## 10 Cities Project Water Quality Results

Pamela J. Bryer, PhD Pesticides Toxicologis Maine Board of Pesticicides Controt

SURFACE WATER \& SEDIMENT
TESTINGCONDUCTED IN 2019
FOR 10 CITIES IN MAINE

## Who am I? Where do I come from?

- Pesticides Toxicologist at Board of Pesticides Control at the Department of Agriculture, Conservation, \& Forestry
- Public policy Board of Pesticides Control Governor appointed/ Legislature confirmed



## 10 Cities project history

- March 2019 proposed 10 Cities Water Quality Project to the BPC public policy board


## The objectives of this study are to:

Assess the occurrence of pesticides in surface water and sediment in urban waters along a population gradient of the 10 largest Maine cities.

- Establish the feasibility of implementing passive sampling techniques for future BPC water quality sampling by comparing passive sampling results to our traditional grab samples.
- Establish a baseline for future trend studies of pesticide contamination in urban waters of Maine's ten largest cities.


## Project history

- March 2019 proposed 10 Cities Water Quality Project to the BPC public policy board


## The objectives of this study are to:

- Assess the occurrence of pesticides in surface water and sediment in urban waters along a population gradient of the 10 largest Maine cities.
Establish the feasibility of implementing passive sampling techniques for future BPC water quality sampling by comparing passive sampling results to our traditional grab samples.
- Establish a baseline for future trend studies of pesticide contamination in urban waters of Maine's ten largest cities.


## Project history

- March 2019 proposed 10 Cities Water Quality Project to the BPC public policy board

The objectives of this study are to:

- Assess the occurrence of pesticides in surface water and sediment in urban waters along a population gradient of the 10 largest Maine cities.
- Establish the feasibility of implementing passive sampling techniques for future BPC water quality sampling by comparing passive sampling results to our traditional grab samples.
[. Establish a baseline for future trend studies of pesticide contamination in urban waters of Maine's ten largest cities.


## Sampling activities Summer 2019



Selected cities are marked with an ' $X$ ' in a circle on the map above.

| Population Centers* | Waterbody | Population $\dagger$ |
| :---: | :---: | :---: |
| Portland / South Portland | Fore River | 91,196 |
| Lewiston-Auburn (Durham) | Androscoggin River | 59,647 |
| Bangor / Brewer / Orono (Hampden) | Penobscot River | 42,521 |
| Biddeford / Saco | Saco River | 39,759 |
| Sanford | Mousam River | 20,798 |
| Augusta | Kennebec River | 19,136 |
| Waterville (Sidney) | Kennebec River | 15,722 |
| Presque Isle | Aroostook River | 9,692 |
| Ellsworth | Union River | 7,760 |
| Farmington | Sandy River | 7,741 |

## At each city:

- Grab samples
- Passive sampler



## A quick detour:

What is a passive sampler?
Leave in place for 3-4 weeks

adey plastic
In an expensive metal housing

## At each city:

- Grab samples
- Passive sampler

provides concentrations


## At each city:

- Grab samples
- Passive sampler

only captures snapshot in time

doesn't give concentrations*


## At each city:

- Grab samples
- Passive sampler


5- water grab samples
1 - sediment sample

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grabs sample res Detections = Number of times a pesticide is detected added up overall the samples

Number of Detections by Population


Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results

Number of Detections by Population




## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

## Grab sample results



Figure 2. Number of analyte detections in surface water grab samples across the range of population centers. Bars represent the number of
residents. Circles represent the number of times all of the
samples from a city detected a pesticide. Five samples were taken at each city location. The gray circle represents the Ellsworth totals with a grab sample removed, see text for discussion.

Larger population $\neq$ More detections

## Grab sample results

One sample high concentration of concern:
Imidacloprid found in eight out of ten locations

- Biddeford 0.11 ppb
- EPA Aquatic Life Benchmark 0.01 ppb


Passive sampling (POCIS) results


## Passive sampling

Number of unique pesticides $=$ answers the question, "how many types of pesticide active ingredients in the sample?"


## Passive sampling (POCIS) results



Figure 3. Number of unique pesticide products identified in surface water by passive sampling across the range of population centers. Bars represent the number of residents.
Orange circles represent the number of different types of pesticides present. One POCIS sampler was used in each city, where it was deployed for one month.

Larger population $=$ More detections

## Sediment results

|  | Reporting |  |  | Lewiston- |  |  |  | Presque |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Reporting <br> Limit ( $\mathrm{ng} / \mathrm{g}$ ) | Augusta | Bangor | Biddeford | Elsworth | Farmington | LewistonAuburn | Portland | Presque Isle | Sanford | Waterville |
| Percent TOC |  | 0.73 | 3.58 | 0.31 | 3.93 | 0.25 | 0.09 | 1 | 0.85 | 5.23 | 0.53 |
| Allethrin | 0.20 |  |  |  |  |  |  |  |  |  |  |
| Bifenthrin | 0.045 | 1.3 | 0.91 | 0.46 | 0.67 |  | 0.058 | 0.23 | 0.059 |  | 0.084 |
| Bifenthrin $\mathrm{ng} / \mathrm{g}$-OC | 178.1 |  | 25.4 | 148.4 | 17.0 |  | 64.4 | 23.0 | 6.9 |  | 15.8 |
| Cyfluthrin | 0.20 |  |  |  |  |  |  |  |  |  |  |
|  | Fenpropathrin |  |  |  |  |  |  |  |  |  |  |
|  | Fenvalerate 0 |  |  |  |  |  |  |  |  |  |  |
|  | cis-Permethrin |  |  |  |  |  |  |  |  |  |  |
|  | trans-Permthrin |  |  |  |  |  |  |  |  |  |  |
|  | Phenothrin |  |  |  |  |  |  |  |  |  |  |
|  | Piperonylbutoxide $\quad 2$ |  |  |  |  |  |  |  |  |  |  |
|  | Pralleth | in 0.20 |  |  |  |  |  |  |  |  |  |
|  | Resmethrin |  |  |  |  |  |  |  |  |  |  |
|  | Tetramethrin 0 |  |  |  |  |  |  |  |  |  |  |

## Sediment results




## Results summary

- No glyphosate
- Both methods helpful \& work well together
- Sediments contained only bifenthrin*
- All locations contained pesticides (range 8 to 18) (out of 77 pesticides +25 degradates)
- Variety of pesticides increases with population
- Out of 6,300 tests, two samples present over threshold values (bifenthrin \& imidacloprid)




## Thank you for your attention!

Pam Bryer

Pamela.j.bryer@maine.gov

