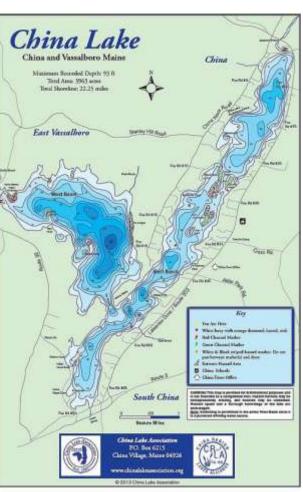


Crossing a threshold into solutions-oriented research

Strategies for linking interdisciplinary science with policy action for lake *resilience*


Bridie McGreavy, Ph.D.

Assistant Professor of Environmental Communication, UMaine Affiliate Faculty, Mitchell Center for Sustainability Solutions


Linda Silka, Ph.D.

Senior Fellow, Mitchell Center for Sustainability Solutions

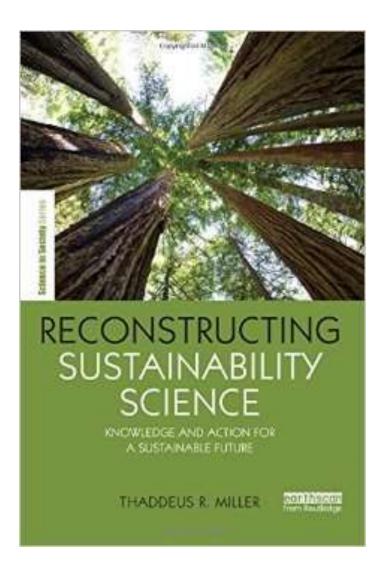
China Lake Case

- Tipping point or threshold example
- Cycles of algae bloom and phosphorus release
- Property value declines
- Solutions?

FEASIBILITY STUDY AND ALTERNATIVES ANALYSIS FOR INTERNAL PHOSPHORUS REDUCTION IN CHINA LAKE

TABLE OF CONTENTS

EXEC	UTIVE	SUMMARYE	ES-
1.0	BACK	GROUND INFORMATION	
2.0	CHAR	ACTERISTICS OF CHINA LAKE	
	2.1	CHINA LAKE OUTLET DAM AND WATER LEVELS	
	2.2	HYDROLOGY OF CHINA LAKE	
	2.3	WATER QUALITY OF CHINA LAKE	
	2.4	CURRENT CHINA LAKE MANAGEMENT STRATEGIES	
2.0	ALTE	RNATIVES ANALYSIS	
	3.1	HYPOLIMNETIC WITHDRAWAL	1
	3.2	CHEMICAL TREATMENT	
	3.3	LAKE DRAWDOWN	1
4.0	RECO	MMENDATION	2


What does it take to link these recommendations with action?

Social science and the human dimension

Objectives

- (1) Introduce sustainability science & linking science with decision making for resilience
- (2) Draw from examples to illustrate value of social science for:
 - -Constructing science
 - -Identifying needs for information
 - -Building relationships
 - -Listening and respecting diverse views
 - -Creating a learning organization
- (3) Pose questions and methods for emerging research agenda for the Maine Lakes Collaborative

Sustainability science

- Pragmatic approach (Miller, 2015)
- Problem-solution focus
- Interdisciplinary and transdisciplinary
 - Inter: Multiple types of knowledge
 - Trans: Societal transformation
- Iterative

Resilience approach

- Origins in lake science (Holling, 1973)
- Flexible, interdisciplinary framework
- Threshold vs. Resilience
- Adaptive capacities: learning, leadership, policy
- Applied orientation

Mitchell Center for Sustainability Solutions

Learning from Examples

Mercury and fish consumption

Vernal pool policy development

Solid waste management

Shellfish management and decision support systems

Silka, McGreavy, & Hart (under review); Sprain & Timpson (2012)

Mercury and fish in Lowell, MA

- Immigrants to New England
- Contaminated waters
- Fishing traditions
- Cultural values about rivers, fish, and food
- How understand the risks and ways to reduce these risks for diverse people?
- Innovative approaches to collaboration

Solid waste management

- Waste stream: more complex and toxic
- Siting challenges: water contamination
- How draw on diverse perspectives to solve what appear to be intractable problems?
- What would an "effective solution" mean for solid waste management?

Vernal pool policy

- How conserve vernal pools and adopt landscape scale approach to vernal pool policy?
- Portfolio of social science >10 years
- Studies of municipal official attitudes, landowner perceptions, networks among institutions, citizen science programs and leadership

Of Pools AND People

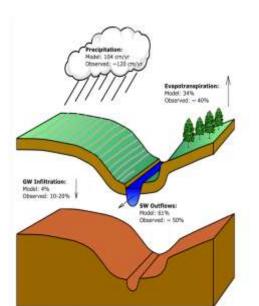
About Us Information Biog Pools and Municipalities Contact Page

- Citizen science
- Leadership
 - Policy transformation

Shellfish management



- Water quality and public health
- How create a tailored decision support system to protect public health and shellfishing livelihoods?
- Social science: interdisciplinary collaboration, epistemic authority, stakeholder needs


Decision Support System

Communication and shellfish management recommendations (McGreavy, et al. 2016)

Tidal modeling in Wells,
Machias,
& Medomak (Brady & Cole)

Coastal Maine Watershed Cluster Analysis (Smith, Roy, et al.)

Rainfall water quality station pattern analysis (McGill & Parmentier)

Economic impact of short term water quality closures (Evans et al., 2016)

Social Science and Learning

- More than messages
- Integral to research design
- Information systems and adaptive design
- Learn from failure
- Clarify and work through differences
- Tailored partnership strategies
- Data-driven recommendations and analyses

Maine Lakes Collaborative Social science research agenda

- Pressing policy & management Q's?
 - Lake vulnerability index
- Who involve and why?
- How partners want/need to be involved?
 Tailored design
- What are changes in social constructs over time?
 - Ethnographic approach, surveys & interviews
 - Social network analysis
 - Discourse analysis

What are the factors that enable and constrain our ability to link science with decision making?

- Needs: Salience and utility
- Trust: how build and maintain?
 - Presence
- Identities: group and lake-related
- Motivations
- Power

Conclusion

- Tipping points useful metaphor
 - Limits for human dimension
- Examples close at hand for connecting social science with sustainability policy
- Social science integral to research design
 - Not add on and not outreach
- Fundamental, integrated questions for SES lake resilience

Maine Lakes Collaborative listserve
UMaine EC CooP
Calling all citizen scientists and students!