Developing Cost Effective Monitoring for Rainbow Smelt using eDNA

Jacob Aman
jacobaman@wellsnerr.org
Wells National Estuarine Research Reserve

Dr. Michael Kinnison
Vaughn Holmes
University of Maine, School of Biology and Ecology

Claire Gottesegen
Wells National Estuarine Research Reserve

Data are preliminary and should not be cited without contacting the author.
This project was funded in part by the Maine Outdoor Heritage Fund, in which proceeds from the sale of a dedicated instant lottery ticket (currently “Moose Money”), are used to support outdoor recreation and natural resource conservation. For more information about MOHF, go to [www.maine.gov/ifw/MOHF.html](http://www.maine.gov/ifw/MOHF.html)

Project funding was also provided by the Casco Bay Estuary Partnership, Maine Coastal Program, Wells National Estuarine Research Reserve, and the University of Maine.
Management Challenges for Rainbow Smelt

- NMFS Species of Concern
- Maine Tier I Species of Greatest Conservation Need
- Declining due to historic alterations to habitat
- ~50% of spawning sites may be impacted by road crossings or dams
- Future climate driven impacts...

- 2012 Regional Conservation Plan calls for statewide monitoring and restoring access to habitat

Data are preliminary and should not be cited without contacting the author.
Management Challenges for Rainbow Smelt

- 275 historic spawning stream segments mapped by Maine DMR
- Monitoring so many locations is resource intensive
- Lack of current data hinders restoration efforts

Data are preliminary and should not be cited without contacting the author.

https://webapps2.cgis-solutions.com/MaineStreamViewer/
Management Challenges for Rainbow Smelt

Conventional methods are labor intensive or require special training.

- Trapping
- Trawls
- Creel Surveys
- Egg surveys
- Nighttime observations

Data are preliminary and should not be cited without contacting the author.
eDNA is an Effective and Accessible Tool

**Environmental DNA (eDNA):** DNA that occurs in an environment as a byproduct of the life processes of living organisms inhabiting that environment or linked environments.

- Less time and labor intensive
- Low risk to smelt populations being monitored
- Does not require special knowledge or equipment
- Highly sensitive, good for rare species
- Presence/Absence information
- Timing and duration of spawning
- Abundance...?
- Biological data collection not possible
- Prioritize locations for conventional monitoring

Data are preliminary and should not be cited without contacting the author.
eDNA is an Effective and Accessible Tool

Smelt TaqMan MGB-NFQ qPCR Primer-Probe Set develop by Kinnison Lab, University of Maine

OSM ND5 Primer-Probe Set

<table>
<thead>
<tr>
<th>Species</th>
<th>5' Forward 3'</th>
<th>5' Probe 3'</th>
<th>5' Reverse 3'</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>ATL</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>BKT</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>LKT</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>RBT</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>BNT</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>LWF</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>CP</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>NP</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>LMB</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>SMB</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
<tr>
<td>BC</td>
<td>TGCCGCTTCCTCAGGTATAGCC</td>
<td>TGCGCACTATGCAGCCA</td>
<td>TGCGATGGAGCTAGCC</td>
</tr>
</tbody>
</table>

+ Initially Field Validated by Testing Positive in Archived Floods Pond Water
eDNA is an Effective and Accessible Tool

eDNA surveys could in principle be conducted by almost anyone, without risk of harm to protected species, without concern for legal harvest seasons, and without special licenses or permits.

- Sample kits are inexpensive.
  - water bottles
  - sealable bags
  - gloves
  - paper towels
  - cooler and ice

- Samples are frozen before shipping to lab.

Data are preliminary and should not be cited without contacting the author.
eDNA is an Effective and Accessible Tool

Detailed protocols have been developed.
- EPA approved mini-QAPP
- UMaine sampling protocols and filtering protocols

Filtration in-house saves shipping and lab costs, but contamination control is a major consideration.

Monitoring in partnership with qualified lab.

Data are preliminary and should not be cited without contacting the author.
Data are preliminary and should not be cited without contacting the author.

Smelt eDNA Pilot Study

![Map of Smelt Brook and York River](image)

- **Smelt Brook**
- **York River**
- **To Ocean**

![Graphs](image)

- **Smelt Brook**
- **York River**

Days From April 1

Numbers of Trapped Fish

eDNA Copies Per Liter
2018 Casco Bay Study

- Sampling March 29 to May 9
- Downstream from spawning areas
- 2 liter samples collected at three locations (A, B, C)
- 177 samples total

Casco Bay study sites at:
- Long Creek (WR01)
- Mussel Cove Creek (WR02)
- Mast Landing (WR04)
- Miller Creek (WR05)
2018 Casco Bay Study

- Unlike pilot study, initial lab detection was poor
- Environmental inhibitors reduced amplification
- PCR inhibition clean-up increased reliability
- eDNA is able to detect rainbow smelt through time and across a range of abundances

Data are preliminary and should not be cited without contacting the author.
Next Steps

- Calibrate for environmental conditions (flow, inhibition, breakdown rates)
- Further study of eDNA dynamics (sampling for eggs vs. adults)
- Develop application of techniques for managers and restoration planners
- Explore possibility of engaging citizen scientists in surveys

Data are preliminary and should not be cited without contacting the author.
References


Data are preliminary and should not be cited without contacting the author.

Thank You!

Project Partners

Claire Gottesegen  Wells NERR
Michelle Furbeck  Wells NERR
Dr. Michael Kinnison  University of Maine
Vaughn Holmes  University of Maine
Mary Astumian  University of Maine
Matt Craig  Casco Bay Estuary Partnership
Claire Enterline  Maine Department of Marine Resources

US Environmental Protection Agency
Maine Outdoor Heritage Fund