Current state of knowledge and research on potential effects of climate change on forest ecology

Dr. Jay Wason School of Forest Resources University of Maine

Overview

- Forest responses to climate change are complex
- Novel future climates
- Good and bad of climate change
- We determine what our forests will look like in 100 years

Changing climate and tree migration

Red spruce

Land-use drives forest composition

Figure 3. Relative composition of pre-colonial era Witness Trees and modern inventory trees in 701 colonial townships in the northeastern USA.

doi:10.1371/journal.pone.0072540.g003

Increased forest productivity? It depends...

- Warming reduces photosynthesis during normal dry periods
- Increased growth for trees at their northern range margin

David Hansen, University of Minnesota

CO₂ fertilization increases productivity in some situations

aspenface.mtu.edu/

Climate change events and shifting phenology

Freezing damage to roots that lack an insulating layer of snow

Extreme winter warming event initiated budburst in ~50% of woody species in Wisconsin

	Strength of winte	r dormancy signals	
Tilia cordata	Sassafras albidum	Quercus alba	Fraxinus pennsylvanica
Quercus bicolor	Quercus robur	Fraxinus americana	Prinsepia sinensis
Fagus sylvatica	Nyssa sylvatica	Syringa vulgaris	
Celtis occidentalis	Larix kaempferi	Rhus typhina	
Celtis laevigata	Prunus avium†	Prunus avium [†]	
Aesculus hippocastanum	Acer saccharinum	Fraxinus excelsior	
		Cornus mas	
		Betula populifolia	
		Aronia arbutifolia	
Active		Alnus glutinosa	
Dormant		Acer truncatum	
Bud Stage		Acer rubrum	
Dud Ctore		A CONTRACT OF	

Ladwig et al. (2019)

What to expect in the future

- Rapid warming and novel climate conditions
- Lags in natural forest migrations
- Complex and unexpected biotic interactions
- Uncertainty
 - Short- vs. long-term predictions

Ongoing Research

- Forest migration and canopy gaps
- Physiological tolerance of trees at trailing edge
- Ecosystem impacts
- Adaptive Silviculture for **Climate Change**

Reduce climate change impacts

Research Outcomes

- Climate change winners and losers
- Forest **resilience** and **resistance** to change and novel climate conditions
- Changing ecological communities
- Improved understanding of adaptive management practices

Current Knowledge Gap

- Disconnect between suitable habitat models and tree migration
- Species ability to tolerate novel and rapidly changing climates (physiological ecology)
- Identifying climate refugia
- Biotic interactions of complex trophic webs

climaterefugia.org

Recommendations

- Determine physiological responses to changing climate across scales
- Identify climate change refugia and opportunities for facilitated migration
- Managing for and embracing uncertainty at different timescales
- Forest Management Workshops

Summary

- Forest responses to climate change are complex
- Novel future climates present unique challenges but also opportunities
- Good and bad impacts in forests
- We determine what our forests will look like in 100 years

Figure 6.—Distribution of forest-type groups in the Northeast. Data source: Ruefenacht et al. (2013).

Acknowledgements

Question/Comments

Center for Research on Sustainable Forests

5755 Nutting Hall, Room 263

Orono, ME 04469-5755

Tel: 207.581.3794

Fax: 207.581.2833

crsf@maine.edu

https://crsf.umaine.edu/forest-climate-change-initiative/

