Integrating Sea Level Rise into Conservation Planning

Kristen Puryear Maine Natural Areas Program Department of Agriculture, Conservation and Forestry

Maine Sustainability and Water Conference March 2017

With thanks to:

A State Barrison and

Outline

Marshes Present

Marshes Future

Marshes in planning

Maine's Tidal Marshes 22,408 acres statewide

Bangor

LENNE

Reinferen B.

Autum Lewiston

CUMPERLAND.

YORK

Sanford

Portsmouth

u custa

Spartina Saltmarsh: 80% Mixed Graminoid-Forb Saltmarsh: +/-Brackish Tidal Marsh: +/-Freshwater Tidal Marsh: 19.6%

Data from Maine Natural Areas Program, 2014

s, and roots containing carbon which is frequently, if not idal waters. This oxygen-poor ery slow break down of the slant sign ficant carbon storage

Photo credits: Audubon, Shutterstock, NOAA, MNAP

Sea Level, Portland, Maine 1912-2014 (through December 31, 2014)

IN CREASE IN MARSH SURFACE ELEVATION

Greater above-ground plant growth

More sediment trapped from water

Elevation gain via surface accretion

Elevation gain via sub-surface expansion

Organic carbon addition

Rising sea level

Less below-ground decay

Graphic: Make Way for Marshes, Northeast Regional Ocean Council

SLR Simulation	% Marsh Replacement
1 ft	17%
2 ft	30%
3.3 ft (1m)	46%
6 ft	77%
Maine Natural Areas Program, 2014	
Current sea level	
Future sea level	
Graphic: Make Way for Ma	arshes, Northeast Regional Ocean Council

MGS SLR simulation using tidal gauge data up and down the coast to generate local highest annual tide (HAT) data (simulations for 1, 2, 3.3, 6 feet)

DAR Data

Coastal Undeveloped Blocks: 1m SLR

Potential Hat3.3 Habitats

Freshwater Tidal Marsh
Man-made land
Non-tidal buffer
Rocky Shoreline
Salt Marsh
Sand or Gravel Beach and Dunes
Unknown, not within tidal estuary
Unknown, within tidal estuary

250' impervious buffer

WAY &

~

pp

71

5

Marshes in Planning

What the SLR and marsh migration models can show:
Intersection of SLR with infrastructure (C/R nexus)
Large, connected areas of future marsh and buffer (preventing stressors, providing habitat, ecosystem services)
Stratification of sites statewide

Marshes in Planning

How the models are being used:

- One size fits all
- Part of decision making toolkit...Planning horizon, various conservation values, funding, landowner opportunity...
 - Application across multiple scales (examples)

Marsh migration planning areas slide credit: MCHT

York River Marshes Marsh migration (1m SLR Scenario)

	Planning Area	2743
Current m 1m sea-le 1,000 hor	varsh, modelied future marsh under a rvel rise scenario, and areas within izantal feet of modelied future marsh.	2,1403
10	Current Marsh	394 a
Future	Marsh Area using a 1m sea-level rise scenario	
	Future Marsh (Undeveloped)	166 a
'/////	Future Marsh (Developed)	51 a
Uplan From the	d Buffers upland edge of modelled future marsh	
	Less than 250' (Undeveloped)	465 4
1////	Less than 250' (Developed)	237 a
	More than 250' (Undeveloped)	807 a

More than 250' (Developed)

Marsh migration planning areas slide credit: MCHT

Marshes in Planning

How the models are being used:

- One size fits all
- Part of decision making toolkit...Planning horizon, various conservation values, funding, landowner opportunity...
 - Application across multiple scales (examples)
- Viewers and decision support tools

Thank you!

Special thanks to:

Maine Coast Heritage Trust, Maine Dept. Inland Fisheries and Wildlife, Maine Geological Survey, NOAA, Municipal Planning Assistance Program, The Nature Conservancy, USFWS, USEPA, Maine Outdoor Heritage Fund

Kristen.Puryear@maine.gov

Additional resources:

http://www.maine.gov/dacf/mnap/assistance/coastal_resiliency.html

