Using eDNA tools to investigate a mysterious algae bloom: An update on Highland (Duck) Lake

Sharon Mann^{1,2}, Karen Wilson¹, Robin Sleith², and Peter Countway²

¹University of Southern Maine, ²Bigelow Laboratory for Ocean Sciences

- Highly developed area
- Previously listed (1998-2010) as impaired by Maine-DEP due to deteriorating trophic state
- Active Lake Association water quality team
- Experienced an unusual nuisance bloom, coinciding with the first 4 years of high numbers of spawning anadromous alewife

Highland (Duck) Pond

Highland Lake experienced extended algae blooms from 2014-2017

Bloom years 2014 - 2017

Persisted for up to 3 weeks, late July in to Aug.

Secchi depth < 2.5

Source: Highland Lake Association (K. Williams); data from HLA, Maine DEP, USM

Cause(s) of algae bloom?

Excess nutrients?

Unusual phytoplankton species?

Trophic cascade triggered by consumption of herbivorous zooplankton by alewife? Unlikely: TP levels lower than those associated with nuisance blooms

Preliminary observations suggested that the bloom was caused by a picocyanobacteria -Today's talk!

Coming soon!

Sharon's Dissertation Structure

Part I. Four comparative studies involving eight Maine lakes that differ in base nutrients and anadromous alewife *(Alosa pseudoharengus)* density

Part II. A focused study characterizing the bloom forming taxa in Highland Lake

Why is this work needed?

•••

L.G.B.

- Pico eukaryotes and pico cyanobacteria have different effects on ecosystems (cyanobacteria such as *Cyanobium spp.* can produce toxins)
 Why use eDNA?
 - Unable to identify the taxa responsible for decreasing water transparency using microscopy

Alcaraz & Calbet (2003)

Pico and nano phytoplankton are difficult to identify

Genetic material obtained directly from environmental samples without any obvious signs of the biological source material (Thomsen and Willerslev, 2015)

Where does eDNA come from?

- Cellular decomposition
- Whole shed cells
- Whole microorganisms

Where is eDNA found?

- Water
- Soils
- Air

How is eDNA used?

- Community characterization (metabarcoding)
- Targeted detection & quantification (qPCR)

What is environmental DNA?

Using a two-tiered approach with eDNA tools

eDNA

Rhexinema (genus of green algae) One cell \leq 10 µ m

AINE

Cyanobium (genus of cyanobacteria) One cell $\leq 2 \mu$ m

- Design qPCR assays
- Quantify cells volume in epilimnetic water samples

Metabarcoding revealed two cryptic phytoplankton taxa

Secchi (m) &

Chlorophyll (µg/L)

Next Steps

3 meter Secchi Highland Lake 8/3/2022

- Culture Rhexinema
- Sequence the culture's DNA
- Send culture isolates to a taxonomist

Thank you, Please send additional questions to: <u>sharon.mann@maine.edu</u> <u>karen.wilson@maine.edu</u> <u>rsleith@bigelow.org</u>

