Fish Passage at Hydropower Dams on the Penobscot & Kennebec Rivers

SARAH VOGEL¹, M.S. STUDENT IN WILDLIFE ECOLOGY JESSICA JANSUJWICZ¹² & JOSEPH ZYDLEWSKI³¹, CO-ADVISORS

¹UNIVERSITY OF MAINE, DEPARTMENT OF WILDLIFE, FISHERIES, AND CONSERVATION BIOLOGY ²UNIVERSITY OF MAINE, SENATOR GEORGE J. MITCHELL CENTER FOR SUSTAINABILITY SOLUTIONS ³U.S. GEOLOGICAL SURVEY, MAINE COOPERATIVE FISH AND WILDLIFE RESEARCH UNIT

Future of Dams Project

TALK OVERVIEW

Hydropower & Fish Passage

Maine Importance

- Primary use of dams in Maine is hydropower
 - 25% electricity generation
- Major cause for declines of anadromous fish

Types of Passage

- Not all created equal
- Species specific
- Life stage specific
- No perfect option
- Most common: fishways

 "... items which may constitute a "fishway" under section 18 for the safe and timely upstream and downstream passage of fish shall be limited to physical structures, facilities, and devices necessary to maintain all life stages of such fish, and project operations and measures related to such structures, facilities, or devices which are necessary to ensure the effectiveness of such structures, facilities, or devises for such fish."

• —16 U.S.C. 811 Clarification of Authority Regarding Fishways

General Passage Standards

Safe

• Timely

Effective

Movement through project that does not result in any unacceptable stress, delayed injury, or death of the fish Minimal delay of migration movements past the barrier to the extent needed to achieve restoration goals When most (if not all) fish pass to up/downstream habitats without impact on their natural biological functions

Elements of a Fishway

"Installing a fish passage structure does not constitute providing satisfactory fish passage unless all of the above components are adequately factored into the design" –NOAA

Site & Species Specific Standards

West Enfield

- Downstream At. salmon smolts:
 - 96% survival (75% confidence)
 - Passage within 24 hours
- Upstream At. salmon adults:
 - 95% success
 - Passage within 48 hours
 - No passage Stillwater/Orono

Hydropower Regulation

FERC Hydropower Licensing

Federal Energy Regulatory Commission (FERC)

Responsible for regulating non-federal hydropower dams in US

Issue 30-50 year licenses (40-year default) for projects

Licenses outline project operations, including fish passage

Process of relicensing = best chance to influence fish passage

Relicensing Timeline

Consults	ΝΟΙ	Scoping	Study Plans	Study Reports	Draft License	License	Decision
-5+ Years	-5 Years	-5 Years			-2.5 Years	-2 Years	0 Years
Pre-filing consult with stakeholders	Notice of intent to file license documents submitted	FERC scoping meeting	Study plans submitted	Reasonable studies carried out & reported	Prelim license proposal submitted	License application submitted	FERC decision & appeal process if needed

 \leftarrow Stakeholder engagement invited through COMMENTS, PROTESTS, & MOTIONS TO INTERVENE \rightarrow

Key Stakeholders

Legal Framework

- Federal Power Act
- Clean Water Act
- Endangered Species Act
- Magnuson-Stevens Fishery Conservation and Mgmt Act
- National Environmental Policy Act
- Fish and Wildlife Coordination Act

Study Focus & Approach

Kennebec & Penobscot River Watersheds

- 9 removed dams
- 10 exempt projects
- 28 active projects
 - 10 up for relicensing within next decade

Objectives

- Characterize the presence, authority, interactions, and decision processes of agencies/entities across sites
- Examine agency/entity perspectives of the relicensing process
- Identify significant factors which influence fish passage decisions

Approach

- Participant Observations
- Semi-structured Interviews
- Content Analysis
 - Source of Information: FERC eLibrary
 - Kennebec & Penobscot Hydro Projects = 33,500 Documents

Content Analysis

Database Creation

Targeted searches for fish passage documents Conversion of documents into textreadable format

Imported into NVivo for analysis

Fish Passage Documents

- 8% of all documents addressed fish passage
- Ranged from 0-30% by project
- Highest proportion
 - Mainstem
 - Anadromous fish
 - NGO presence

Official Comments

- Avenue for representation in the relicensing process
- Used by FERC and could conceivably effect license outcomes
- Ranged from 0-400 by project
- Majority of comments from the general public

Emerging Themes

Science in Decision-making

- Different types of knowledge
 - Peer reviewed research
 - Consultant research
 - Stakeholder observations
 - Traditional ecological knowledge
- Types of knowledge are valued differently by stakeholder groups

Ownership Patterns

- Affects relicensing efforts
 - Type of licensing process chosen
 - Relationships with stakeholders
 - Ability to reach settlements
- Changes to status quo
- Majority owned by one parent company

Delayed Action

- Stakeholders entering late in the process
- Resource issues
- Too little, too late mentality
- Trouble gaining and maintaining interest

Project Classification

Removed

- Receive the most media attention
- Comments high, especially from general public

Exempt Projects

- Few overall comments & fish passage concerns
- Active

Basin-scale Planning

- FERC basin planning status reports 1960s-80s
- Resurgent effort to coordinate existing projects
- Penobscot River Restoration, Maine
 - Collaboration necessary
 - Goal: restore 11 species of sea-run fish
 while maintaining energy production

Settlement Agreements

Favored by FERC

- Likely to accept settlement recommendations
- Alternative to litigation
- Examples:
 - Lower Penobscot River Multiparty Settlement
 Agreement
 - Lower Kennebec River Comprehensive Hydropower Settlement Accord

Use of Authority

IN FAVOR

AGAINST

- Use tools that are available
- Defer to authority
- Could lead to stronger passage prescriptions

- Negative image
- Limited resources (financial and human)
- Could lead to unknown challenges and legal battles

Going Forward

Thank You!

CONTACT: SARAH.VOGEL@MAINE.EDU

Support for this project is provided by the National Science Foundation's Research Infrastructure Improvement NSF #IIA-1539071. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.