Sturgeon of the Penobscot and the Gulf of Maine

All photos take pursuant to ESA permit #1595

Collaborative effort:

Mike Kinnison Joe Zydlewski **Stephen Fernandes** Phillip Dionne Kevin Lachapelle **Theresa McGovern** Christine Lipsky James Hawkes Gail Wippelhauser

≊USGS

Research started in 2006: Objectives focused on the Penobscot

්Confirm presence of shortnose sturgeon

ওIdentify critical habitat

➢Estimate abundance

All photos take pursuant to ESA permit #1595

Current research objectives

Shortnose sturgeon

- 1. Refine a population model and sampling design for Gulf of Maine shortnose sturgeon
- 2. Use non-invasive techniques to estimate aggregations
- 3. Document spawning in the Penobscot River

Atlantic sturgeon

- Document habitat use of the Penobscot River
- Document wintering habitat (marine)

Methods

(uppenph

Movement: Shortnose sturgeon 2006-2007

Fernandes et al. 2008 in press

Movement-implications for population model 2006-2007...1. Refine a population model

Fernandes et al. 2008 in press

Abundance Estimate: Robust Design

Seasonal estimates survival, capture probability, abundance, *and site fidelity*

• Allows for grouping of multiple sampling events under a primary sampling session

Preliminary Results

Sample Period	Survival (S)	SE	Capture/ Recapture (p)	SE
(1) 2006-2007	1.000	2 08E-05	0.0037241	9 77E-04
(2) Summer 2008	1.000	2.08E-05	0.0030632	0.0011553
(3) Fall 2008	1.000	2.08E-05	0.0128449	0.0025489

Sample Period	Emigration (γ'')	SE	Immigration (1-γ')	SE	Abundance (N)	SE
(1) 2006-2007	~	~	~	~	906	226
(2) Summer 2008	1.56E-09	1.11E-04	~	~	1739	676
(3) Fall 2008	2.84E-11	1.05E-05	0.4297026	4.53E-05	1007	214

Compared Estimates

Another opportunity to estimate abundance...2. non-invasive technique

DIDSON

Analysis: Nov 15

Nov 15

Density

- 0.000000
- 0.000001 0.004693
- 0.004694 0.008428
- 0.008429 0.032257
- 0.032258 0.267335
- 0.267336 0.568779

Nov 15 densities Prediction Map [Nov15Copy_Features].[Density] Filled Contours 0.000 - 0.002 0.002 - 0.007 0.007 - 0.031 0.031 - 0.121 0.121 - 0.478 0.478 - 0.569

Predicted 378 fish Water Temp 6.67 C

Abundance Estimate

- Nov 15: 378
- Nov 17: 372
- Nov 21: 758
- Average: 503 ± 242
- O Previous Estimates:

667 fall residents

3. Documenting Spawning

All photos take pursuant to ESA permit #1595

Movement out of the winter site

Using a 2D bathymetric-based model to examine habitat suitability

What about Atlantic sturgeon?

All photos take pursuant to ESA permit #1595

SCUTES program

Students Collaborating to Undertake Tracking Efforts for Sturgeon

School of MARINE SCIENCES

Future Work

WAAINE

Acknowledgments

Protecting nature. Preserving life."

