Systems to Manage Organics in Maine

Jean MacRae – UMaine Civil and Environmental Engineering

Jen McDonnell Casella Organics
Dan Bell Agri-Cycle Energy
Mac Richardson LAWPCA
Circular System
Organics Waste Hierarchy

1. **Reduce**
 - Only buy the food we’ll eat

2. **Reuse**
 - Over 50% of the food we throw away could be eaten

3. **Recycle**
 - Anaerobic digestion or compost

4. **Waste Management**
 - Incineration
 - Landfill
Enter... our panelists

- Jen McDonnell – Casella Organics: composting biosolids
- Dan Bell – Agri-Cycle: Biogas generation (manure plus food waste)
- Mac Richardson – LAWPCA: biosolids co-digestion with food waste
BIOSOLIDS: THE “FORGOTTEN” ORGANICS

Very roughly 100,000 tons produced, per year, in Maine
END USE OPTIONS*

<table>
<thead>
<tr>
<th>Option</th>
<th>😊</th>
<th>😞</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landfill</td>
<td>Often lowest cost, no issues with contaminants</td>
<td>Loss of nutrient value, space is limited</td>
<td>No free liquids</td>
</tr>
<tr>
<td>Composting</td>
<td>Recovers nutrients, high quality product</td>
<td>Art and science</td>
<td>High solids preferred</td>
</tr>
<tr>
<td>Land application</td>
<td>Local reuse, lower cost</td>
<td>Perception and permitting</td>
<td>Liquid or solid</td>
</tr>
<tr>
<td>Alkaline Stabilization</td>
<td>Potential for reuse, can be low capital</td>
<td>Limited end uses, reliance on liming agents</td>
<td>Product high in pH</td>
</tr>
<tr>
<td>Digestion</td>
<td>Produces power, can mitigate odor</td>
<td>Capital intensive</td>
<td>Liquid or solid</td>
</tr>
<tr>
<td>Drying</td>
<td>Volume reduction, versatile product</td>
<td>Capital intensive, high energy use</td>
<td>Popular in major metro areas</td>
</tr>
</tbody>
</table>

* Most prevalent, there are others such as lagoons, reed beds, and more
COMPOST OPTION ANALYSIS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Use</td>
<td>Issue in areas where land is scarce; neighbor impacts</td>
</tr>
<tr>
<td>Water Quality</td>
<td>Design and Operations</td>
</tr>
<tr>
<td></td>
<td>• Feedstocks</td>
</tr>
<tr>
<td></td>
<td>• Stormwater</td>
</tr>
<tr>
<td></td>
<td>• Leachate/evaporate</td>
</tr>
<tr>
<td></td>
<td>• Collection and treatment</td>
</tr>
<tr>
<td>Air Impacts</td>
<td>Design and Operations</td>
</tr>
<tr>
<td></td>
<td>• Biofilters</td>
</tr>
<tr>
<td></td>
<td>• Scrubbers</td>
</tr>
<tr>
<td></td>
<td>• Turn times</td>
</tr>
<tr>
<td></td>
<td>• Recipe</td>
</tr>
<tr>
<td>Opportunities to improve</td>
<td>• More feedstocks</td>
</tr>
<tr>
<td></td>
<td>• Alternative bulking agents</td>
</tr>
<tr>
<td></td>
<td>• Innovative products</td>
</tr>
</tbody>
</table>
THE END

Jen McDonnell
jen.mcdonnell@casella.com
INNOVATIVE & RELIABLE WASTE SOLUTIONS FOR THE 21st CENTURY
• CURRENT PRIMARY OUTLET FOR AGRI-CYCLE
• ACCEPTS VARIOUS FORMS OF ORGANIC WASTE
• CONVERTS ANIMAL & ORGANIC WASTE INTO ELECTRICITY
• RENEWABLE ENERGY COMPANY USING AD TECHNOLOGY
• ORGANIC WASTE COLLECTION COMPANY
• TRUCKING RESOURCES TO TRANSPORT A VARIETY OF MATERIAL
• SERVING CUSTOMERS IN THE NORTHEAST
THE PROCESS:

MANURE COLLECTED FROM COWS; OFF-FARM ORGANIC WASTE DELIVERED DAILY
EACH VESSEL IS ABOUT 60ft IN DIAMETER AND HOLDS APPROXIMATELY 400,000 GALLONS OF MATERIAL

MANURE AND OFF-FARM WASTE ADDED IN A 70%:30% RATIO; COMBINED MATERIAL HEATED TO AROUND 100°F AND MIXED INTERMITTENTLY FOR 20-30 DAYS
BIOGAS (60% METHANE, 40% CO2) BURNED TO POWER THE GENERATOR

GENERATOR PRODUCES ENOUGH HEAT TO REPLACE 700 GALLONS OF OIL EVERYDAY AND ENOUGH ELECTRICITY TO POWER 800 HOMES ANNUALLY
SOLID WASTE USED AS ANIMAL BEDDING AND/OR COMPOST

LIQUID WASTE USED AS CROPLAND FERTILIZER

ZERO WASTE
MAINE’S FIRST DEPACKAGING SYSTEM

- CAN PROCESS UP TO 20 TONS/HR
- PAPER, CARDBOARD, METAL, PLASTIC
TRUCKING NETWORK THAT INCLUDES COLLECTION TRUCKS AND TOTES TAILORED TO CLIENT NEEDS

WE DISPOSE OF:

• PRE- & POST-CONSUMER WASTES
• SOURCE SEPARATED MATERIALS
• PACKAGED FOOD WASTE
MULTIFACETED TRANSPORTATION FLEET

TRUCKING NETWORK THAT INCLUDES VACUUM TANKERS, DUMP TRAILERS, AND RENDERING TRUCKS

OUR LONG-HAUL ROUTES CONSIST OF:
• LIQUID, SOLID, & SLURRY RESIDUALS
• FATS, OILS, & GREASES (FOG)
Plans for 2017

- Exeter Agri-Energy plant expansion from 2MW to 3MW
- Capability to process up to 70,000 tons per year
- Agri-Cycle to add additional collection assets to grow service ME,NH,MA
- Build on our partnership with Ecomaine to increase food waste recycling
- Roll out of our new consolidation point in York, ME
THANK YOU!

www.agricycleenergy.com

DAN BELL
PARTNER/GENERAL MANAGER

dan@agricycleenergy.com

(207) 671-3642
WWRFs & Co-Digestion

- Pilot studies: Boston (MWRA), Metro Vancouver, Orange County Sanitation District, Dallas Water Utilities, San Francisco Public Utilities Commission, City of Los Angeles

- Whey receiving: Gloversville-Johnstown, NY

- Multiple feedstocks: Des Moines, IA; Essex Juntion, VT

- FOG receiving: Austin Water Utility, City of Tacoma

- Deicing fluid receiving: Philadelphia Southwest Plant,

- Active food waste / FOG / organics receiving: East Bay Municipal Utility District (EBMUD) – NET ENERGY PRODUCTION

- Nationally, Wastewater treatment uses 2-3% of all energy produced
EPA-Funded Research on Food Waste Digestion at East Bay MUD

- Evaluation of food waste digestion vs. municipal ww solids digestion
- Bench scale
- Evaluated:
 - Minimum MCRT
 - VS & COD loading
 - VS destruction
 - CH₄ production rates
 - Process Stability
 - Meso & thermo AD operating temperatures
Turning Food Waste into Energy at the East Bay Municipal Utility District (EBMUD)

EBMUD Helps Mitigate Climate Change Through Anaerobic Digestion

Fact: Food Waste Contributes to Climate Change

Food waste is one of the least recovered materials in the municipal solid waste stream and is one of the most important materials to divert from landfills. Food that is disposed of in landfills decomposes to create methane, a potent greenhouse gas that contributes to climate change.

- More about the importance of diverting food waste from landfills

Fact: Food Waste Can Be Transformed Into A Natural Fertilizer

Of the less than 3% of food waste recovered from the waste stream, composting is the prominent diversion method. Composting, either in your backyard or in a commercial facility, creates a natural fertilizer with many beneficial qualities.

- More information on composting

Fact: Food Waste Can Be Used to Generate Renewable Energy

http://www.epa.gov/region9/waste/features/foodtoenergy/index.html
Findings

Compared to wastewater solids, food waste...

- produces as much or more energy/ton of processed material fed into digesters
- Food waste digestion happens at a quicker rate
- VSD = 70 to 80% (compared to ~50 – 60% for wastewater solids)
- Food waste AD produces ~1/2 the residuals (by weight)
- MCRT of 15 days for food waste maximizes CH$_4$ concentration (65 – 70%), but 10 days is OK too
- In short: food waste is more readily biodegradable

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Food Waste 15-day MCRT AVG (Range)</th>
<th>Food Waste 10-day MCRT AVG (Range)</th>
<th>Municipal Wastewater Solids 15-day MCRT AVG (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane Production Rate</td>
<td>ft3/dry ton applied</td>
<td>13,300 (9,800 – 17,000)</td>
<td>9,500 (6,600 – 14,400)</td>
<td>10,000 (7,500 – 12,600)</td>
</tr>
<tr>
<td></td>
<td>ft3/wet ton delivered</td>
<td>3,300 (2,500 – 4,300)</td>
<td>2,400 (1,700 – 3,600)</td>
<td>NA (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>m3/dry metric ton applied</td>
<td>420 (500 – 550)</td>
<td>300 (200 – 450)</td>
<td>310 (230 – 390)</td>
</tr>
<tr>
<td></td>
<td>m3/wet metric ton delivered</td>
<td>100 (75 – 135)</td>
<td>75 (50 – 110)</td>
<td>NA (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>ft3/day/1,000 ft3 digester volume</td>
<td>2,300 (1,100 – 3,200)</td>
<td>2,600 (1,800 – 3,800)</td>
<td>750 (550 – 930)</td>
</tr>
<tr>
<td>Electricity Production Rate</td>
<td>kWh/dry ton applied</td>
<td>990 (730 – 1,300)</td>
<td>710 (490 – 1,080)</td>
<td>750 (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>kWh/wet ton delivered</td>
<td>250 (190 – 320)</td>
<td>180 (120 – 270)</td>
<td>NA (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>kWh/dry metric ton applied</td>
<td>1,100 (800 – 1,400)</td>
<td>780 (540 – 1,190)</td>
<td>830 (620 – 1,040)</td>
</tr>
<tr>
<td></td>
<td>kWh/wet metric ton delivered</td>
<td>280 (200 – 350)</td>
<td>200 (140 – 300)</td>
<td>NA (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>kWh per year/1,000 ft3 digester volume</td>
<td>43,700 (21,200 – 62,100)</td>
<td>57,000 (43,600 – 73,700)</td>
<td>14,600 (10,700 – 18,600)</td>
</tr>
<tr>
<td>Household Energy Equivalent Rate</td>
<td>households/year/100 tons/day</td>
<td>1,100 (800 – 1,400)</td>
<td>800 (550 – 1,200)</td>
<td>NA (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>households/year/100 metric tons/day</td>
<td>1,200 (880 – 1,500)</td>
<td>880 (600 – 1,300)</td>
<td>NA (560 – 940)</td>
</tr>
<tr>
<td></td>
<td>households per year/1,000 ft3 digester volume</td>
<td>7.3 (3.6 – 10.3)</td>
<td>8.4 (5.8 – 12.3)</td>
<td>2.4 (1.8 – 3)</td>
</tr>
</tbody>
</table>

Notes:
1. Dry ton applied refers to food waste solids applied to the digesters after processing a wet ton delivered load.
2. Wet ton delivered refers to food waste tonnage (including water) delivered by the hauler prior to processing.
3. Calculated based on 1 ft3 CH$_4$ = 1,000 BTUs and 1,400 BTUs = 1 kWh.
4. Calculated based on 2001 EIA residential energy survey for CA where average household energy use is 6,000 kWh annually.
5. Based on data from previous BLMUD bench-scale pilot study. Digesters were fed thickened waste activated sludge and screened primary sludge.
6. Data is not typical of municipal wastewater solids loading to digesters.
7. For annual data, 100 tons/day food waste assumes processing 5 days per week; 52 weeks per year.
8. For annual data, it is assumed municipal wastewater solids loading occurs 5 days per week; 52 weeks per year.
9. A typical food waste load delivered weighs approximately 20 tons, and has a 25% TS content.
10. Approximately 10% of the delivered food waste as total solids (TS) mass is discharged in reject stream.
11. Data range presented is from stable digester operating periods for both mesophilic and thermophilic digesters.
12 AVG= Average, NA=Not Applicable.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Food Waste Pulp</th>
<th>Wastewater Solids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile Solids in Feed (%)</td>
<td>85–90</td>
<td>70–80</td>
</tr>
<tr>
<td>Volatile Solids Loading (lbs/ft³-day)</td>
<td>0.60 +</td>
<td>0.20 max</td>
</tr>
<tr>
<td>COD Loading (lbs/ft³-day)</td>
<td>1.25 +</td>
<td>0.06–0.30</td>
</tr>
<tr>
<td>Total Solid Fed (%)</td>
<td>10 +</td>
<td>4</td>
</tr>
<tr>
<td>Volatile Solids Reduction (%)</td>
<td>80</td>
<td>56</td>
</tr>
<tr>
<td>Hydraulic Detention Time (days)</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Methane Gas Produced (meter³/ton)</td>
<td>367</td>
<td>120</td>
</tr>
<tr>
<td>Gas Produced (liters/liter of digested volume)</td>
<td>58</td>
<td>17</td>
</tr>
<tr>
<td>Biosolids Produced (lbs/lbs fed)</td>
<td>0.28</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Benefits of Codigestion to a Municipality

- All types of organic waste can be treated in one plant
- Efficient recovery of biogas, a renewable energy source
- Closed system with a minimum of smell/odor
- Energy can be recovered as electrical power, combined heat & power, compressed biogas (CBG) upgraded to vehicle fuel
- Revenue from tip fees (SF Bay agencies $0.03-$0.15/gallon)
LAWPCA Anaerobic Digestion Facilities
System Description

- Two concrete digesters
 - 65 feet diameter, 25 foot side wall depth
 - ~700,000 gallons each
 - Sized for 15 day SRT at maximum month flows and loads
 - Concrete, submerged fixed covers

- Pump mixing system

- Sludge recirculation through HEX for heating

- Digested sludge storage tank with membrane cover

- Outside waste acceptance – modify existing septage receiving station
Codigestion Impacts on a WRRF

Challenges:
- Preprocessing: off-site? Pumpable? Truckable?
- Control of incoming wastes/need to establish permit program
- Pretreatment of wastes to remove debris and protect equipment
- Ensuring sufficient digester capacity
- Potential for process upsets – need to provide uniform feed
- Effect on biosolids and/or organics end use
- Unknown effect on nutrient content in sidestream
- Odor potential at receiving area and during maintenance
- Public outreach
Available wastes in LAWPCA region

1. Fats, Oils, Grease (FOG)
2. Airplane De-icing Fluids (Glycols)
3. Other Glycol Sources
4. Pioneer Plastics / Pionite
5. Waste Oils
6. Machine Coolant (Halogens)
7. Glycerin
8. Landfill and Transfer Station Leachate
9. Dairy Waste (whey, washwater)
10. Brewery Waste
11. Organic Portion of Municipal Solid Waste (mostly consumer food waste)
12. Food Processing Wastes
13. Beverage Bottlers
14. Slaughterhouse Wastes
Estimating Financial Benefits

Tipping Fees are important, but additional factors to consider include, but are not limited to:

- Additional revenues or cost offsets from increased biogas production.
- Costs of infrastructure needed to accept, store, and meter in the outside wastes.
- Costs to process the additional solids, including dewatering, polymer, labor, etc.
- Costs to manage the additional biogas, including cleaning, storage, and combustion.
- Feed rate of LAWPCA solids – 58,000 gals/day
Tipping fees

- **a.** Current Rates for FOG run from $0.6 per gallon (Anson-Madison) to $0.14 per gallon (South Berwick)

- Other wastes, including Food Processing may have higher tipping fees.

- Transportation and Handling have a huge impact on the “received at plant” price.

- Markets in Maine remain immature.
These Materials can be hard to handle!
Conclusions

- LAWPCA built digesters for solids reduction.
- Taking in outside wastes is optional; not banking on it.
- There is competition for wastes – lots of potential digester & composting projects.
- Generators not interested in long-term contracts
- Municipal AD has benefit of existing infrastructure for managing solids & side stream.
- Phased implementation to taking outside wastes helps operators adjust.
Combined Heat and Power (CHP) System Selection

- Estimated biogas production = 170,000 ft³/day

- Cogeneration systems considered
 - Microturbines
 - Reciprocating Engines
 - Two – 230 kW engines (received $330,000 Efficiency Maine Grant)

- Electricity used on site:
 - Provides all power for new digestion equipment
 - Reduces amount of power purchased from the utility for WW treatment

- Heat Reclaimed from engines
 - Provides heat for anaerobic digesters
Biogas Treatment

- Biogas Treatment System
 - Foam separator and condensate/sediment removal traps
 - H₂S removal using Iron Sponge or SulfaTreat media
 - Moisture removal and gas boosting skid
 - Siloxane removal system to be added in the future, if necessary
Sure, a Pretty Picture, but aren’t we supposed to be using that gas?
Project Benefits

- Benefits that justify capital and O&M costs:
 - Reduces total solids by approximately 40%.
 - Eliminates the need to add lime to biosolids prior to land application.
 - Reduces biosolids odors, making land application program more acceptable.

- Eliminates transportation and tipping fees to haul biosolids to distant landfill.

- Produces biogas to generating electricity/heat for use on site.

- Potential for additional revenue from acceptance of outside wastes.