Linking genotype to phenotype in a changing ocean: estimating standing genetic variation in a blue mussel stress response with genome wide association

Sarah Kingston, Pieter Martino, Marko Melendy, Floyd Reed*, Dave Carlon

Coastal Studies Center, Bowdoin College *University of Hawaii at Manoa

http://marine.coastal.edu/gulfstream/p4.htm

The Oceans in 2100

Cumulative negative effect

Mora, C. *et al.* 2013. Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century. *PLoS Biology* 11: e1001682.

A. Pershing *et al.* 2015. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. *Science* (350, Issue 6262) pp. 809-812. DOI:10.1126/science.aac9819

Blue Mussels – genus Mytilus

Growing aquaculture species in Maine

- Calcification model effects of stress on calcification and metabolic pathways beginning to be worked out
- How much genetic variation in stress response exists in natural populations?
 - Ecosystem Will natural selection "rescue" natural populations from climate change?
 - Aquaculture Can we identify genetic strains that resist climate change?

Genotype and Phenotype

How much genetic variation in stress response exists in natural populations?

 $V_{p} = V_{g} + V_{e} + (V_{g} \times V_{e})$

Estimating V_g

Power of the *M. edulis* x *M. trossolus* hybrid zone

admixed – hybrids

Sampling

Experimental Design

- □ Measure phenotype (V_p) : shell calcification rate under physiological stress
- Common garden experiment: 14-day exposure, multifactor climate stress treatment
- Sequence highly multilocus genotype (V_g): next gen SNP assay
- □ Utilize genome-wide association survey (GWAS) to link genotype and phenotype

Methods – Common Garden Stress Exposure

CONTROL: high food availability, ambient summer temp (17C), ambient pH (~8.0) n = 256

TREATMENT: low food availability, high temp (20C), lower pH (7.7) n = 648

Methods – Phenotype and Genotype

V_p: measure shell calcification rate via change in buoyant weight

V_g: SNP genotypes via GBS (genotype by sequencing)

- De novo assembly of millions of short sequences to score highly multilocus genotypes
- Measure population parameters (genetic distance, individual ancestry)
- Statistically associate phenotype and genotype using two models:
 - Univariate Linear Mixed Model
 - Bayesian Variable Selection Regression

Results – Stress Phenotypes

□ Variance in growth *increases* under stress

Bartlett's test for heteroskedasticity across treatments: p < 0.0003 for both years</p> **Results - Genotyping**

- □ Genotype-by-sequencing SNP assay 322 individuals (stress phenotype group 2014)
- **220,093,969 78bp reads (filtered)**
- 171,645 SNP loci (after *de novo* assembly and locus filtering)

Results - Genotypes

Results - Genotypes

STRUCTURE plot – population assignmen Dark blue – *Mytilis trossulus,* Light blue – *Mytilius edulis*

Results - Association

posterior probability distributions

Results - Association

linear p-value	posterior probability	effect size	locus
1.27E-13	0.999	8.08	104243
3.84E-07	0.869	5.18	115310
2.07E-09	0.416	4.10	71596
4.07E-08	0.141	2.82	72070

GWAS – 4 loci associated with stress phenotype: calcification rate

Anonymous loci; no hits from *M. galloprovincialis* genome nor public databases

Continuing Research

Gene Expression Data

RNAseq mRNA library for 24 mussels

- selection of high and low calcifiers, geographic variation
- **298,514,080 150bp reads**
- □ 77,565 transcripts (assembled to *M. galloprovincialis* genome)
- Test for differential expression under climate stress

Gene Expression Results (Pieter Martino's Honors Thesis)

 Control vs. climate stress - 1527 significantly differentially expressed loci
Strong vs. weak calcifiers - 1377 significantly differentially expressed loci

Pieter Martino

Implications

- We have discovered 4 QTL for climate stress tolerance in wild populations
- Image: Image: constraint of a constraint of
- Our work provides a framework for understanding the gene regulatory network underlying calcification

Future

- Develop genetic assay for screening tolerant aquaculture strains
- Larval and juvenile susceptibility

Acknowledgments

Co-authors

Bowdoin College

Maine INBRE

Caitlin Cleaver, Alice Anderson, Sam Hallowell, Barney Hallowell – Hurricane Island Foundation

Christopher Tremblay, Toby Stephenson, Sean Todd, Dan DenDanto – College of the Atlantic, Allied Whale

Bill Schlesinger and Lisa Dellwo – Cobscook Bay field site

Bowdoin Scientific Station at Kent Island – Mark Murray

Ogunquit Town Offices

Roque Bluffs State Park

Laura Sewall – Bates College, Bates-Morse Mountain Conservation Area

Damon Gannon; Janet Gannon

Robert Barron; Erin Voss; Jenna Watling; Selena Lorrey; Aidan Short; Ben Eisenberg

Steven Allen

Linking genotype to phenotype in a changing ocean: estimating standing genetic variation in a blue mussel stress response with genome wide association

Kingston, S.; Martino, P.; Melendy, M.; Reed, F; Carlon, D. Bowdoin College, Department of Biology and Coastal Studies Center