Biogeochemical shifts and zooplankton responses in northeastern lakes: The success of acid recovery, complexity of biological recovery, and value of long-term monitoring

> S. Dykema^{1,2}, S.J. Nelson^{2,3*}, R. Hovel⁴, J.E. Saros², I.J. Fernandez², K.E. Webster⁵

¹ Alder Environmental, ² The University of Maine, ³ Appalachian Mountain Club, ⁴ University of Maine at Farmington, ⁵ Michigan State University

presenting

1985

	0.4
Sites not pictured:	
Alberta 32	0.7 mg/L
Alaska 01	0.1 mg/L
Alaska 03	0.1 mg/L
Alaska 96	0.1 mg/L
Alaska 97	0.3 mg/L
British Columbia 22	1.2 mg/L
British Columbia 24	0.2 mg/L
Saskatchewan 20	0.6 mg/L
Saskatchewan 31	0.5 mg/L

0.2 •0.1

0.2.

2020

0.3

Puerto Rico 20 0.8 mg/L Virgin Islands 01 0.7 mg/L

0.9

N ••

0.5

0.4 .0.5

0.3

0.3

 \downarrow 94% (S emissions, since 1995)

 \downarrow 71% (SO₄ deposition, since 2000-02)

0.7

0.5.0.

•0.5

•0.5

0.6-

0.5.

0.4

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

1995

2005

2015

N ••

Sulfate as SO42-

(mg/L)≥ 2.5 2.0

> 1.5 1.0

> 0.5

0

US EPA – TIME lakes in NY and New England

EPA monitoring programs have documented reductions in sulfate in Northeastern lakes

Declining SO_4^{2-} in lakes in New England and the Adirondack region (Strock et al., 2014, Rosfjord 2005)

SO4

Dykema et al. 2023

Salting our freshwater lakes

Hilary A. Dugan^{a,b,1}, Sarah L. Bartlett^c, Samantha M. Burke^d, Jonathan P. Doubek^e, Flora E. Krivak-Tetley^f,

Nicho

Derek

^aCenter Freshwa Canada

Canada Historical Changes in Lake Ice-Out Dates as Indicators of Climate Change in New England, 1850-2000

Changes in v supplies and is studying t Maine and N munity, and t

Water Resources Research

RESEARCH ARTICLE

10.1029/2017WR020963

Special Section:

JSGS

science for a changing world

Responses to Environmental Change in Aquatic Mountain Ecosystems

.....

Acidification and Climate Linkages to Increased Dissolved Organic Carbon in High-Elevation Lakes

A. L. Gavin¹ ⁽¹⁾, S. J. Nelson^{1,2} ⁽¹⁾, A. J. Klemmer^{1,3}, I. J. Fernandez^{2,4}, K. E. Strock⁵ ⁽¹⁾, and W. H. McDowell⁶ ⁽²⁾

¹Ecology and Environmental Sciences, University of Maine, Orono, ME, USA, ²School of Forest Resources, University of Maine, Orono, ME, USA, ³School of Biology and Ecology, University of Maine, Orono, ME, USA, ⁴Climate Change Institute, University of Maine, Orono, ME, USA, ⁵Environmental Science Department, Dickinson College, Carlisle, PA, USA,

ELS Lakes: Anthropogenic sources of salt complicates regional patterns of recovery from acidification

Anthropogenic sources of salt complicates regional patterns of recovery from acidification

- Cation exchange in soil releases Ca + Mg to lakes
- Ca + Mg base cations buffer acidity

What about zooplankton?

Zooplankton communities shift in response to acid recovery

Holt & Yan, 2003

2000

Cladoceran species have high Calcium requirements

 Vertical zooplankton tows from 143 lakes in the Northeast in 1986 and 2004

• Abundance counts and body length estimates

Questions:

- Did zooplankton body size increase?
 - Were increases driven by biogeochemistry?

Body size ~ ANC, pH, DOC, Ca + Mg, Cl, SO₄²⁻

Questions:

- Was community composition driven by variability in water chemistry?
 - NMDS
 - ANOSIM
 - Mantel
 - Indicator species test

Geochemistry shifted between 1986 and 2004 (p < 0.001)

Did zooplankton body size increase?

Average body lengths **increased** significantly from between 1986 and 2004 (p<0.001)

Were increases driven by biogeochemistry?

Variability in **Ca + Mg** explains variability in **Daphnia spp.** (p<0.1) in salt affected lakes

Larger bodied Daphnia species have higher Ca requirements than smaller bodied Daphnia

Calcium content of zooplankton species

Was community composition driven by variability in water chemistry?

Ca drives variation in community and *Daphnia* are associated with high Ca sites

Was community composition driven by variability in water chemistry?

Significance tests implicate **SO**₄²⁻ and **ANC class** as most important drivers of community variability (p< 0.001)

- Moderate: 25-100 µeq/L
- Low: < 25 µeq/L

- Reduced acidity, increasing Ca elicited changes in the zooplankton community
 - Zooplankton size increased overall; Daphnia size increased with calcium
 - Lake acidity affected zooplankton community structure in 2004 cross-lake comparison
- Biological recovery from acidification is confounded by other biogeochemical change
 - Chloride and calcium increased in lakes near roads and development
 - Novel climate, land use, and chemistry preclude return to pre-acidification status

Acknowledgements

- Catherine Rosfjord & the ELS-III field crew
- University of Maine Sawyer Water Research Lab & Mitchell Center Labs
- D. Anderson (UMaine), S. Capone (ALSC), J. Haney (UNH), R. Stemberger (Dartmouth)

Funding:

- U.S. EPA LTM Network*
- ELS- II resampling in 2004: USDA NSRC project #03-CA-11242343-111 to Kahl et al.
- University of Maine, MAFES (ME41507 and ME084767-02)
- UMaine Graduate Student Government Grants Program

Publication:

 Dykema et al. 2023 <u>https://www.sciencedirect.com/science/article/abs/pii/S1352231022005799</u>

> Images of Zooplankton: <u>https://ian.umces.edu/media-library/daphnia-pulex-water-flea/</u> <u>https://ian.umces.edu/media-library/acartia-spp-copepod/</u> <u>http://cfb.unh.edu/cfbkey/html/index.html</u>

* funded by EPA ORD to J.S. Kahl, W. McDowell, S.J. Nelson, K.E. Webster; and EPA CAMD to W.H. McDowell, J.S. Kahl, S.J. Nelson (IAG 06HQGR0143), processed through Grant/Cooperative Agreement G11AP20128 from the United States Geological Survey. The authors are solely accountable for the contents which do not necessarily represent the official opinions of USGS.

