Skip Navigation

Biology & Biomedical Sciences - Going Viral

Carol Kim

Professor Carol Kim, center, discusses details of a groundbreaking virus study in zebrafish with students Walter Mowel, Kristin Gabor and Bradie Manion.


The questions come in rapid succession, like machine gunfire, sharp, fast, relentless:

“You can see the bacteria?”

“Do you want to say the quality value of biofilm formation?”

“Why would isolating them give you a different value?”

“Are there any other explanations?”

“How do you have 1.8 fish?”

Things can get pretty intense in the hallway outside Carol Kim’s microbiology lab in Hitchner Hall at the University of Maine. For the casual observer — especially one without a science background — the barrage of questions is overwhelming, like listening to an auctioneer calling in a foreign language.

But the three undergraduates standing there explaining their senior research projects, pointing to printouts of data and microscopic images of zebrafish taped to the walls, are completely unfazed. They answer Kim’s questions almost as quickly as she asks them. When she challenges them, they challenge back. They are confident. Eloquent. They know their stuff.

Which is exactly the way Kim, a professor of biochemistry, microbiology and molecular biology who directs UMaine’s Graduate School of Biomedical Sciences, likes it.

“I want to set up an environment where students feel comfortable and nurtured,” Kim says. “They have to know I’m going to ask tough questions and they have to be prepared. It’s going to be a lot nicer for me to ask them than to have them present in front of five professors cold. If I can be tough on them and they can answer the questions, they’ll have confidence.”

She wants to maintain rigorous and demanding standards, without the fear factor that can sometimes overwhelm students during their training in the sciences.

Kim is emblematic of a major push on campus to involve undergrads in research, and scenes like the one outside her lab play out across campus every day, especially in the weeks leading up to graduation. At UMaine, hundreds of science, humanities and engineering majors are involved in research, and close collaborations with faculty members are common.

Increasingly, UMaine has become a destination for top students interested in pre-med and biomedical studies, in large part because of the mentoring and rigorous preparation that Kim and her colleagues provide. As a result, many undergraduates are working at a graduate level long before they earn their bachelor’s degree. Like the students in the hall, they know the answers. But more important, they know which questions to ask.

hat curiosity is what drives Kim’s own career, both as an educator and a researcher. And the students who cross paths with her during their time at UMaine have a strong, demanding role model.

Kim has been fascinated by the craftiness of viruses — their resourcefulness and resilience — since grade school. But she’s equally crafty. And her research has moved the entire field of virology forward.

She conducts disease studies with zebrafish, a model organism, to better understand the human innate immune response to infection. She’s the driving force behind UMaine’s Zebrafish Facility, and since she arrived at UMaine in 1998, Kim has received continuous funding for her zebrafish research — more than $4 million in federal grants, primarily from the National Institutes of Health. Among her landmark discoveries is a zebrafish gene that produces interferon, which can inhibit the growth of a virus. She and colleague Rob Wheeler recently received a $60,000 NASA planning grant to study the effects of radiation on innate immune response and the progression of cancer.
“I love doing the brainstorming, working with a student to figure out the best question to ask.” – Carol Kim

Her current research focus provides a better understanding of how bacteria infect and cause inflammation in cystic fibrosis patients. Kim’s studies shed light on the connection between the cystic fibrosis transmembrane conductance regulator, or CFTR, and the innate immune response. That connection may someday be used as the basis for therapeutics that combat bacterial infections in cystic fibrosis.

“Clinical researchers are trying to develop therapeutics for the immediate needs of these patients, and as a result, we’ve seen significant increases in their quality of life. We’re on the other end, with basic research, trying to figure out what’s happening at the molecular and cellular level with the hope of developing those therapies. This project will be ongoing until CF is completely cured, until it’s no longer a problem. It’s going to take a while.”
Another recent collaboration with UMaine physicist Sam Hess and GSBS student Kristin Gabor focuses on immune response to viral infection — not necessarily in CF patients. By using super-resolution microscopy, the researchers are the first ever to view the single-molecule cellular interactions involving antiviral signaling in caveolae, which are flask-like invaginations in the cell membrane. While previous research has shown that viruses exploit caveolae to enter host cells, Kim took it a step further by demonstrating that viruses can evade host cell defenses by disrupting clusters of signaling molecules within the caveolae. Through a combination of fluorescent tagging and super-resolution imaging of viruses and zebrafish cells, Hess’ FPALM (Fluorescence Photoactivation Localization Microscopy) system has allowed Kim and her team to see how individual molecules and clusters move during a viral infection.

“No one has ever really looked at this,” Kim says. “No one has been able to see it the way we’ve been able to see it.”

To the uninitiated, these may seem like disparate projects, but they all have two things in common: zebrafish and the innate immune response, the body’s first line of defense against infection. Innate immunity deals with how the body reacts immediately after it comes into contact with a pathogen. This happens daily, almost constantly, and it’s why healthy people don’t get sick every time they encounter a new pathogen. It’s why your skin swells when you get a splinter or a paper cut. This is not to be confused with adaptive immunity, which is acquired through vaccination or prior infection. Zebrafish are the ideal model for this research for several reasons, including the fact that they develop rapidly and their embryos are clear, allowing researchers to see the infection as it happens.

Innate immunity is pivotal to understanding how the body defends itself against infection, how viruses and bacteria adapt to the body’s defenses, and how more effective treatments might be developed.

Even one of these accomplishments would be noteworthy. Together, they’re huge. But when asked if there is a single moment that has defined her time at UMaine, she doesn’t miss a beat.

“Every year, when students in our department get into the top graduate schools, the top medical schools, the top dental schools, when they get great jobs it makes me think, ‘Wow, that’s why we’re here.’ UMaine is only the first step, but we hope we had an impact on their lives. We’re very proud of our students”

Working in Kim’s lab has been the highlight of Walter Mowel’s four years at UMaine. Mowel is a Biology major and Pre-Med student from Montpelier, Vt., whose scientific interest lies in infectious diseases. He spent his final semester researching a virus that hasn’t been studied in zebrafish before. And when he stood up for Kim’s hallway inquisition, his enthusiasm for the project outweighed any fear.

“Before this, I spent a lot of time working on an experiment that didn’t work out, but with this project, I was able to get a lot of data that has me really excited,” Mowel says. “It’s so much fun to essentially look at something for the first time. A lot of times, when you set out to conduct a study, you’ll go to a scientific journal or you’ll go online to see what other scientists have done, but in this case, we couldn’t. We’re basically finding something new and that’s been outstanding.”

Aaron Perreault, a Biochemistry major and Honors student from Northfield, N.H., spent his junior and senior years in Kim’s lab studying Pseudomonas aeruginosa, a bacterium that regularly infects cystic fibrosis patients — one of many pathogens that the innate immune response normally quells.

“When children with cystic fibrosis are younger, they get infections with pathogens that make sense, such as Haemophilius influenzae, staph infections, more common lung pathogens. But by the time they’re in their teens, patients all have Pseudomonas infections, which are very rare in healthy individuals,” Kim says. “Why Pseudomonas rather than a more common respiratory pathogen?”

The answer to that question may someday be used to create therapeutics, and Perreault, one of five UMaine students to gain admission to Tufts University School of Medicine as a sophomore through the Tufts Maine Track Early Assurance program since 2009, may someday prescribe those therapeutics.

Though Perreault admits that the biggest lesson he’s learned is that his lab skills aren’t particularly strong, the experience has also taught him the value of analytical thinking and keeping an open mind. His work in Kim’s lab was the basis for his Honors thesis, and in the weeks leading up to his defense, he was no stranger to Kim’s hallway inquisitions.

“It can be intimidating at first, but once you figure out that she’s grilling you to make you a better student, it makes you work harder,” Perreault says.

Kim will do whatever it takes to instill confidence in her students. Sometimes that means an informal inquisition like the one in the hall. Other times, it means meeting on nights or weekends to make sure that her students are prepared to consider every angle when defending their theses or dissertations. And sometimes, it just means handing over the reins.

When Steve Altman was at UMaine — he earned a bachelor’s in microbiology in 2002 and a master’s in molecular biology in 2003 — he worked on basic immunology in zebrafish. Kim gave him a lot of wiggle room with his experiments, but she also challenged him to try things that might be outside his comfort level, and that continues to influence the way he does science.

“Some of my friends worked in labs where the principal investigator told them what to do,” recalls Altman, who now conducts Alzheimer’s research for Amgen in Cambridge, Mass. “With Carol, it was a little bit more open-ended. She gave me guidance, but she also allowed me to make decisions on my own. That stuck with me.”

Inspiring the next generation of doctors and researchers is what gets Kim out of bed in the morning. She wants them to get jazzed about how crafty bacteria and viruses are. She wants them to experience the thrill of seeing something for the first time. And the best way to do that is through research.

“I love doing the brainstorming, working with a student to figure out the best question to ask,” Kim says. “Seeing them come in to check on their fish, to see what their results are, that’s exciting to me.”


Back to Biology & Biomedical Sciences