Alternative Treatment for a Chronic Disease of Small Ruminants, Caseous Lymphadenitis (CL)

Anne Lichtenwalner1,2, Ann Bryant1, Cassie Miller1 (presenting author), Sarah Paluso1

1School of Food and Agriculture and 2Cooperative Extension, University of Maine, Orono ME 04469
What is CL and Why is it a Problem?

- CL is caused by the bacterium *Corynebacterium pseudotuberculosis* (C.psTB)
- Symptoms: dry, heavily encapsulated abscesses of the lymph nodes and internal organs (Baird and Fontaine, 2007)
- Very contagious among small ruminants (sheep and goats)
 - Rarely a zoonotic disease (BSL 2 organism)
 - Spread by direct inoculation or via respiratory route (abscesses in the lungs)
- Treatment of CL is difficult (Minozzi et al, 2017)
 - Common methods are not effective in the long term
 - Medications are very limited
- Sheep industry of Maine worth $10.1 million in 2017 (Lichtenwalner, 2013)
- 20% production losses in 2014 due to 43% of farms testing positive for CL (Lichtenwalner, 2013)
The Causative Organism

- Gram positive short rod
- Facultative intracellular parasite (Oreiby, 2014)
 - Can live within macrophages for up to 48 hours
- Contains multiple virulence factors (Baird and Fontaine, 2007)
 - Mycolic acid coat
 - Increases life span in the environment
 - Provides protection from host immune system
 - Phospholipase D
 - Increases vascular permeability of the host when released

Diagnosis

• External abscesses
 – Culture and do phenotypic identification
 • Gram stain, API, Biolog
 • MALDI-TOF (UNH)
 – Genomic identification

• Immune response of the animal: antibodies to Phospholipase D of C. psTB
 – Immune responses vary among animals
 – ELISA (several in use)
 – Synergistic Hemolysis Inhibition assay (UM)

• Absence of external abscesses makes diagnosis very difficult (Oreiby, 2014)

https://www.pinterest.com/pin/723109283892513011/
Internal Abscesses

A: Goat liver
B: Lung with abscess
C: Ribcage with pleural adhesions from abscess rupture

Photo by Lichtenwalner/UMaine
Treatment

- Surgical removal or draining and cleaning of abscesses
 - Temporary solution
- Antibiotics
 - Not typically strong enough to penetrate thick-walled abscesses
 - Come with many limitations/restrictions:
 FDA VFD – veterinary feed directive (FDA, 2015)
- Culling
 - Economic losses
- Injection of abscesses with formalin
 - Makes carcass unsuitable for human consumption (Washburn et al, 2009)
- **Ridding the environment of the bacteria**
 - **Up to 6 month life span in the environment** (Baird and Fontaine, 2007)
Recent studies of EOs as antimicrobial agents
 - Rosemary EO (REO) in particular

REO
 - Gram positive and negative bacteria, fungi (Swamy et al, 2016)
 - Meat preservation (Jiang et al, 2011; Moreno et al, 2009)

Antimicrobial mechanism
 - EOs in general contain monoterpenes compounds (carvacrol, thymol) (Mehdi et al, 2018)
 - Hydrophobic molecules that alter the cell membrane
 - Cause leakage of cellular materials such as ATP, ions, nucleic acids

Hypothesis: REO can prevent the growth of *C. psTB in vitro*
Methods 1: Culturing *C.psTB*

- **Challenges:**
 - BSL 2
 - Sticky surface of *C. psTB* colonies
- **Preliminary trials:**
 - Plate culture
 - Brain Heart Infusion (BHI) broth culture
- **Final method:**
 - Used cultures that were either ATCC or clinical isolates identified by MALDI-TOF
 - Grown in BHI broth on shaker for 48 hours, then treatments added and incubated for additional 72 hours
- **Gram stain** – confirmation of growth of *C. psTB*
Methods 2: REO Treatment

- Challenges:
 - REO causes hemolysis of blood agar plates (BAP)
 - REO is insoluble in water
- Preliminary trials:
 - Shifted to BHI broth culture
 - Added 1:1 Tween to REO and diluted mixture in BHI broth

Photo: Bryant/UMaine
Methods 3: Study Design

- Multiple controls
 - Blank (BHI broth only)
 - Tween in BHI broth
 - Tween:REO (1:1 v:v) in BHI broth
 - C. psTB in BHI broth
 - C. psTB with Tween in BHI broth

- Treatment groups
 - C. psTB with Tween:REO (1:1) in BHI broth
 - C. psTB with Tetracycline in BHI broth

Photo: Lichtenwalner/UMaine
Methods 3: Study Design

- Triplicate broth tubes of each treatment/control:
 - 21 total tubes
 - Experiment run twice
- Tubes with C. psTB incubated on a shaker at 37ºC in air for 48 hours:
 - Treatments or controls added and incubated additional 72 hours
 - At 120 hours, spectrophotometer reading at 600 NM
- Plated onto BAP and incubated in 20% CO2 at 37ºC for 48 hours
- After 48 hours, colonies gram stained for confirmation of C. psTB
- Spectrophotometer values compared using ANOVA followed by Tukey’s
Results – Controls

Graph 1: Average broth spectrophotometer readings after 72 hours

Control Groups

% Transmittance (mean ± SD: n=3)

- BHI
- BHI w/ Tween
- BHI w/ Tween & REO
- BHI w/ C. psTB
- BHI w/ C. psTB & Tween

Graph legend:

A: No significant difference
B: Difference significant at p < 0.05
C: Difference significant at p < 0.01
Results – Controls and Treatments

Graph 2: Average broth spectrophotometer readings after 72 hours

% Transmittance (mean ± SD: n=3)

Control and Treatment Groups
Results – Treatments

Graph 2: Average broth spectrophotometer readings after 72 hours

% Transmittance (mean ± SD: n=3)

Control and Treatment Groups

- BHI
- BHI w/ Tween
- BHI w/ Tween & REO
- BHI w/ C. psTB
- BHI w/ C. psTB & Tween
- BHI w/ C. psTB, Tween, & REO
- BHI w/ C. psTB, Tween, & tetracycline
Results – Plate Observations

- Cultures containing REO and tetracycline demonstrated no growth (tubes 1-9 and 16-21)
- Cultures containing no treatment or just tween demonstrated growth
 - White, pinpoint colonies consistent with C. psTB

Photo: Bryant/UMaine
Conclusions

• Tween enhances *C. psTB* growth *in vitro*.
 – Detergent activity prevents colony clumping?
• Rosemary essential oil hemolyzes RBCs *in vitro*.
 – Will it be safe for *in vivo* use?
• Rosemary essential oil prevented the growth of *C. psTB* in BHI broth and on blood agar plates.
 – Antimicrobial action or competitive exclusion?
• Rosemary essential oil may be effective against *C. psTB* on inanimate surfaces.
 – Wooden feeders common on farms; splinters act to inject *C. psTB* into animals
 – REO may penetrate wood and kill *C. psTB*
Future Directions

- Experiment with other solvents vs. Tween for *C. psTB*
- Evaluate other alternative treatments / disinfectants for *C. psTB*
- Investigate the mechanism of action of Rosemary EO
 - Destruction of essential nutritional components for *C. psTB*?
 - Direct bactericidal activity?
- Pinpoint the best method of administration
 - Environment vs. animal (oral, topical)
 - Treatment vs. prevention
 - Combination with other methods?

Photo: Lichtenwalner/UMaine
Future Directions

- Cassie Miller Future Direction: vet school in Tennessee!

Acknowledgements

• SARE
• University of Maine School of Food and Agriculture
• Maine Agricultural and Forest Experiment Station
References

