MAINE WATER CONFERENCE March 30, 2017

Designing Infrastructure for an Uncertain Future: Assessing Lifecycle Costs of Culvert Designs

Alex Gray GEI Consultants, Inc.

Living in a Changing Climate

- Construction costs for larger structures are generally more expensive than replacing in kind → limits the number of projects that can be undertaken over time
- Is this trade-off simply the price we pay for living in a changing climate?

Pilot Project: Middle River Bridge, Machias Causeway

- Tested two design options for the aging causeway tidal gates against damages from storm surge and sea level rise to calculate lifecycle costs
 - Replace with box culvert -
 - Replace with single span

Bridge	Damages	Bridge	Total
Design	(\$1000)	Cost (\$1000)	Costs (\$1000)
		(\$1000)	(\$1000)
Box Culvert	607.3	2,200 (2,807.3
Single Span	862.8	2,400	3,262.8

Pilot Project: Scarborough and Bowdoinham Culverts, Bath Bridge

Culvert Replacement Designs and Lifecycle Costs 2,500,000 Critecycle Costs (\$) 1,500,000 1,000,000 500,000 Scenario Low High 500,000 0 6.0 ft Replace 3.3 ft in kind SLR SLR Designs

Pilot Project: Scarborough and Bowdoinham Culverts, Bath Bridge

Culvert Replacement Designs and Lifecycle Costs

Pilot Project: Scarborough and Bowdoinham Culverts, Bath Bridge

Heat Map of Lifecycle Costs

Pilot Project: Scarborough and Bowdoinham Culverts, Bath Bridge

Heat Map of Lifecycle Costs

Calculating Lifecycle Cost

• Lifecycle cost =

construction cost+ potential damages over time

- Construction costs → MaineDOT
- Potential damages → Sea level rise curves, depth-damage functions and exceedance curves

Storms and Probability

Depth-Damage Functions

Relationship Between Depth of Water and Building Damage

Annualized Risk

Annualized Risk

Adding Sea Level Rise

Analyzing Culverts Based on Increased Flows

- Test 3 climate scenarios:
 - Low (no change)
 - Medium (increased runoff by 24%)
 - High (increased runoff by 52%)
- Test 3 design types:
 - Q100
 - Q100 + 24%
 - Q100 + 52%
- Calculate lifecycle costs (construction + damage over time)

Analyzing Culverts Based on Increased Flows

Water Levels from Runoff on Q100+52% Design

Culvert-specific Depth-Damage Functions

Culvert Depth-Damage Function

Results

- Designing for today's 100-year event was the most robust design across all climate scenarios
- MaineDOT wanted to check the results using a Q25 design...

Results

New Sharon Culvert 1

Results

New Sharon Culvert 2

Implications

- MaineDOT is NOT going to downsize culverts
- MaineDOT does NOT have to upsize all culverts
- Strategic opportunities to keep costs low in order to replace more aging infrastructure

- "All models are wrong some models are useful."
 - Is this a useful model?
 - If not, how could it be improved?

Improving the Model

- Public sentiment cost
- Added cost for replacing in kind if not environmentally friendly
- Calibrating model with water surface elevations and updated repair costs after storms

Summary

- Is the trade-off of addressing fewer culvert replacement projects in order to increase culvert sizes simply the price we pay for living in a changing climate?
- It is if we decide to increase the size of every culvert...
 - Results from this study show that we can be more strategic with our culvert improvements → larger culverts not always the best design

Summary

- Is the trade-off of addressing fewer culvert replacement projects in order to increase culvert sizes simply the price we pay for living in a changing climate?
- It is if we decide to increase the size of every culvert...
 - Results from this study show that we can be more strategic with our culvert improvements → larger culverts not always the best design

Alex Gray agray@geiconsultants.com (207) 797-8903

