

How much risk is too much?

Geographic and economic analysis to support local decisions about flood resilience in a Downeast Community

Tora Johnson David Cisneros GIS Director/ Assoc. Professor GIS Graduate Intern Andrew Howland

GIS Aide

University of Maine at Machias

tjohnson@maine.edu

View this slideshow at http://bit(20ac)ias Signation

BAKER DESIGN CONSULTANTS Civil, Marine, & Structural Engineering

Elements of Dignity (Hicks, 2011)

- Acceptance of Identity
- Inclusion
- Safety
- Acknowledgment
- Recognition

- Fairness
- Benefit of the Doubt
- Understanding
- Independence
- Accountability

"In this insightful, wise, and practical book ... Domm Hicks explains why dignity is so important and what we can do about it. Highly recommended!." —William Ury, co-author of *Geeting* to Yee and author of *The Third Side*

Dignity

Its Essential Role in Resolving Conflict Donna Hicks, Ph.D.

With a Foreword by Archbishop Desmond Tutu

Best Practices for Supporting Decisions

Align Scales of Action, Information, & Feedback

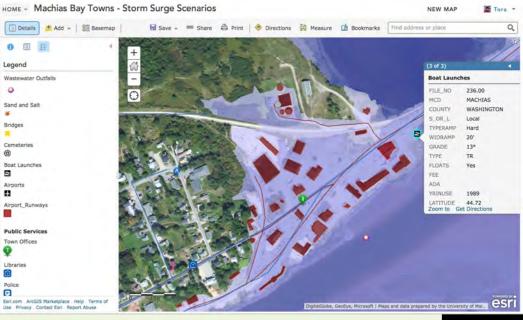
(Wilbanks & Kates, 2010; Cash et al., 2006; Ostrom 1990)

Identify & Focus on Local Vulnerabilities & Priorities

(Hales, D. et al., 2014; Dunlap, 2010; Molnar 2010)

Support Co-Production of Knowledge in Learning Loops

(Pahl-Wostl, 2009; Cash, 2006; Cash et al., 2003)


Johnson, Tora, "Role of Dignity in Rural Natural Resource Governance" (2015). *Electronic Theses and Dissertations*. Paper 2267. <u>http://digitalcommons.library.umaine.edu/etd/2267</u>

Background

Downscaling & iterative public meetings to ID vulnerabilities

Machias = Service Center

Executive Summaries

Quick Links to On-line GIS

» Plan Components

Brownfields & Economic Renewal

» Climate Change & Infrastructure Resilience

Climate Change in Maine and the Region New England Collaborations

Adaptation to Climate Change Impacts

Home » Plan Components » Climate Change & Infrastructure Resilience » Washington County Climate Vulnerability Assessments

Legend

Bridges

2

÷

Airports

Libraries

Police 63

Climate Change & Infrastructure Resilience

Climate Vulnerability Assessments for Coastal Washington County

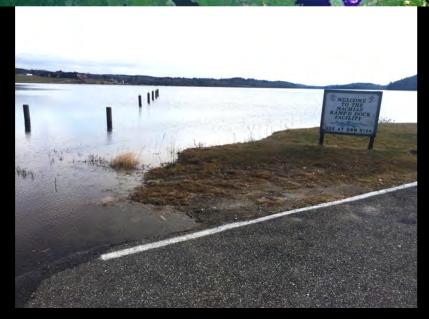
The utility of a Climate Vulnerability Assessment (CVA) is not to predict the exact height of water or the date a storm will arrive - they cannot know this. Rather, property owners, municipal officials and first responders can use the town-and bayspecific scenarios in Washington County to review scenarios of possible impacts from severe storms. The scenarios use Geographic Information System (GIS) models that are based on a single modeled storm hitting Penobscot Bay; actual conditions depend on wind speed, direction, and the track of the storm, largely random variables.

ID Local Priorities

Issue Involvement: Community				Issue Involvement Personal				
Please indicate the extent to which each problem is significant in the Downeast town where you live or spend				Please indicate the extent to which each problem is important to you personally.				
the most time.			Mean Std.					
Issue	Mean Ranking	n	Std. Dev.	Item	Ranking	n	Dev.	
Unemployment	4.18	231	1.04	High property taxes	3.89	218	1.21	
(tie for 1st)								
School budgets	4.18	229	0.98	School budgets	3.79	219	1.32	
(tie for 1st)								
High price of heating fuel	4.07	226	1.02	High price of heating fuel	3.58	212	1.33	
High property taxes	3.89	229	1.16	Aging roads, bridges &	3.54**	217	1.17	
				culverts				
Aging roads, bridges & culverts	3.75**	228	1.12	Unusually strong storms	3.32**	209	1.3	

Johnson, 2015

Machias Waterfront Resilience & Renewal Study


- Public Meetings
- Engage w/ Businesses
- MCP grant
- Preliminary engineering
- Economic risk assessment

Potential Economic Impacts of Flooding

Four flooding scenarios: Base Flood BF +2ft BF +4ft BF +6ft

Includes:

- Direct Economic Losses to Business, Govt & Residents
- Lost Sales & Earnings
- Cost of Restoration or Rebuilding

Machias Boat Landing Photo by Bob Farris King Tide 8.5ft, 2017 **Potential Economic Impacts of Flooding**

Four flooding scenarios:

Base Flood ~ BF +2ft ~ BF +4ft ~ BF +6ft

Does NOT include:

- Indirect Losses, eg decline in sales for unaffected businesses
- Other areas of Machias coastline
- Loss of cultural or natural resources, eg historic sites & impt habitat
- Damage to utility lines, incl water, wastewater, electricity & comm
- Potential damage to the dike

Sources for Cost & Loss Estimates

Building & Contents:

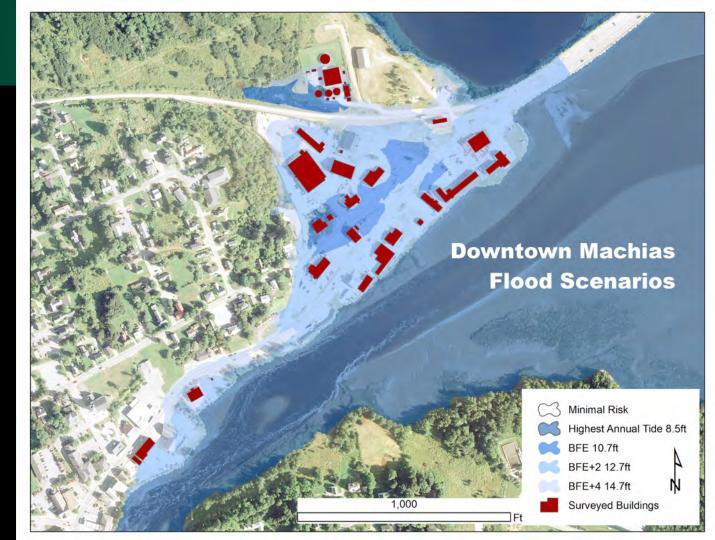
Assessment Records US ACE 2015 Depth Damage Study FEMA HAZUS Flood Technical Manual

Business Inventory:

Building Footprint Square Footage EMA HAZUS Flood Technical Manual

Road Damage:

MEDOT Replacement Cost per MI Surveyed Elevations Global Depth Damage Function (2017) by Huizinga, Moel & Szewczyk


Economic Losses:

FEMA HAZUS Flood Technical Manual

<u>Shellfish</u>: Bell & Johnson 2016 Machias Bay study by Evans, Athearn, Chen,

Base Flood BF +2ft BF +4ft BF +6ft

Map shows flood scenarios with surveyed buildings at risk.

Highest Annual Tide 2017 8.6 ft

Based on king tide images provided by participating citizens.

BFE = 10.7 ft

BFE +2 = 12.7 ft

BFE + 4 = 14.7 ft

BFE + 6 = 16.7 ft

Economic Picture of Vulnerable Area

18 Businesses, 5 Other Bldgs,& many Outbuildings

Annual Sales: \$5,546,336

Business Inventory: \$721,024

Annual Earnings: \$5,566,213

Jobs: ~115

Machias Hardware Parking Lot King Tide, 8.5ft 2017 Photo: Shri Verrill

Cost/ Loss Estimates for a Single Flood Event

Scenario	Economic Impact	Buildings w/ Loss	Jobs Impacted	Avg Months to Rebuild
BFE (10.7ft)	\$713,297	8	22	2
BFE +2 (12.7ft)	\$7,918,338	17	92	6
BFE+4 (14.7ft)	\$16,889,819	21	108	11
BFE+6 (16.7ft)	\$23,699,916	23	115	15

Average Annual Shellfish Landings for Machias Bay: \$1,000,000

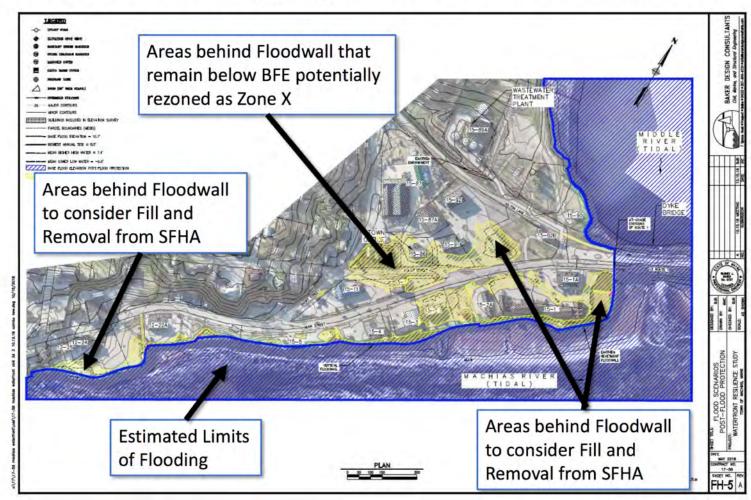
(Evans, et al 2016)

- BFE+4 & BFE+6 scenarios pose significant risk to shellfish
- Depending on pollutants, impact could close fisheries for many years

Cost/ Loss Estimates for a Flood Event

Loss/ Cost Category	BFE (10.7ft)	BFE+2 (12.7ft)	BFE+4 (14.7ft)	BFE+6 (16.7ft)
Bldg Damage	\$82,046	\$716,783	\$1,671,945	\$2,128,439
Business Inventory	\$12,005	\$108,855	\$273,313	\$386,857
Non-Perishable Contents	\$49,208	\$432,974	\$1,203,169	\$1,861,448
Road Damage Cost	\$91,682	\$1,004,120	\$1,841,925	\$2,343,768
Lost Sales	\$194,831	\$2,349,784	\$4,970,364	\$7,115,035
Lost Earnings	\$195,529	\$2,358,205	\$4,988,176	\$7,140,533
Rental Cost	\$78,632	\$884,273	\$1,859,844	\$2,634,963
Disruption Cost	\$9 <i>,</i> 365	\$63,345	\$81,082	\$88,873
TOTAL ECONOMIC IMPACT	\$713,297	\$7,918,338	\$16,889,819	\$23,699,916
Buildings with Loss	8	17	21	23
Average Months to Rebuild	2	6	11	15
Jobs Impacted	22	92	108	115

Next Steps


Machias River Walk

Engineering & design

Assess risk vs. cost

Best practices

Potential Flood Mapping, Post-Floodwall Construction

References

Technical Sources for Economic Study:

Gates, Judy, Maine Department of Transportation. 2018. Personal Communication.

Huizinga, J., Moel, H. de, Szewczyk, W. 2017. Global flood depth-damage functions. Methodology and the database with guidelines. EUR 28552 EN. doi: 10.2760/16510

http://publications.jrc.ec.europa.eu/repository/bitstream/JRC105688 /global_flood_depth-damage_functions__10042017.pdf

US Army Corps of Engineers. *North Atlantic Coast Comprehensive Study: Resilient Adaptation to Increasing Risk.* Physical Depth Damage Function Summary Report, January 2015 *US Army Corps of Engineers (Table 43) (http://www.mvn.usace.army.mil/Portals/56/docs/PD/Donaldsv-Gulf.pdf)

US Federal Emergency Management Agency, Mitigation Division. 2013. *Multi-Hazard Loss Estimation Methodology: Flood Model Hazus-MH Technical Manual.*

Works Cited

Cash, D. W. (2006). Countering the Loading-Dock Approach to Linking Science and Decision Making: Comparative Analysis of El Nino/Southern Oscillation (ENSO) Forecasting Systems. *Science, Technology & Human Values*, 31(4), 465–494. <u>https://doi.org/10.1177/0162243906287547</u>

- Cash, David W., Adger, W. N., Berkes, F., Garden, P., Lebel, L., Olsson, P., ... Young, O. (2006). Scale and Cross-Scale Dynamics: Governance and Information in a Multilevel World. *Ecology & Society*, *11*(2), 181–192.
- Cash, David W., Clark, W. C., Alcock, F., Dickson, N. M., Eckley, N., Guston, D. H., ... Mitchell, R. B. (2003). Knowledge systems for sustainable development. *Proceedings of the National Academy of Sciences*, *100*(14), 8086–8091. <u>https://doi.org/10.1073/pnas.1231332100</u>
- Dunlap, R. E. (2010). Climate Change and Rural Sociology: Broadening the Research Agenda. *Rural Sociology*, 75(1), 17–27. https://doi.org/10.1111/j.1549-0831.2009.00010.x

Hicks, Donna (2011-09-06). Dignity: The Essential Role It Plays in Resolving Conflict (pp. 25-26). Yale University Press. Kindle Edition.

GROWashington-Aroostook. (n.d.). Retrieved December 12, 2013, from http://www.gro-wa.org/

- Johnson, T., & East, J. C. (2014). *Washington County Climate Vulnerability Assessment*. GROWashington Aroostook. Retrieved from http://gro-wa.org/washington-county-climate-change-response.htm
- Johnson, Tora, "Role of Dignity in Rural Natural Resource Governance" (2015). *Electronic Theses and Dissertations*. Paper 2267. <u>http://digitalcommons.library.umaine.edu/etd/2267</u>

Molnar, J. J. (2010). Climate Change and Societal Response: Livelihoods, Communities, and the Environment. Rural Sociology, 75(1), 1–16.

Nisbet, M. C., & Mooney, C. (2007). SCIENCE AND SOCIETY: Framing Science. *Science*, *316*(5821), 56–56. <u>https://doi.org/10.1126/science.1142030</u>

Works Cited, Continued

Pahl-Wostl, C. (2009). A conceptual framework for analysing adaptive capacity and multi-level learning processes in resource governance regimes. *Global Environmental Change*, 19(3), 354–365. <u>https://doi.org/10.1016/j.gloenvcha.2009.06.001</u>

University of Maine at Machias GIS Laboratory - Storm Surge & Sea Level Rise Maps. (n.d.). Retrieved February 24, 2019, from https://sites.google.com/maine.edu/ummgis-planmaps/storm-surge-sea-level-rise-maps

Machias Resilience | The Washington County Council of Governments. (n.d.). Retrieved February 24, 2019, from http://www.wccog.net/machias-resilience.htm

- Wilbanks, T. J., & Kates, R. W. (2010). Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses. *Annals of the Association of American Geographers*, *100*(4), 719–728.
- Ostrom, E. (1990). *Governing the commons: the evolution of institutions for collective action*. Cambridge ; New York: Cambridge University Press.

How much risk is too much?

Geographic and economic analysis to support local decisions about flood resilience in a Downeast Community

Tora Johnson David Cisneros GIS Director/ Assoc. Professor GIS Graduate Intern Andrew Howland

GIS Aide

University of Maine at Machias

tjohnson@maine.edu

View this slideshow at http://bit(20ac)ias Signation

BAKER DESIGN CONSULTANTS Civil, Marine, & Structural Engineering