

Understanding the competitive sorption between short-chain and long-chain PFAS during granular activated carbon treatment

Yi Zhang¹, Cheng-Shiuan Lee¹, Onur Apul², <u>Arjun Venkatesan¹</u>

¹ Stony Brook University

² University of Maine

Widespread PFAS Occurrence in U.S.

PFAS in Long Island, NY

White Plains

548 #1 Westchester

New York

rson

Stamford

Detections in public water supply

Bridgeport

Long Island

Sound

Potential sources

PFAS treatment technologies: a summary

TECHNOLOGIES

INEFFECTIVE TECHNOLOGIES

Treatment Type	Technology Category	Technology
Sequestration Technologies	Sorption	Activated Carbon Anion Exchange Resin Biochar Zeolites/clay minerals
	Membrane Filtration	Reverse Osmosis Nanofiltration
	Coagulation	Specialty Coagulants
Transformation or destruction technologies	Redox treatment	Electrochemical Electron beam Ozone Plasma
	Other	Sonochemical Thermal Biological

Removal by Granular Activated Carbon (GAC)

Most common approach for PFAS treatment

Sorption Mechanism:

- Hydrophobic interactions dominant mechanism
- Long-chain PFAS with higher hydrophobicity show better removal compared to short-chain PFAS
- Electrostatic interactions minor but important for short-chain PFAS

Granular mean particle diameter (1mm)
Powdered mean particle diameter (0.043 mm)

Bed Volumes (x10,000)

- PFBA breakthrough occurred within 2 months
 - C/C₀ >1 –accumulated PFBA being replaced by other competing species (longchain PFAS)
- Lead vessel breakthrough
 - PFHxA/PFOA ~10 months
 - PFOS ~ 18 months

Research Objectives

Understand competition between short-chain and long-chain PFAS using controlled batch experiments

Influence of cations on PFAS sorption

Improve short-chain PFAS removal by GAC (ongoing)

Bisolute Competition

Experimental conditions: 4 mg/L GAC in 250 mL deionized water for 14 days mixing

Bisolute

Results – Bisolute Competition

• Kinetics fitting—sorption capacity (Qe) fitted from pseudo-second-order model

Competition/blockage of adsorption site by long-chain PFAS

Desorption of Short-chain PFAS

Pre-loaded (equilibrated) short-chain
 PFAS on GAC (14 days); long-chain PFAS was added on day 14

Desorption happens irrespective of molar ratio

Displacement of short-chain by long-chain PFAS

Impact of cations on short-chain PFAS sorption

Conc. (M)		Ionic Strength (M)	
Na ⁺	0.001	0.005	
Na ⁺	0.1	0.1	
Ca ²⁺	0.05	0.1	

Single solute + salt

Impact of cations on short-chain PFAS sorption

- Removal = $(1-C_t/C_0)*100\%$
- Cation inhibition % = (1- removal in matrix/removal in D.I.) * 100

Yu et al, 2009

Summary

- Short-chain PFAS was suppressed in the presence of long-chain PFAS: while longchain PFAS was not impacted by the presence of short-chain PFAS
- Long-chain PFAS replaced short-chain PFAS on adsorbed GAC surface at various molar ratios
- Presence of inorganic cation suppressed the short-chain PFAS sorption, while having little effect on long-chain PFAS sorption

Ongoing Work

- Developing approaches to minimize competition between short-chain vs. longchain PFAS: (i) additives; (ii) combination of technologies
- Rapid Small Scale Column Testing (RSSCT) vs. pilot systems
- Combination of technologies: GAC + ion exchange

Air-bubbling to remove PFAS

DI water matrix

Destructive Technologies for PFAS

Electrochemical Oxidation

Electron Beam

In collaboration with Fermi Accelerator National Laboratory Non-thermal Plasma

In collaboration with Brookhaven National Lab

Acknowledgment

- Dr. Yi Zhang
- Dr. Onur Apul
- Kaushik Londhe, Dr. Cheng-Shiuan Lee, Dr. Amith Maroli, Dr. Xiayan Ye
- NYS Center for Clean Water Technology Team
- Funding sources

Contact: Arjun.Venkatesan@stonybrook.edu

Twitter: @nysccwt; @arjun_water

https://www.stonybrook.edu/cleanwater/

Sign up for our email list: ccwt@stonybrook.edu

