WATCHIC LAKE Observations of Physical Parameters from Continuous Monitoring

Maggie Burns & Amanda Gavin

FB Environmental Associates

AGENDA

- 1. Site Introduction
- 2. Water Quality Monitoring Methods

 Monitoring Lake Response to Climate Change: Stratification Dynamics Extreme Weather Events Winter Limnology

VOLUNTEER FIELD SUPPORT

STANDISH, ME	
ν	WATCHIC LAKE D. Road Flowline Watchic Lake Deep Spot Wetland Tributary Site Watchic Lake 0 0.125

WATC-5040-01

Data obtained from: The Maine Office of GIS, ESRI Digital Globe, FB Environmental Created By: FB Environmental, Jan 2018

0.25

FB

0.5 Miles

METHODS

1. DEEP SPOT CORE SAMPLING

2. TRIBUTARY MONITORING

3. CONTINUOUS LOGGER MONITORING

METHODS

1. DEEP SPOT CORE SAMPLING

3. CONTINUOUS LOGGER MONITORING

CORE SAMPLING

- Alkalinity
- Chlorophyll-a
- Color
- Dissolved Organic Carbon
- Nitrogen
- Phosphorus
- pH
- Secchi Disk Transparency

Overall Water Quality is Good

Image credit: Science Direct

METHODS

1. DEEP SPOT CORE SAMPLING

2. TRIBUTARY MONITORING

3. CONTINUOUS LOGGER MONITORING

TRIBUTARY MONITORING

PAGE BROOK

Elevated nutrients Low oxygen Low pH (acidic)

METHODS

1. DEEP SPOT CORE SAMPLING

2. TRIBUTARY MONITORING

3. CONTINUOUS LOGGER MONITORING

CONTINUOUS MONITORING

CONTINUOUS MONITORING used to monitor lake response to climate change

Correction
Correction

Original Correction
Correction

Correction
Correction
<

Abstract In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade⁻¹) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors —from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade⁻¹) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade⁻¹). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.

CONTINUOUS MONITORING used to monitor lake response to climate change

O'Reilly et al., 2015

Image credit: National Geographic Society

LENGTH OF STRATIFICATION

YEAR	ICE-OUT	ICE-IN	ONSET OF DATE OF FALL		DAYS OF
			STRATIFICATION	TURNOVER	STRATIFICATION
2016	3/13/16	Not Recorded	5/10/16	10/23/16	166 days
2017	4/15/17	12/15/17	5/17/17	10/31/17	167 days
2018	4/22/18	12/13/18	5/2/18	10/18/18	169 days

LENGTH OF STRATIFICATION

					DAYSOF
YEAR	ICE-OUT	ICE-IN	ONSET OF	DATE OF	STRATIFICATION
			STRATIFICATION	TURNC	1.0.0
2016	3/13/16	Not Recorded	5/10/16	10/23	166 days
2017	4/15/17	12/15/17	5/17/17	10/31	167 days
2018	4/22/18	12/13/18	5/2/18	10/18	
					169 days

LENGTH OF STRATIFICATION

- More time for surface waters to warm
- More time that the hypolimnion is separated from oxygenated surface waters
- More time to oxygen to be depleted
- More time for algae blooms to flourish

of days of stratification

Fernandez, I.J., C.V. Schmitt, S.D. Birkel, E. Stancioff, A.J. Pershing, J.T. Kelley, J.A. Runge, G.L. Jacobson, and P.A. Mayewski. 2015. Maine's Climate Future: 2015 Update. Orono, ME: University of Maine. 24pp.

Maine's Average Annual Air Temperature

Fernandez, I.J., C.V. Schmitt, S.D. Birkel, E. Stancioff, A.J. Pershing, J.T. Kelley, J.A. Runge, G.L. Jacobson, and P.A. Mayewski. 2015. Maine's Climate Future: 2015 Update. Orono, ME: University of Maine. 24pp.

Precipitation

- Increased runoff \rightarrow more nutrients \rightarrow more algae blooms \rightarrow fuels decomposition
- More organic matter loading \rightarrow fuels decomposition

Erosion on Gravel Road in Watchic Lake Watershed

Low

dissolved

oxygen

WINTER MONITORING

Winter Limnology as a New Frontier

Stephen M. Powers and Stephanie E. Hampton

WINTER MONITORING

Winter Limnology as a New Frontier

Stephen M. Powers and Stephanie E. Hampton

QUESTIONS?

