Blacklegged Ticks, Climate, and Deer in Maine

Norman Anderson - Anderson Environmental Health

Benjamin Stone - Tufts University School of Medicine

A generalized additive model correlating blacklegged ticks with white-tailed deer density, temperature, and humidity in Maine, USA, 1990–2013 (Elias et al. 2021)

"tick-deer-climate model"

Tick-deer-climate model results

higher nymph abundance was correlated with:

- time
- higher deer density
- seasonal climatology
 - earlier degree-day accumulation
 - warmer winters
 - > relative humidity

Problem: rise in tick-borne disease

statewide case data: Maine Center for Disease Control

Points to remember about blacklegged tick ecology

- feed as larvae, nymphs, adults

- white-tailed deer: >90% adult blood meals

- climate: 99% time off-host

Prior to Maine tick-deer-climate model

- ticks reduced only if deer lowered below 8–13/deer mi² (3 –5/km²) ¹

- research needs²:
 - . quantify 'saturating' relationship
 - . account for winter cold

ticks

¹S. Telford 1993, 2002; K. Stafford et al. 2003, 2007; H. Kilpatrick et al. 2014; ²A. M. Kilpatrick et al. 2017

Prior to Maine tick-deer-climate model

- Maine has it all
 - . long-term data (ticks, deer, weather)
 - . low deer densities
 - . 4.5° latitude S to N
 - . warming winters, esp. N

Tick data

data: Maine Medical Center Research Institute statewide passive surveillance program

Deer data

29 Wildlife Management Districts: Maine Dept. of Inland Fisheries and Wildlife

Climatology data, e.g., degree-day accumulation

maps: Sean Birkel, CCI, University of Maine

Tick-deer-climate model methods

- data: sum for *each* WMD (n = 29) by year, 1990 2012 (n = 23)
- nymphs
- deer
- seasonal climatology
 - winter/spring/fall avg. min temp
 - summer avg. max temp & relative humidity,
 - annual degree-day accumulation
- model: generalized additive model (nonlinear/smooth, visual)

Tick-deer-climate model results

74% of variation in nymphs explained

nymphs ~ s(deer)

nymphs $\sim s(deer) + s(winter temp)$

Quantify the 'saturating' relationship while accounting for winter cold

History of deer herd reduction for tick control on Maine's offshore islands (Elias et al. 2021)

- 13 of 14 had deer, Monhegan removed, 9 of 14 culled (reduced) at least once 1992-2019
- culls motivated by Lyme but also by damage to vehicles, gardens, forests
- 15-60/mi² where problems persist
- no ITM (Integrated Tick Management)

ITM toolbox, e.g., Stafford et al. 2017

target	methods
landscape/vegetation	hardscaping, brush/leaf litter removal
host-seeking ticks	reduce rodent harborage, acaricides (synthetic, botanical, biological)
rodents	topical acaricide, vaccine, antibiotics
deer	reduction, fencing, topical/systemic acaricide

combine short- and long-term strategies for sustained control (Telford 2017)

What's next?

Vector control districts w/ professionally staffed ITM programs

Public Health Agencies

Federal/State/Local

Researchers

Government/Academic

Pest Management Industry

Pest management professionals

Pesticide companies

Public

Individual residential Community level scale up to area-

wide

ITM Triad (Eisen & Stafford 2021)

Collaborators & Support

Maine Islands Coalition

Blacklegged Ticks versus Climate and Deer in Maine

Questions?

Support for deer herd reduction on offshore islands of Maine, U.S.A. (Elias et al. 2021)

- 2016 survey of island residents, 793 respondents, 84% agreed LD a problem, 61% supported deer herd reduction
- support greater if bitten or sick
- tick problem not just about deer
- responsibility on town/state, < individuals

