4), most likely due to the multiple ways birds failed to complete migration and the 

inherent variability in winds across all starting dates and locations.  Less selective birds 

were more likely to fail overall because of inadequate time, and more selective birds were 

more likely to fail because exceptionally strong winds pushed them out to sea (Figure 

5.3). However, we are unsure as to what is contributing to the scatter below the line 

(Figure 5.4 A). For both energy and time the variance is highest at lower wind profits. 

The variance could be attributed to flight dates coinciding with highly profitable winds 

and in orientation errors dues to the random stocasticity around the endogenous heading 

compounding throughout migration. Also, since we only calculated time spent in flight 

and the duration of migration among birds that successfully completed migration, the 

values for extreme wind profit thresholds, which exhibited lower proportions of success, 

are calculated across fewer model trials, inflating variance. 

 By optimizing risk, time, and energy, we derived an optimal range of wind 

selectivity, -13.8 to 4.0 m s-1, for autumn migrants in northeast North America (Figure 

5.5). Birds selecting departure winds higher than 4.0 m s-1 will not complete migration 

because winds with ample assistance do not exist in the region frequently enough, 

reducing the number of completed migrations to zero. Conversely, birds departing at 

wind profits lower than -13.8 m s-1 will spend too many nights being carried away from 

their destination to complete migration before the end of the season. Risk optimization 

has little effect on the optimal selectivity range; the optimal wind profit value is 

approximately halfway between the time- and energy-optima (Figure 5.5). Those birds 

compromising between time and energy optima, therefore, will show similar departure 

wind selectivity to those optimizing exclusively for risk.  If these results are 
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generalizable, this could explain why empirical evidence for time-minimizing strategies 

(Lindstrom and Alerstam 1992), energy minimizing strategies (Dänhardt and Lindström 

2001), and compromises between the two strategies (Alerstam and Lindstrom 1990) have 

been reported, while there are no recorded species suggested to follow a purely risk-

minimizing strategy. One potential example of risk-minimization, however, has been 

reported recently in juvenile savannah sparrows, which are less selective than their adult 

counterparts (Mitchell et al. 2015).  The authors suggested that the choosiness of 

juveniles relative to adults could be an adaptation to higher predation risk in the younger 

age class. Our results would predict the same difference in selectivity under these 

conditions. 

 Our model includes a few assumptions that warrant discussion. First, our 

estimates of risk are biased high because of the way we defined migration failure. We 

consider birds to have failed if they did not reach 38o53’N latitude by Dec 1st, if they 

crossed the latitude in time but were far out to sea, or if they spent over 24 hours out to 

sea. Our definitions of failure due to excessive time or distance at sea may not imitate 

how live birds migrate over the open ocean in many circumstances. For instance, Deluca 

et al. (2015) found that four blackpolls fitted with geolocators made nonstop flights over 

the Atlantic Ocean lasting between 49 and 73 hours. Other studies in North America and 

in Europe have shown successful long distance flights over ecological barriers (Williams 

et al. 1977, Bairlein 1988), indicating the potential for long continuous flights. As 

advances in tracking technology allow for better measurements of small passerines, we 

may find that transoceanic flights are more common then we have previously thought. 

For instance, our simulations show that birds with high selectivity commonly exhibit 
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migratory paths far out to sea, even with an endogenous bearing parallel to the coast 

(Figure 5.3). Assuming that some species orient downwind under such circumstances 

(McLaren et al. 2014), considerable assistance from tailwinds could be common for 

highly selective species.  Indeed, our model assumption that birds reorient directly to 

shore (270º bearing) if they are over water after daybreak is certainly incorrect for species 

making purposeful flights over the ocean. We maintain, however, that it is a realistic 

assumption for the set of migratory songbirds for which this is not true. Further, our 

endogenous direction choice over land may have been an over-simplification. These 

bearings are based on ample empirical observations (see methods), however, and our 

inclusion of stochasticity into the direction should prevent results that would be sensitive 

to small changes in our assumed orientation. Similarly, we assumed that birds would shift 

migratory orientation to a “coastal” paradigm (225º bearing) over lands within 500 km of 

the Atlantic Ocean and the mouth of the St. Lawrence River (see Figure 5.1). However, 

we have no empirical evidence to support or deny birds perception of what constitutes the 

coast.  

Certainly migratory departure is not only governed by wind conditions but also by 

refueling rates and other environmental conditions. Probably, there is a balance between 

several endogenous and exogenous factors that together determine departure. Lietchi and 

Bruderer (1998), however, suggested that in situations with highly variable winds the 

relationship between fuel deposition rate and fuel load at departure is unreliable as a cue 

for understanding migratory strategies. The importance of wind selectivity could also be 

decreased by altitudinal adjustments, which have been shown to offset some suboptimal 

wind conditions (Stoddard et al. 1983, Gauthreaux 1991, Bruderer et al. 1995, Liechti 
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2006, Mateos-Rodriguez and Liechti 2011, Kemp et al. 2013). Further, many studies 

have found evidence that migrating birds evaluate wind conditions while climbing 

through the air column and choose altitudes based on favorable winds (Mateos-Rodriguez 

and Liechti 2011, Richardson 1978a). Shamoun-Baranes and van Gasteren (2011), 

however, found that pressure level (i.e. altitude) only had a minor effect on the proportion 

of successful trajectories in a modeling study. Additional endogenous and environmental 

factors such as these should allow for a wider range of optimal selectivity than our model 

predicts, although it is unclear exactly how important other factors may actually be.  

Despite the lack of support for some of our model assumptions and an 

understanding that reality is undoubtedly more complicated than what we have modeled 

here, we were able to mimic time and energy minimization behaviors using only variation 

in wind selectivity, lending support for the potential importance of wind selectivity as a 

significant driving force in migratory behavioral strategies. While improvements in our 

modeled endogenous direction, the behavior of birds over open water, and the inclusion 

of other factors involved in migratory departure would undoubtedly improve the 

predictions of our simulation, the results concerning the effect of selectivity on tradeoffs 

among time, energy, and risk optimization would likely be similar. Of the three 

currencies, the risk optimum is most likely to change with an improved model, as it relies 

more heavily on appropriate modeling of over-water behavior. This optimum, however, 

did not affect the range of optimal wind selectivity we report here, and if an improved 

model maintained the relative positions of the three optima, our general results would not 

change. 
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 In general, we expect birds to adapt their wind selectivity to account for total 

migration time, energy expenditure, and mortality risk during migration, yet the relative 

importance of these pressures should vary among species, regions, seasons, and phases of 

migration (Kemp et al. 2013). In our study region, birds exhibiting optimal degrees of 

wind selectivity at departure behaviorally mimic the classic optimal migratory behavioral 

strategies of time and energy minimization. Our findings indicate that wind selectivity is 

important to departure behavior and should continue to be incorporated into optimality 

migration analysis. These results should be generalizable to any species where the 

efficacy of movement is affected by currents. To expand our understanding of migratory 

behaviors more broadly, further research should combine simulations, empirical 

measurements across multiple spatial and temporal scales, and experiments that allow 

researchers to consider multiple trade-offs simultaneously. 
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CHAPTER 6: CONCLUSION 

 Optimal migration analysis has evolved tremendously since its inception by 

Alerstam and Lindstrom (1990). The use of optimality assessments is now considered an 

essential way to understand behavioral adaptation and the variability in behavioral 

strategies within and among migrating bird taxa (Alerstam 2011). The overall aim of my 

dissertation was to use novel methods to better understand behaviors utilized by autumn 

migrating birds to balance three currencies (time, energy, and risk) during stopover 

(chapters 2-4 & 5) and in flight (chapters 4 & 5). 

 Generally, studies exploring the trade-offs between the above currencies have 

been single-species analyses, using small-scale behavioral experiments or, more recently, 

the description of individual movements using GPS receivers or geolocators. These 

studies can be expensive, time-consuming, and suffer from small statistical sample sizes. 

Here I have attempted to use data that is already widely collected and therefore 

implementable in other regions. While individual behavioral and tracking studies 

continue to have wide applicability, migration monitoring banding data and associated 

habitat data is collected by hundreds of groups around the country, and very little of it is 

actually analyzed due to analytical constraints, despite the advantages in temporal and 

spatial scale this data resource presents. Moreover, migration monitoring-station data 

presents an opportunity to understand the response of the entire avian community to 

variation in geographic and environmental settings.  The biological scale presented by 

these data matches that needed by management and conservation agencies faced with the 

preservation of biodiversity at large spatial and taxonomic scales. I have attempted to 

increase our understanding of behavioral processes at this scale to inform the actions of 
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these agencies, information that is generally lacking from investigations of individual 

species. 

 With the first half of my dissertation (Chapters 2 & 3) I investigated the 

behavioral strategies utilized by the entire migratory community in regards to stopover 

habitat selection at the regional and habitat patch scale. At the regional spatial scale I 

found that the migratory community behaved similarly to predictions of both time- and 

energy- minimization strategies. Short to medium distance migrants selected stopover 

habitat based on the availability of vegetated lands. “Habitat islands” thus concentrated 

these shorter distance migrants, but the same was not true for longer distance migrants 

(i.e., time-minimizers), which should carry more fuel, make longer flights, and stop less 

often.  

 When exploring the trade-off between risk avoidance and energetic gain (Chapter 

3), I again found evidence consistent with time and energy minimization strategies.  

When selecting habitat patches on stopover, long-distance species chose patches with 

higher food resources regardless of the relative risk associated with the patch. Such time-

minimization behavior should reduce the time spent on stopover, in turn shortening total 

migratory passage time.  Short-distance migrants did not prioritize patches with food; 

instead they choose patches that lessened predation risk at a cost to migration time. 

Interestingly, my community-scale investigations found analogous results to many single-

species studies (Cimprich and Moore 1999, Moore 1994).  

 Secondly, I was interested in determining if computer-simulated data with 

simplified behavioral rules could mimic migratory bird behavioral strategies. In the 

second half of my dissertation (Chapters 4 & 5), I successfully modeled the influence of 
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wind patterns on migratory behavioral strategies. Optimal migration analysis has been 

incorporating wind into its equations for quite some time (Alerstam 2011). However, 

many of the studies, including modeling, theoretical, and empirical efforts, have taken 

place in Europe (Erni, Liechi, and Bruderer 2005, McLaren, Shamoun-Baranes, and 

Bouten 2012, McLaren et al. 2014, Erni, Liechti, and Bruderer 2003, Mateos-Rodriguez 

and Liechti 2011). Studies of the effect of wind on migration conducted in North 

America have generally been correlative studies, associating wind patterns with 

observations of birds in the air (Gauthreaux 1991, Buler and Diehl 2009).  

 Using individual-based models (IBM), I validated the ability of wind assistance to 

influence the evolution of migratory routes and stopover departure behaviors in North 

America. By modeling birds floating in the wind along the Rocky Mountain migratory 

divide, I was able to isolate the effect of wind and show that wind is in fact a strong 

candidate driver for the creation of this migratory divide. Further, my analysis indicated 

the range of wind profits that would variously minimize time spent on migration, energy 

expended in flight, and the risk of failure to complete migration. Variations in departure 

wind selectivity alone were able to simulate migratory behaviors that align with the 

classic “time-minimizer” and “energy-minimizer” strategies. 

 The work presented here demonstrates the extensive ability to test migratory 

theory using IBMs and atmospheric wind data. As I state in the discussion of chapter 5, 

migratory departure is not only governed by wind conditions but is likely modified by 

several endogenous and exogenous factors that together determine departure. In the 

future, I hope to add additional behaviors to the IBM allowing us to test other factors 

associated with migratory decisions. Specifically, I would like to create a three-
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dimensional model environment by incorporating the entire range of landbird migratory 

flight altitudes and incorporate a range of individual energetic condition (e.g., refueling 

rates and energy expended in flight).  

 For example, altitudinal adjustments in flights could dramatically alter the range 

of conditions that would be optimal for migration. Not only are birds selecting stopover 

habitat while on the ground, but they are also likely choosing atmospheric habitat while 

aloft. My efforts here have raised numerous questions about avian abilities to sense and 

adjust to changing wind patterns. What is the cost of vertical movements within the air 

column for various sized birds? Are birds constantly adjusting their altitude throughout 

the flight or is there a threshold after which adjustments become too costly? Do vertical 

adjustments differ between age groups, migratory strategies, or region? To begin to 

answer these questions, we also need to include a formula for energy expended in flight 

using wind loading and energy equations that is validated by radar and wind tunnel data. 

With both refueling rates during stopover and in-flight energy expenditures, we will be 

able to more accurately model birds ability to balance time, energy, and risk across the 

entirety of migration.  

 Eventually, my hope for the IBM is to model future migration distributions under 

various climate change scenarios.  My intention was to create something that researchers 

and land managers can use to both identify important contemporary stopover sites and to 

forecast changes in the timing and spatial distribution of migrants. The most pressing 

next step of the work I present here is to validate the model with empirical data. Radar 

data (density of birds in the air at a given location) and crowd-sourced survey data (e.g., 

“eBird”) both offer strengths and weaknesses in this regard. Radar data is the most 
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accurate; unfortunately, there is no collaboration between Canadian and US radar 

programmers that allows for systematic and comprehensive approaches to bird movement 

across the continent. Crowd-sourced data does not suffer from this weakness and covers 

the entire spatial extent of our study, but suffers from greater variation in data accuracy 

and heterogeneity in spatial grain and temporal resolution.  

 In conclusion, as the process of global change accelerates, the latest tracking 

techniques producing new information about routes, timing and habitats of migrating 

individuals that can be used to test predictions about migratory strategies, and undetected 

tradeoffs in migration become identified that optimization is an essential approach for 

understanding the ever changing field of migration. I hope that with my research I was 

able to demonstrate optimal analyses that are adaptable to the changing times, ones where 

commonly collected and novel forms of data can be used to comprehensively understand 

bird migration.  
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APPENDIX – CHAPTER 7: FALL MIGRATORY STATION  

VEGETATION MONITORING 

A.1. General Description 

 The following protocol was designed to quantify the vegetation of migration 

monitoring stations within the habitats sampled by A) mist-netting stations and B) daily 

fixed area censuses (both with an emphasis on vegetative structure and foraging 

resources). 

 The protocol consists of vegetative characterization on two time scales (weekly 

and once per season) at a small spatial scale that can be combined to assess larger spatial 

scales.  The intent of this design is to allow for the assessment of local habitat covariates 

of net capture rates and fixed-area census results, as well as to allow for the 

characterization of the overall vegetation (or habitat zones within each site) that is being 

sampled by different groups at different sites. 

 

A.2. General Design 

 We assume that the local sites are assessing bird habitat use through both mist-

netting and daily surveys in areas outside of the established net lanes (Figure A.1).  

Modifications from this protocol that still allow for comparable data among monitoring 

stations are simple if only one of these approaches are being followed at any given site.   

Likewise, if local stations have stratified effort (by habitat type or any other factor of 

interest), this protocol is easily stratified as well to allow local stations to gather pertinent 

habitat data along local categories of interest while still providing net-lane, census area, 

and site level assessments that are directly comparable across multiple stations. 
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Figure A.1. The general assumed study design of a migratory monitoring station with net 

lanes (black lines) and fixed-area census area (dotted polygon outlines).  The protocol 

allows for the two sampling methods to be stratified by any categorical treatment of 

interest (shown here in different colors, e.g. general habitat type, landscape history, land 

ownership, etc.), but this is not necessary. 

 

 We constructed the methods described largely by modifying those described in 

the Handbook of Field Methods for Monitoring Landbirds (Ralph et al. 1993), the US 

Fish and Wildlife Service’s Landbird Monitoring Protocol (Knutson et al. 2008) and the 

USFWS Protocol for the Rapid Assessment of Fruit Abundance on New England 

National Wildlife Refuges (Smith and McWilliams 2009).  Where possible, the methods 

for gathering data under this protocol have been described to match these previous 

protocols to allow for wider regional comparisons.  However, we have modified these 

protocols when: 

1. The methods from these protocols were inappropriate for censuses of populations 

in migration (the first two of the established protocols were designed to 

accompany standard breeding bird surveys), 
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2. The methods from these protocols were inappropriate for vegetative 

characterization during a time-period that includes leaf drop, 

3. The methods from these protocols included sampling at a larger scale than that 

sampled by the migration station census or banding protocols 

4. The methods from these protocols included the use of categorical indices that 

necessitated lengthy training of crews to ensure systematic application across 

technicians, crews, and sites (a feat that is difficult to maintain across multiple 

PI’s, sites, and years). 

 

A.3. Survey Placement 

 All of the surveys described below should occur in a series of belt transects that 

are 4-m wide and vary from 6 – 12 m in length (precise length can be varied by site, net 

size, or investigator interest, since all final measures will be transformed to a standard 

length – e.g. per meter – to allow for comparisons among stations).  Two transects should 

be placed parallel to each net lane (one on each side of the net at a distance of 5m from 

the net) and two of a similar size should be placed randomly within the fixed-area census 

plots (Figure A.2).  The transects that run along nets should be far enough away that the 

area disturbed by the cutting of the net lane is not being sampled.  The two transects 

within the fixed area census plot should each begin at a random point and proceed in a 

random direction, so long as the two transects do not overlap and the entire transect is 

contained within the survey area.  Flag the corners of each belt transect early in the 

season! 
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Figure A.2. Size and placement of the two belt transects (blue rectangles) for vegetative 

sampling; A) along each mist-net lane (shown in light green with black line to indicate 

net) and B) within each fixed area census plots (shown with dotted polygon outline that is 

not to scale).   

 

A.3.2. Weekly Surveys 

 The belt transects described above should be sampled at least once per week 

throughout the monitoring period (the period of bird capture or census) to assess  

- The timing and abundance of fruiting,  

- The timing and degree of leaf drop  

(a similar protocol could be followed for leaf out during spring monitoring), 

- The flux in water availability 

These factors are highly dynamic within the monitoring period, likely impact bird habitat 

use and/or the detection of individuals, and would not be categorized well by more 

infrequent surveys. 

 

A.3.2.1.  Fruiting Surveys 

 During each weekly transect visit, researchers should note the species of fruiting 

plant, the state of fruit ripeness, and the rough abundance of fruit (by plant species).  To 

assess “fruit state” for the transect, the rough percentage of fruit that falls into each of the 

following four categories should be noted: 
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1. Unripe 

2. Ripe 

3. Past Ripe (visual blight, wrinkling or drying) 

4. Bare stems (on plants that still possess fruit in some state) 

To assess fruit abundance, the number of individual fruits should be estimated for each 

species using the scale developed by Smith & McWilliams (2009)*: 

1. <10 

2. 11-25 

3. 26-100 

4. 101-250 

5. 251-1000 

6. 1001-3000 

7. 3001-10000 

8. >10000 

                                                 
* It should be noted that the original protocol developed by Smith and McWilliams (2009) for 

assessing fruiting notes the number of fruits on each individual woody plant.  Here we have 

modified this protocol to estimate fruiting abundance category for the entire transect (to minimize 

survey time) and to include herbaceous fruit (as some fall berries can be very important for 

migrating songbirds).  If individual sites want their numbers to be comparable to other FWS 

refuge fruit surveys, the numbers gathered under the standard Smith and McWilliams (2009) 

protocol can easily be summed to obtain the numbers under this protocol for woody plants as long 

as herbaceous fruiting species are still assessed for the full transect. 
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A.3.2.2. Leaf-drop Surveys 

 During each weekly visit, researchers should also assess the percentage of leaves 

in four broad categories: 

1. Green Leaves (each leaf is > 90% green) 

2. Turning/Turned Leaves (individual leaves are < 90% green and less than 50% 

brown) 

3. Brown Leaves (individual leaves are > 50% brown) 

4. Bare Stems (% of leaf drop) 

These categories should be assessed for each of three vegetative “layers” for each 

transect: 

- Tree layer (> 5 m) 

- Shrub layer (woody vegetation < 5m) 

- Herbaceous layer (non-woody vegetation) 

A.3.2.3. Soil Drainage / Water Availability 

 Each week researchers should also note whether the surface soil within a transect 

is generally: 

1. Dry 

2. Moist but not saturated (no squishing) 

3. Saturated (squishing) 

4. Standing water present in low spots 

 

7.3.3. Seasonal Surveys 

 Full transect characterizations will occur once over the season.   

Within each belt transect, the researchers will record: 
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A.3.3.1. Species abundances by vegetation layer: each veg layer’s abundance should total 

100% 

A) Abundance of each recorded species for the tree and shrub layers 

Tree layer: woody vegetation >5m 

 The diameter at breast height (dbh) of any tree with a circumference of  

>22cm  

Shrub layer: woody vegetation <5m, this includes saplings and low woody 

vegetation such as blueberries. 

B)  Abundance of each group/category for the herbaceous and ground cover layers 

Herbaceous: non-woody vegetation (ferns, forbs, grasses/sedges/rushes). 

Exception: even though they are woody, blackberry and raspberry vines are 

considered herbaceous because structurally they are more similar to forbs than 

shrubs.    

C)  Abundance of ground cover (bare ground, mosses, forest litter, woody debris, 

lichens, rocks) 

 When the herbaceous layer is too thick to get a good view of the ground 

cover, push the vegetation aside in ten places as you move down the 

transect and use those ten looks to scale to percentages.  

A.3.3.2. Presence of a district layer 

 The presence or absence of a “distinct” vegetative layer in each of the tree, shrub,  

herbaceous, or ground (only moss or lichen) zones.  The layer should only be counted if it 

is continuous enough so an appropriately sized squirrel/monkey/wood nymph could move 

through the layer without touching the ground. 
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A.3.3.3. Percent cover of each vegetation layer 

Record the % cover of each vegetation layer over the entire belt transect   

 Percent cover can total more than 100% 

A.3.3.4. Stem Count  

Held at 0.5m above the ground, spread a meter tape down the center of each the 

transect 

Along the tape: 

A)  Count the number of woody stems touching the meter stick at the first 30 cm of 

every other meter beginning at meter 1 

B)  Measure the “modal” height (height if you had to indicate a single height or 

average height) at a 0.5m circumference at every third meter interval (i.e. 0, 3, 6, 9, 

and 12m)   

AND 

C)  Max height of each vegetation layer (tree, shrub, and herbaceous), at a 0.5m 

circumference at every third meter interval (i.e. 0, 3, 6, 9, and 12m)   

D)  Repeat the stem count with the meter tape held 1.5 m above the ground. 
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A.3.4. Naming Convention 

Transect ID 

Net lanes 

Site_Net#_A or B 

The north OR west side of the net, depending of which way the net is running, is side A. 

The south OR east side is the side B. 
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