Dissolved organic carbon trends in Maine lakes Amanda Gavin M.S. Ecology and Environmental Sciences

Committee: Sarah Nelson (SFR), Ivan Fernandez (SFR), Jasmine Saros, (CCI)

16 Regional Long-Term Monitoring (RLTM) Lakes

29 High Elevation Lake Monitoring (HELM) Lakes

Chemistry of Maine's High Elevation Lakes: Results from the HELM Project

Jeffrey S. Kahl Environmental Science Annex, University of Maine, Orono, Maine 04469

Matthew Scott Maine Low-Level Radioactive Waste Authority, Augusta, Maine

Table 3. — Population descriptions for selected chemical parameters.

PROJECT/ REGION	SECCHI (m)	COLOR Pt/Co	MEAN MEDIAN AIR-EQUIL. pH		ANC µeg/l	SPEC. COND. uS	DOC	CA ^a eg/i	SO4 ^a ueg/l	TOTAL Al ppb
HELM	3.7	33	5.70	6.69	79	22	5.1	108	84	139
ELS-1C	3.0	29	7.07	7.20	180	32	5.6	178	81	94
ELS-1E	3.2	35	6.30	7.26	199	38	6.0	190	68	78
ELS-ME	3.2	34	6.46	7.25	195	37	5.9	189	71	81

Note: (Data are means, except for pH, for which median is also listed. Mean pH is calculated from the mean H⁺ concentration.) ^a marine aerosol corrected

> 600 m

>1 m deep

> 0.4 ha surface area

No stream flowages

No beaver impoundments

Year

Year

Region-wide increase in DOC shifts the HELM lakes from *low* DOC lakes to *intermediate* DOC lakes

HELM Mean Annual DOC concentrations

Time

Region-wide increase in DOC shifts the HELM lake set from *low* DOC lakes to *intermediate* DOC lakes

HELM Mean Annual DOC concentrations

Time

Region-wide increase in DOC shifts the HELM lake set from *low* DOC lakes to *intermediate* DOC lakes

Region-wide increase in DOC shifts the HELM lakes from *low* DOC lakes to *intermediate* DOC lakes

Time

Decadal Trends Reveal Recent Acceleration in the Rate of Recovery from Acidification in the Northeastern U.S.

Kristin E. Strock,*^{,†,⊥} Sarah J. Nelson,[‡] Jeffrey S. Kahl,[§] Jasmine E. Saros,[†] and William H. McDowell[∥]

Between 2000 and 2010:

7/74 (9%) lakes in this study demonstrated significant increasing trends in DOC

Regional Trends, 2000 - 2010

Why is DOC increasing?

ACID RAIN

Chemistry of Maine's High Elevation Lakes: Results from the HELM Project

Jeffrey S. Kahl Environmental Science Annex, University of Maine, Orono, Maine 04469

Matthew Scott Maine Low-Level Radioactive Waste Authority, Augusta, Maine

Table 3.—Population descriptions for selected chemical parameters.

PROJECT/ REGION	SECCHI (m)	COLOR Pt/Co	MEAN MEDIAN AIR-EQUIL. pH		ANC µeq/l	SPEC. COND. uS	DOC	CA ^a سeg/i	SO4 ^a ueq/l	TOTAL Al ppb
HELM	3.7	33	5.70	6.69	79	22	5.1	108	84	139
ELS-1C	3.0	29	7.07	7.20	180	32	5.6	178	81	94
ELS-1E	3.2	35	6.30	7.26	199	38	6.0	190	68	78
ELS-ME	3.2	34	6.46	7.25	195	37	5.9	189	71	81

Note: (Data are means, except for pH, for which median is also listed. Mean pH is calculated from the mean H⁺ concentration.) ^a marine aerosol corrected

SOLAR RADIATION Temperature Increase

PRECIPITATION Increased variability More frequent, intense storms

Increase Microbial Activity

Increased runoff

Increase terrestrial [DOC]

_	Scaled		r2
	Estimates	p - value	[
log SO ₄ ²⁻	-0.361368	0.000000	
Fall Precipitation	0.135331	0.000003	
Fall Temperature	0.112383	0.001828	
Summer Precipitation	-0.064650	0.012057	
Summer Temperature	-0.008524	0.840793	
Winter Precipitation	0.048151	0.072882	
Winter Temperature	0.032248	0.292531	
Spring Precipitation	-0.004392	0.866057	
Spring Temperature	0.073512	0.003223	

	Scaled		
	Estimates	p - value	r -
log SO ₄ ²⁻	-0.361368	0.000000	
Fall Precipitation	0.135331	0.000003	SO^{2-} and seasonal climate
Fall Temperature	0.112383	0.001828	30 ₄ and 3cd30ffar childre
Summer Precipitation	-0.064650	0.012057	variables explain 78% of
Summer Temperature	-0.008524	0.840793	DOC variability
Winter Precipitation	0.048151	0.072882	
Winter Temperature	0.032248	0.292531	
Spring Precipitation	-0.004392	0.866057	
Spring Temperature	0.073512	0.003223	

	Scaled		r ²
	Estimates	p - value	
log SO ₄ ²⁻	-0.361368	0.000000	
Fall Precipitation	0.135331	0.000003	Strong control of SO ²⁻ when
Fall Temperature	0.112383	0.001828	
Summer Precipitation	-0.064650	0.012057	compared to other
Summer Temperature	-0.008524	0.840793	individual drivers
Winter Precipitation	0.048151	0.072882	individual drivers
Winter Temperature	0.032248	0.292531	
Spring Precipitation	-0.004392	0.866057	
Spring Temperature	0.073512	0.003223	

_	Scaled		
	Estimates	p - value	r ²
log SO ₄ ²⁻	-0.361368	0.000000	
Fall Precipitation	0.135331	0.000003	When climate variables are
Fall Temperature	0.112383	0.001828	
Summer Precipitation	-0.064650	0.012057	combined, have a similar
Summer Temperature	-0.008524	0.840793	offact size to SO 2^{-1}
Winter Precipitation	0.048151	0.072882	enect size to 50_4
Winter Temperature	0.032248	0.292531	
Spring Precipitation	-0.004392	0.866057	
Spring Temperature	0.073512	0.003223	

HELM lake trend ($p = 0.009, r^2 = 0.24$)

LTM trend ($p = 0.0004, r^2 = 0.62$)

Gavin et al., 2018, in press

Weather Case Study

October 1997

November 1997

34% mean October rainfall 116 mm of rain, wettest since 1895

16 Regional Long-Term Monitoring (RLTM) Lakes

29 High Elevation Lake Monitoring (HELM) Lakes

RLTM Fall DOC Trends

DOC mg/L

DOC mg/L

DOC mg/L

7/16 (43%) lakes exhibited no change in DOC

1095

1005

2005

Physical Response: Implications for Increasing DOC

University of Notre Dame

University of Notre Dame

Water Clarity = Visible @ Bottom

2017 summer DOC = 2.3 mg/

2017 summer DOC = 5.4 mg/L

Water Clarity = Visible @ Bottom

Water Clarity = 4 m

Crystal Pond

Bracey Pond

Max Depth = 9m

Acknowledgments

Sarah Nelson Ivan Fernandez Jasmine Saros

HELM manuscript co-authors: Sarah Nelson, Ivan Fernandez, Amanda Klemmer, Kristin Strock, and Bill McDowell

Field work volunteers 30 + years of dedicated research

Funding: US-EPA LTM Network Project by EPA ORD with support from Maine DEP, University of Maine, Green Lake Fund, and Maine Agricultural and Forest Experiment Station