

The distribution of toxic *Dolichospermum* strains across Maine

Robin Sleith and Pete Countway

Maine-eDNA

- Molecule to Ecosystem: Environmental DNA as a Nexus of Coastal Ecosystem Sustainability for Maine
- A \$20 million NSF EPSCoR Research Infrastructure Improvement Track-1 Award

Overview

- Toxin biosynthesis
- Toxic and non-toxic strains
- ddPCR of microcystin biosynthesis genes
- The road ahead

Microcystin biosynthesis

Rastogi et al. 2015

Microcystin Biosynthesis

Dreher et al. 2021

Damariscotta Lake *Dolichospermum* lack microcystin biosynthesis pathway

Toxin genes as sentinels of change

- Primers and probes target key biosynthesis gene (e.g. *mcyE*)
- qPCR, ddPCR, RT-qPCR techniques track gene or transcript abundance over time

Toxin genes as sentinels of change

- To link gene abundance to toxicity can be a challenge
 - Frequent sampling
 - Likely different lag times and patterns based on local conditions
- Toxin gene presence/abundance nevertheless an important piece of the HABS puzzle
- Species level resolution important as mitigation strategies are often species specific!

Maine *mcyE* gene abundances

- 50 samples (triplicate filters) from lakes across Maine provided by Linda Bacon
- Qiagen PowerWater extractions
- Duplex ddPCR targeting *mcyE* in *Microcystis* and *Anabaena/Dolichospermum* (ADA2) from Ngwa et al. (2013)

ADA-2 mcyE

Microcystis mcyE

Conclusions and next steps

- Toxic ADA-2 distribution extremely limited, why?
- Toxic *Microcystis* widespread, is toxicity widespread, Linda?
- What controls the distributions of toxic genotypes?

Acknowledgements

Pete Countway

Supported by the National Science Foundation under Grant