CURRICULUM VITAE

Andrew J. Goupee, Ph.D.

Donald A. Grant Associate Professor of Mechanical Engineering Department of Mechanical Engineering University of Maine • Orono, ME 04469 (207) 581-3657 • agoupe91@ maine.edu https://umaine.edu/mecheng/goupee/

Education

B.S.—Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME	May 2003
M.S.—Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME	August 2005
Ph.D.—Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME Advisor: Dr. Senthil Vel	May 2010
Professional Experience	
Donald A. Grant Associate Professor of Mechanical E Department of Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME	ngineering July 2021 to Present
Associate Professor of Mechanical Engineering Department of Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME	September 2020 to June 2021
Assistant Professor of Mechanical Engineering Department of Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME	September 2018 to September 2020
Libra Assistant Professor of Mechanical Engineering Department of Mechanical Engineering UNIVERSITY OF MAINE, Orono, ME	September 2014 to August 2018
Cooperating Faculty Advanced Structures and Composites Center UNIVERSITY OF MAINE, Orono, ME	September 2014 to present
Research Assistant Professor Advanced Structures and Composites Center UNIVERSITY OF MAINE, Orono, ME	March 2010 to August 2014

Honors and Awards

- University of Maine Advanced Structures and Composites Center Annual Director's Awards, Outstanding Faculty Member Award, 2020.
- University of Maine College of Engineering Early Career Teaching Award, 2018
- Alumni Association Monthly Faculty Excellence Award for October, 2018
- University of Maine College of Engineering Early Career Research Award, 2016
- Bangor Savings Bank and Lyndon Paul LoRusso Faculty Development Award, 2015
- Co-author, OMAE 2014 Best Paper Award, Ocean Renewable Energy Symposium, 2015
- Co-author, The Texas Section of SNAME, 19th Offshore Symposium Best Paper Award, 2014
- University of Maine Advanced Structures and Composites Center Annual Director's Awards, VolturnUS Team Award and Outstanding Faculty Member Award, 2014
- University of Maine Advanced Structures and Composites Center Annual Director's Awards, VolturnUS Team Award, 2013
- Maine Economic Improvement Fund Fellowship, 2008
- University of Maine College of Engineering Graduate Assistant Research Award, 2005
- University of Maine College of Engineering Outstanding Teaching Assistant Award, 2005
- University of Maine Provost Fellowship, 2003
- University of Maine Outstanding Student of the College of Engineering, 2003
- University of Maine Valedictorian, 2003

Publications

Book Chapters

[1] **A.J. Goupee**, S.M.H. Gueydon and A.N. Robertson, *Floating Wind Turbine Tank Testing*, In: *Floating Offshore Wind Energy: The Next Generation of Wind Energy*, J. Cruz and M. Atcheson Eds., Springer, 206-233, 2016.

Refereed Journal Articles

- [1] J. Ward, **A.J. Goupee**, A.M. Viselli and H. J. Dagher, 2021, Experimental investigation into the dynamic behavior of a floating offshore wind turbine stabilized via a suspended counterweight, *Ocean Engineering* **228**(15):108906.
- [2] J. Ward, **A.J. Goupee**, A.M. Viselli and H. Dagher, 2021, The effect of counterweight mass and line stiffness on the global dynamic performance of a hanging-mass floating offshore wind turbine, *Journal of Offshore Mechanics and Arctic Engineering* 143(5):052001.
- [3] W.A. Friess and A.J. Goupee, 2020, Using continuous per evaluation in team-based capstone projects: A case study, *IEEE Transactions on Education* **63**(2):82-87.
- [4] H.L. Allen, A.J. Goupee, A.M. Viselli, C.K. Allen and H.J. Dagher, 2020, Experimental investigation of an annular floating offshore wind turbine hull and comparison to DeepCwind model test data, *Journal of Offshore Mechanics and Arctic Engineering* 142(2):022001.
- [5] M. Hall and **A.J. Goupee**, 2018, Validation of a hybrid modeling approach to floating wind turbine basin testing, *Wind Energy* **21**(6):391-408.

- [6] M. Hall, **A. Goupee** and J. Jonkman, 2018, Development of performance specifications for hybrid modeling of floating wind turbines in wave basin tests, *Journal of Ocean Engineering and Marine Energy* **4**(1):1-23.
- [7] R. Urbina, J.M. Newton, M.P. Cameron, R.W. Kimball, A.J. Goupee and K.P. Thiagarajan, 2017, Characterization of a wind generation system for use in offshore wind turbine development, *Journal of Offshore Mechanics and Arctic Engineering* 140(2):021901.
- [8] A.C. Young, W. Davids, A.J. Goupee and J.D. Clapp, 2017, Computationally efficient finite-element modeling of braided, inflatable structural members with axial reinforcing, *Journal of Engineering Mechanics* 143(6):04017017.
- [9] A.C. Young, W.G. Davids, D.J. Whitney, J.D. Clapp and A.J. Goupee, 2017, Structural testing and analysis of a braided, inflatable fabric torus structure, *Acta Astronautica* 139:189-200.
- [10] A.C. Young, A.J. Goupee, H.J. Dagher and A.M. Viselli, 2017, Methodology for optimizing composite towers for use on floating wind turbines, *Journal of Renewable and Sustainable Energy* 9:033305.
- [11] **A.J. Goupee**, R.W. Kimball and H.J. Dagher, 2017, Experimental observations of active blade pitch and generator control influence on floating wind turbine response, *Renewable Energy* **104**:9-19.
- [12] K.A. Berube, A.J. Goupee and R.A. Lopez-Anido, 2016, Determining the flexural and shear moduli of fiber reinforced polymer composites using three-dimensional digital image correlation, *Experimental Techniques* 40(4):1263-1273.
- [13] J.D. Clapp, A.C. Young, W.G. Davids and A.J. Goupee, 2016, Bending response of reinforced, inflated, tubular braided fabric structural members, *Thin-Walled Structures* 107:415-426.
- [14] J.D. Clapp, W.G. Davids, **A.J. Goupee** and A.C. Young, 2016, Experimental determination of inflatable, braided tube constitutive properties, *Strain* **52**:148-161.
- [15] A.M. Viselli, A.J. Goupee, H.J. Dagher and C.K. Allen, 2016, Design and model confirmation of the intermediate scale VolturnUS floating wind turbine subjected to its extreme design conditions offshore Maine, *Wind Energy* 19:1161-1177.
- [16] A.M. Viselli, A.J. Goupee and H.J. Dagher, 2015, Model test of a 1:8 scale floating wind turbine offshore in the Gulf of Maine, *Journal of Offshore Mechanics and Arctic Engineering* 137(4):041901-1.
- [17] M. Hall and A. Goupee, 2015, Validation of a lumped-mass mooring line model with DeepCwind semisubmersible model test data, *Ocean Engineering* **104**:590-603.
- [18] B.J. Koo, A.J. Goupee, R.W. Kimball and K.F. Lambrakos, 2014, Model tests for a floating wind turbine on three different floaters, *Journal of Offshore Mechanics and Arctic Engineering* 136(2):020907.
- [19] A.J. Goupee, B.J. Koo, R.W. Kimball, K.F. Lambrakos and H.J. Dagher, 2014, Experimental comparison of three floating wind turbine concepts, *Journal of Offshore Mechanics and Arctic Engineering* 136(2):020906.
- [20] H.R. Martin, R.W. Kimball, A.M. Viselli and A.J. Goupee, 2014, Methodology for wind/wave basin testing of floating offshore wind turbines, *Journal of Offshore Mechanics* and Arctic Engineering 136(2):020905.
- [21] A.J. Coulling, **A.J. Goupee**, A.N. Robertson, J.M. Jonkman and H.J. Dagher, 2013, Validation of a FAST semi-submersible floating wind turbine model with DeepCwind test data, *Journal of Renewable and Sustainable Energy* **5**:023116.

- [22] F.M.J. Naus-Thijssen, **A.J. Goupee**, S.E. Johnson, S.S. Vel, C. Gerbi, 2011, The influence of crenulation cleavage development on the bulk elastic properties and seismic wave velocities of phyllosilicate-rich rocks, *Earth and Planetary Science Letters* **311**:212-224.
- [23] F.M.J. Naus-Thijssen, A.J. Goupee, S.S. Vel and S.E. Johnson, 2011, The influence of microstructure on seismic wave speed anisotropy in the crust: Computational analysis of quartz-muscovite, *Geophysical Journal International*, 185:609-621.
- [24] **A.J. Goupee** and S.S. Vel, 2010, Multiscale thermoelastic analysis of random heterogeneous materials. Part II. Direct micromechanical failure analysis and multiscale simulations, *Computational Materials Science*, **48**:39-53.
- [25] S.S. Vel and **A.J. Goupee**, 2010, Multiscale thermoelastic analysis of random heterogeneous materials. Part I. Microstructure characterization and homogenization of material properties, *Computational Materials Science*, **48**:22-38.
- [26] **A.J. Goupee** and S.S. Vel, 2010, Transient multiscale thermoelastic analysis of functionally graded materials, *Composite Structures*, **92**:1372-1390.
- [27] A.J. Goupee and S.S. Vel, 2007, Multi-objective optimization of functionally graded materials with temperature-dependent material properties, *Materials & Design* 28:1861-1879.
- [28] **A.J. Goupee** and S.S. Vel, 2006, Optimization of natural frequencies of bidirectional functionally graded beams, *Structural and Multidisciplinary Optimization* **32**:473-484.
- [29] **A.J. Goupee** and S.S. Vel, 2006, Two-dimensional optimization of material composition of functionally graded materials using meshless analyses and a genetic algorithm, *Computer Methods in Applied Mechanics and Engineering* **195**:5926-5948.

Conference Proceedings

- E. Lenfest, A. Goupee, A. Wright and N. Abbas, Two-DoF model-informed controller gain tuning for several floating wind platforms, *Proceedings of ISOPE 2021, The 31st International Ocean and Polar Engineering Conference*, Rhodes, Greece, June 20-25, 2021.
- [2] C.K. Allen, A.J. Goupee and A.M. Viselli, A computationally-efficient frequency domain model of a floating wind turbine with hull-based tuned mass damper elements, *Proceedings* of ISOPE 2021, The 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, June 20-25, 2021.
- [3] D. Zalkind, M. Shields, E. Lenfest, A. Goupee and C. Allen, Open-loop control of adjustable tuned mass dampers for floating wind turbine platforms, *Proceedings of ISOPE* 2021, The 31st International Ocean and Polar Engineering Conference, Rhodes, Greece, June 20-25, 2021.
- [4] E. Lenfest, A.J. Goupee, A. Wright and N. Abbas, 2020, Tuning of nacelle feedback gains for floating wind turbine controllers using a two-DoF model, *Proceedings of OMAE 2020*, *ASME 39th International Conference on Ocean, Offshore and Arctic Engineering*, Fort Lauderdale, Florida, USA, June 28-July 3, 2020.
- [5] J.C. Ward, **A.J. Goupee**, A.M. Viselli and H.J. Dagher, 2020, Influence of the mass and line stiffness on the dynamic line tension of a floating offshore wind turbine stabilized by a suspended counterweight, *Journal of Physics: Conference Series* **1542**:012043.
- [6] W.M. West, **A.J. Goupee**, A.M. Viselli and H.J. Dagher, 2020, The influence of synthetic mooring line stiffness model type on global floating offshore wind turbine performance, *Journal of Physics: Conference Series* **1542**:012044.

- [7] W.A. Friess and **A.J. Goupee**, Transformation of a mechanical engineering capstone experience, *Proceedings of the 2019 IEEE Frontiers in Education Conference*, Cincinnati, Ohio, October 16-19, 2019.
- [8] C.K. Allen, A.J. Goupee, J. Linder and R. Berry, Simulation of a floating offshore wind turbine with an integrated response mitigation technology, *Proceedings of IOWTC, ASME 1st International Offshore Wind Technical Conference*, San Francisco, California, November 4-7, 2018.
- [9] J.C. Ward, M.J. Fowler, A.M. Viselli, A.J. Goupee and H.J. Dagher, Design and validation of a multi-scale model floating offshore test wind turbine, *Proceedings of IOWTC, ASME 1st International Offshore Wind Technical Conference*, San Francisco, California, November 4-7, 2018.
- [10] K.A. McDonald, A.J. Goupee, K.A. Berube and R.A. Lopez-Anido, Numerical model for predicting carbon fiber composite cable forces in a cable-stayed bridge, *Proceedings of the* 11th International Workshop on Structural Health Monitoring, Stanford, California, September 12-14, 2017.
- [11] M.J. Fowler, A.J. Goupee, C. Allen, A. Viselli and H. Dagher, 1:52 scale testing of the first US commercial scale floating wind turbine, VolturnUS: Testing overview and the evaluation of scale model testing methods, *Proceedings of OMAE 2017, ASME 36th International Conference on Ocean, Offshore and Arctic Engineering*, Trondheim, Norway, June 25-30, 2017.
- [12] M.G. Dwyer, A.M. Viselli, H.J. Dagher and A.J. Goupee, Experimental verification of ABS concrete design methodology applied to the design of the first commercial scale floating offshore wind turbine in the United States, *Proceedings of OMAE 2017, ASME 36th International Conference on Ocean, Offshore and Arctic Engineering*, Trondheim, Norway, June 25-30, 2017.
- [13] M. Hall and A. Goupee, Comparing fatigue loads in floating wind turbine basin tests: geometric-scaled, performance-scaled, and hybrid approaches, *Proceedings of ISOPE 2017*, *The 27th International Ocean and Polar Engineering Conference*, San Francisco, California, June 25-30, 2017.
- [14] C.K. Allen and A.J. Goupee, Assessment of wind/wave basin capability for emulating active blade pitch and generator control influence on floating wind turbine response, *Proceedings of ISOPE 2017, The 27th International Ocean and Polar Engineering Conference*, San Francisco, California, June 25-30, 2017.
- [15] C.K. Allen, A.J. Goupee, A.M. Viselli and H.J. Dagher, Experimental validation of a spectral-based structural analysis model implemented in the design of the VolturnUS 6MW floating offshore wind turbine, *Proceedings of ISOPE 2017, The 27th International Ocean* and Polar Engineering Conference, San Francisco, California, June 25-30, 2017.
- [16] D. Todd Griffith, J. Paquette, M. Barone, A.J. Goupee, M.J. Fowler, D. Bull and B. Owens, 2016, A study of rotor and platform design trade-offs for large-scale floating vertical axis wind turbines, *The Science of Making Torque from Wind, Journal of Physics: Conference Series* 753:102003.
- [17] S. McElman, E.-J. de Ridder, A. Koop, A. Goupee and X. Arino, Simulation and development of a wind-wave facility for scale testing of offshore floating wind turbines, *Proceedings of OMAE 2016, ASME 35th International Conference on Ocean, Offshore and Arctic Engineering*, Busan, South Korea, June 19-24, 2016.

- [18] M.J. Fowler, A.J. Goupee and A.M. Viselli, Advances in model scale testing of floating offshore wind turbines utilizing the W² wind/wave basin, *Proceedings of the Offshore Technology Conference (OTC 2016)*, Houston, Texas, USA, May 2-5, 2016.
- [19] A.J. Goupee, R.W. Kimball, E.-J. de Ridder, J. Helder, A.N. Robertson and J.M. Jonkman, A calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine, *Proceedings of ISOPE 2015, The 25th International Ocean and Polar Engineering Conference*, Kona, Big Island, Hawaii, June 21-26, 2015.
- [20] J.M. Newton, M.P. Cameron, R. Urbina, R.W. Kimball, A.J. Goupee and K.P. Thiagarajan, Characterization of a wind tunnel for use in offshore wind turbine development, *Proceedings* of OMAE 2015, ASME 34th International Conference on Ocean, Offshore and Arctic Engineering, St. John's, Newfoundland, May 31-June 5, 2015.
- [21] A.M. Viselli, A.J. Goupee, H.J. Dagher and C.K. Allen, VolturnUS 1:8 Conclusion of 18months of operation of the first grid-connected floating wind turbine prototype in the Americas, *Proceedings of OMAE 2015, ASME 34th International Conference on Ocean, Offshore and Arctic Engineering*, St. John's, Newfoundland, May 31-June 5, 2015.
- [22] C.K. Allen, A.J. Goupee, H.J. Dagher and A.M. Viselli, Validation of global performance numerical design tools used for design of floating offshore wind turbines, *Proceedings of OMAE 2015, ASME 34th International Conference on Ocean, Offshore and Arctic Engineering*, St. John's, Newfoundland, May 31-June 5, 2015.
- [23] J.D. Clapp, A.C. Young, W.G. Davids and A.J. Goupee, Structural response of hypersonic inflatable aerodynamic decelerator braided tube components and elements, *Proceedings of* the 23rd AIAA Decelerator Systems Technology Conference and Seminar, Daytona Beach, Florida, March 30-April 2, 2015.
- [24] A.M. Viselli, H.J. Dagher, S.M. Tomlinson, A.C. Young, A.J. Goupee and S.A. Hettick, Design, fabrication, and testing of a composite tower for floating offshore wind turbine, *Proceedings of the Composites and Advanced Materials Expo*, Orlando, Florida, October 13-16, 2014.
- [25] A.M. Viselli, **A.J. Goupee** and H.J. Dagher, Model test of a 1:8 scale floating wind turbine in the Gulf of Maine, *Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering*, San Francisco, California, June 8-13, 2014.
- [26] A.J. Goupee, M.J. Fowler, R.W. Kimball, J. Helder and E.-J. de Ridder, Additional wind/wave basin testing of the DeepCwind semi-submersible with a performance-matched wind turbine, *Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering*, San Francisco, California, June 8-13, 2014.
- [27] R. Kimball, A.J. Goupee, M.J. Fowler, E.-J. de Ridder and J. Helder, Wind/wave basin verification of a performance-matched scale-model wind turbine on a floating offshore wind turbine platform, *Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering*, San Francisco, California, June 8-13, 2014.
- [28] B. Koo, A.J. Goupee, K. Lambrakos and H.-J. Lim, Model test data correlations with fully coupled hull/mooring analysis for a floating wind turbine on a semi-submersible platform, *Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering*, San Francisco, California, June 8-13, 2014.
- [29] A.C. Young, S. Hettick, H.J. Dagher, A.M. Viselli and A.J. Goupee, VolturnUS 1:8-scale FRP floating wind turbine tower: Analysis, design, testing and performance, *Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering*, San Francisco, California, June 8-13, 2014.

- [30] M.J. Fowler, B. Owens, D. Bull, A.J. Goupee, J. Hurtado, D.T. Griffith and M. Alves, Hydrodynamic module coupling in the Offshore Wind Energy Simulation (OWENS) toolkit, *Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering*, San Francisco, California, June 8-13, 2014.
- [31] A.M. Viselli, H.J. Dagher and A.J. Goupee, VolturnUS 1:8 Design and testing of the first grid-connected offshore wind turbine in the U.S.A., *Proceedings of the Texas Section of the Society of Naval Architecture and Marine Engineers 19th Offshore Symposium*, Houston, Texas, USA, February 6, 2014 (Received Conference Best Paper Award), 2014.
- [32] K.P. Thiagarajan, R. Kimball, A. Goupee and M. Cameron, Design and development of a multi-directional wind-wave ocean basin, *Proceedings of the Texas Section of the Society of Naval Architecture and Marine Engineers 19th Offshore Symposium*, Houston, Texas, USA, February 6, 2014.
- [33] M. Masciola, A. Robertson, J. Jonkman, A. Coulling and A. Goupee, Assessment of the importance of mooring dynamics on the global response of the DeepCwind floating semisubmersible offshore wind turbine, *Proceedings of ISOPE 2013, The 23rd International Ocean and Polar Engineering Conference*, Anchorage, Alaska, June 30-July 5, 2013.
- [34] A.J. Coulling, A.J. Goupee, A.N. Robertson and J.M. Jonkman, Importance of second-order difference-frequency wave-diffraction forces in the validation of a FAST semi-submersible floating wind turbine model, *Proceedings of OMAE 2013, ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering*, Nantes, France, June 9-14, 2013.
- [35] M.J. Fowler, R.W. Kimball, D.A. Thomas III and A.J. Goupee, Design and testing of scale model wind turbines for use in wind/wave basin model tests of floating offshore wind turbines, *Proceedings of OMAE 2013, ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering*, Nantes, France, June 9-14, 2013.
- [36] A.N. Robertson, J.M. Jonkman, A.J. Goupee, A.J. Coulling, I. Prowell, J. Browning, M. Masciola and P. Molta, Summary of conclusions and recommendations drawn from the DeepCwind scaled floating offshore wind system test campaign, *Proceedings of OMAE 2013, ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering*, Nantes, France, June 9-14, 2013.
- [37] B. Koo, A.J. Goupee, K. Lambrakos and H.-J. Lim, Model test correlation study for a floating wind turbine on a tension leg platform, *Proceedings of OMAE 2013, ASME 32nd International Conference on Ocean, Offshore and Arctic Engineering*, Nantes, France, June 9-14, 2013.
- [38] I. Prowell, A. Robertson, J. Jonkman, G.M. Stewart and A.J. Goupee, Numerical prediction of experimentally observed scale-model behavior of an offshore wind turbine supported by a tension-leg platform, *Proceedings of the Offshore Technology Conference (OTC 2013)*, Houston, Texas, USA, May 6-9, 2013.
- [39] R.W. Kimball, A.J. Goupee, A.J. Coulling and H.J. Dagher, Model test comparisons of TLP, spar-buoy and semi-submersible floating offshore wind turbine systems, *Proceedings* of the 2012 SNAME Annual Meeting and Expo, Providence, Rhode Island, October 24-26, 2012.
- [40] A.J. Goupee, B. Koo, K. Lambrakos and R. Kimball, Model tests for three floating wind turbine concepts, *Proceedings of the Offshore Technology Conference (OTC 2012)*, Houston, Texas, USA, April 30-May 3, 2012.

- [41] B. Koo, A.J. Goupee, K. Lambrakos and R. Kimball, Model tests for a floating wind turbine on three different floaters, *Proceedings of OMAE 2012, ASME 31st International Conference* on Ocean, Offshore and Arctic Engineering, Rio de Janeiro, Brazil, July 1-6, 2012.
- [42] A.J. Goupee, B. Koo, R. Kimball and K. Lambrakos, Experimental comparison of three floating wind turbine concepts, *Proceedings of OMAE 2012, ASME 31st International Conference on Ocean, Offshore and Arctic Engineering*, Rio de Janeiro, Brazil, July 1-6, 2012.
- [43] H. Martin, R. Kimball, A. Viselli and A.J. Goupee, Methodology for wind/wave basin testing of floating offshore wind turbines, *Proceedings of OMAE 2012, ASME 31st International Conference on Ocean, Offshore and Arctic Engineering*, Rio de Janeiro, Brazil, July 1-6, 2012.
- [44] A. Jain, A.N. Robertson, J.M. Jonkman, A.J. Goupee and R.W. Kimball, A.H.P. Swift, FAST code verification of scaling laws for DeepCwind floating systems tests, *Proceedings* of ISOPE 2012, The 22nd International Ocean and Polar Engineering Conference, Rhodes, Greece, June 17-22, 2012.
- [45] G.M. Stewart, M.A. Lackner, A. Robertson, J. Jonkman and A.J. Goupee, Calibration and validation of a FAST floating wind turbine model of the DeepCwind scaled tension-leg platform, *Proceedings of ISOPE 2012, The 22nd International Ocean and Polar Engineering Conference*, Rhodes, Greece, June 17-22, 2012.
- [46] J.R. Browning, J. Jonkman, A. Robertson and A.J. Goupee, Calibration and validation of the FAST dynamic simulation tool for a spar-type floating offshore wind turbine, *Proceedings of the Science of Making Torque from Wind Conference*, Oldenburg, Germany, October 9-11, 2012.
- [47] S.S. Vel and A.J. Goupee, Multiscale design of functionally graded materials, *Proceedings of the 2008 NSF CMMI Engineering Research and Innovation Conference*, Knoxville, Tennessee, January 2008.
- [48] S.S. Vel and A.J. Goupee, Multi-objective optimization of geometric dimensions and material composition of functionally graded components, *Proceedings of the Multiscale and Functionally Graded Materials Conference 2006*, Honolulu, Hawaii. Editors G. H. Paulino, M.-J. Pindera, R. H. Dodds, Jr., F. A. Rochinha, E. V. Dave, and L. Chen, American Institute of Physics, 978, pp. 610-615, 2008.
- [49] S.S. Vel, A.J. Goupee and J.L. Pelletier, Multi-objective design optimization of functionally graded materials, *Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference*, St. Louis, Missouri, July 24-27, 2006.
- [50] S.S. Vel and **A.J. Goupee**, A Methodology for the optimization of material composition of functionally graded materials, *Proceedings of the 2005 NSF Design, Service and Manufacturing Grantees and Research Conference*, Scottsdale, Arizona, Jan 3-6, 2005.
- [51] A.J. Goupee and S.S. Vel, Two-dimensional thermomechanical analysis and optimization of functionally graded materials, *Advances in Computational and Experimental Engineering and Sciences*, Editors A. Tadeu and Satya N. Atluri, pp. 1705-1710, Tech Science Press., 2004.

Patents

 H.J. Dagher, A.M. Viselli and A.J. Goupee, Floating hybrid composite wind turbine platform and tower system with suspended mass, U.S. Patent 10,598,155, issued March 24, 2020.

- [2] H.J Dagher, A.M. Viselli and **A.J. Goupee**, Floating hybrid composite wind turbine platform and tower system, U.S. Patent 9,518,564, issued December 13, 2016.
- [3] H.J. Dagher, A.M. Viselli and **A.J. Goupee**, Floating wind turbine platform and method of assembling, U.S. Patent 9,394,035 B2, issued July 19, 2016.

Technical Reports

- [1] C. Allen, A. Viselli, H. Dagher, A. Goupee, E. Gaertner, N. Abbas, M. Hall and G. Barter, Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, *NREL Report NTEL/TP-5000-76773*, July 2020.
- [2] A. Goupee, Analysis of Eastern Wind Power 30m² VAWT Field Data, Advanced Structures and Composites Center Report Number 17-8-1451, August 2016.
- [3] A. Goupee, C. Allen, M. Cameron, C. Libby and R. Urbina, Wave Basin Testing of the 1:50-scale Float Inc. System, *Advanced Structures and Composites Center Report Number* 16-17-1330, January 2016.
- [4] A. Goupee, C. Allen, M. Cameron, C. Libby and R. Urbina, Wave Basin Testing of the 1:50-scale Oscilla Power Inc. System, Advanced Structures and Composites Center Report Number 16-16-1330, January 2016.
- [5] A. Goupee, C. Allen, M. Cameron, C. Libby and R. Urbina, Wave Basin Testing of the 1:50-scale RTI Wave Power System, *Advanced Structures and Composites Center Report Number 16-15-1330*, January 2016.
- [6] A. Robertson, J. Jonkman, M. Masciola, A. Goupee, A. Coulling and C. Luan, Definition of the Semisubmersible Floating System for Phase II of OC4, *NREL Report NREL/TP-5000-60601*, September 2014.
- [7] M. Fowler, D. Bull and A. Goupee, A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study, *Sandia Report* SAND2014-16800, August 2014.
- [8] H. Dagher, A. Young and A.J. Goupee, Feasibility of Using a Composite Materials Tower Atop a Floating Offshore Wind Turbine Steel Spar Hull, Advanced Structures and Composites Center Report Number 13-37-1134, July 10, 2013.
- [9] A.J. Goupee, P. Drown, C. Libby, D. Gjeta and Y. Yamamoto, Detailed Cost of Energy Analysis for SWF System, Advanced Structures and Composites Center Report Number 13-44-1048, May 24, 2013.
- [10] A. Viselli, A.J. Goupee, H.J. Dagher, J. Chung, T. Snape, M. Lankowski, D. Jalbert, Feasibility Study for Offshore Floating Wind Turbine Composite Towers, AEWC Report Number 12-15.941A, December 7, 2011.
- [11] **A.J. Goupee**, Oceanwind XS-770 Floating Wind Turbine Initial Analysis Final Report, *AEWC Report Number 11-28*, September 13, 2010.

Presentations

- [1] A. Goupee and E. Lenfest, Development of a Generic FOWT Control Tuning Strategy A Work in Progress, *National Wind Technology Seminar Series*, July 25, 2019.
- [2] A. Goupee, A. Friess, C. Davis and Z. Hindley, Development of experimental and computational methods for improving upweller flow characteristics, *Northeast Aquaculture Conference and Exposition*, January 9-11, 2019.

- [3] A.J. Goupee, Optimal damping of large structures using a fluid harmonic absorber, *Maine Space Grant Consortium Annual Affiliate Meeting*, June 28, 2018.
- [4] A.J. Goupee, Floating Wind Turbine Technology Development at the University of Maine, University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center/Center for Ocean Engineering Seminar Series, February 23, 2018.
- [5] A.J. Goupee, New England Aqua Ventus I: US DOE Advanced Technology Demonstration Program for Offshore Wind, Keynote address given at *The 27th International Ocean and Polar Engineering Conference*, San Francisco, California, June 25-30, 2017.
- [6] D. Lopez, A. Goupee and J. Arimond, Blade fatigue test design by genetic algorithm optimization, *AWEA WINDPOWER 2017 Conference & Exhibition*, Anaheim, CA, May 22-25, 2017.
- [7] M. Hall and A.J. Goupee, A single-axis hybrid modelling system for floating wind turbine basin testing, *EERA DeepWind'2016 Deep Sea Offshore Wind R&D Conference*, Trondheim, Norway, January 20-22, 2016.
- [8] A.J. Goupee, Basin testing of floating turbines: Current state and technical gaps, UMaine W², Matthew R. Simmons Memorial Summit: A Technology Roadmap for Floating Offshore Wind, Orono, Maine, October 1-2, 2015.
- [9] **A.J. Goupee**, Floating Offshore Wind: Becoming a Reality?, *Penobscot Marine Museum*, September 25, 2014.
- [10] A.M. Viselli, A.J. Goupee, H.J. Dagher and C. Allen, Design and model confirmation of the intermediate scale VolturnUS floating turbine subject to its extreme design conditions, *AWEA WINDPOWER 2014 Conference and Exhibition*, Las Vegas, Nevada, May 5-8, 2014.
- [11] A.J. Coulling, A.J. Goupee, A.N. Robertson, J.M. Jonkman and H.J. Dagher, Validation of a FAST floating wind turbine model using data from the DeepCwind semi-submersible model tests, AWEA WINDPOWER 2013 Conference and Exhibition, Chicago, Illinois, May 5-8, 2013.
- [12] A.J. Coulling, A.J. Goupee, A.N. Robertson, J.M. Jonkman and H.J. Dagher, Validation of a FAST floating wind turbine model using data from the DeepCwind semi-submersible model tests, AWEA Offshore WINDPOWER 2012 Conference and Exhibition, Virginia Beach, Virginia, October 9-11, 2012.
- [13] A.J. Goupee, H.R. Martin, A.M. Viselli, R.W. Kimball, H.J. Dagher, Model testing of the coupled aero-hydro-elastic response of three floating wind turbine concepts, AWEA Windpower 2012 Conference and Exhibition, Atlanta, Georgia, June 3-6, 2012.
- [14] **A.J. Goupee**, Model testing of the coupled aero-hydro-elastic response of three floating wind turbine concepts, *Colloquium*, Department of Physics & Astronomy, University of Maine, Orono, Maine, September 2011.
- [15] A.J. Goupee, DeepCwind 1/50th scale floating wind turbine model testing overview, 2011 Wind Energy Research Workshop, UMass Lowell Inn & Conference Center, Lowell, Massachusetts, September 2011.
- [16] **A.J. Goupee**, DeepCwind 1/50th scale floating wind turbine model testing overview, 8th *Annual Energy Ocean International Conference and Exhibition*, Portland, Maine, June 2011.
- [17] **A.J. Goupee**, Refinement and validation of a fully coupled aero-hydro-servo-elastic floating wind turbine simulator, *First Annual Deepwater Offshore Wind Conference*, Northport, Maine, October 2010.

Awarded Research Grants

- [1] Design, validation and certification of taut-synthetic mooring line systems for floating wind turbines in water depths 45-80m to unlock 450GW of inaccessible wind resource off the US coast near dense population centers, New York State Energy Research and Development Authority, A.M. Viselli (PI), A.J. Goupee (Co-PI), H.J. Dagher (Co-PI), M.J. Fowler (Co-PI), C.K. Allen (Co-PI), \$1,500,000, January 2020 to January 2023.
- [2] Demonstrating a reduced-footprint synthetic rope mooring sytem that minimizes fishing impacts and costs for a 10 MW+ floating wind turbine, U.S. Department of Energy, H.J. Dagher (PI), A.J. Goupee (Co-PI), A.M. Viselli (Co-PI), C.K. Allen (Co-PI), R.W. Kimball (Co-PI), \$5,000,000, October 2020 to August 2024.
- [3] Demonstration Aqua Ventus 10 MW redesign, U.S. Department of Energy, H.J. Dagher (PI), **A.J. Goupee** (Co-PI), A.M. Viselli (Co-PI), C.K. Allen (Co-PI), R.W. Kimball (Co-PI), \$5,896,535, January 2020 to December 2022.
- [4] The NASA Floater: 15 MW Ultra-light concrete hull with sea-water ballast tuned mass damper, U.S. Department of Energy ARPA-E, A.M. Viselli (PI), A.J. Goupee (Co-PI), C.K. Allen (Co-PI), R.W. Kimball (Co-PI), H.J. Dagher (Co-PI), \$1,175,416, January 2020 to December 2021.
- [5] The FOCAL test program, U.S. Department of Energy ARPA-E, A.M. Viselli (PI), A.J. Goupee (Co-PI), M.J Fowler (Co-PI), R.W. Kimball (Co-PI), H.J. Dagher (Co-PI), \$1,500,000, January 2020 to December 2021.
- [6] RII Track-4: Advanced Control Strategies for Floating Offshore Wind Farms, National Science Foundation, **A.J. Goupee** (PI), \$96,275, October 2018 to September 2020.
- [7] Model Test of a Fluid Harmonic Absorber Equipped Floating Wind Turbine, NASA, A.J. Goupee (PI), C.K. Allen (Co-PI), \$24,811, September 2018.
- [8] Optimal Damping of Large Floating Wind Turbine Structures Using Fluid Harmonic Absorber and Disruptive Tuned Mass Technologies, Maine Space Grant Consortium, \$25,000, A.J. Goupee (PI), A. Viselli (Co-PI) and C.K. Allen (Co-PI), October 2017 to October 2018.
- [9] New England Aqua Ventus I Part II, U.S. Department of Energy, H. Dagher (PI), A. Viselli (Co-PI), J. Ward (Co-PI), **A.J. Goupee** (Co-PI) and D. Brady (Co-PI), \$3,700,000, June 2016 to December 2017.
- [10] Analysis of Eastern Wind Power 30m² VAWT Field Data, Eastern Wind Power, \$5,000,
 A.J. Goupee (PI) and A.M. Viselli (Co-PI), August 2016.
- [11] Pretesting of 1:50 Scale Wave Energy Device, Oscilla Power, \$9,850, A. Viselli (PI), K. Thiagarajan (Co-PI) and A.J. Goupee (Co-PI), October 2015 to November 2015.
- [12] Testing for Vessels and Marine Structures, Maine Technology Institute, \$351,092, A.J.
 Goupee (PI), J. Koskie (Co-PI), H. Dagher (Co-PI), K. Thiagarajan (Co-PI) and A. Viselli (Co-PI), July 2015 to December 2018.
- [13] Proof of Concept Small Scale Wave Energy Convertor Testing, U.S. Department of Energy, \$199,805, K. Thiagarajan (PI), A. Viselli (Co-PI) and A.J. Goupee (Co-PI), November 2015 to February 2016.
- [14] Aerodynamic Loads Analysis of Eastern Wind Power 30m² VAWT, Eastern Wind Power, \$13,500, A. Viselli (PI) and A.J. Goupee (Co-PI), August 2015 to September 2015.
- [15] Makani Floating Station, Google X, \$29,993, H.D. Dagher (PI), A. Viselli (Co-PI) and A.J. Goupee (Co-PI), August 2015 to September 2015.

- [16] Behavior and Optimization of Hypersonic Inflatable Atmospheric Decelerator Devices for Spacecraft Re Entry, NASA Experimental Program to Stimulate Competitive Research, \$743,752, W. Davids (PI), J. Clapp (Co-PI), A.J. Goupee (Co-PI) and P. Melrose (Co-PI), July 2013 to June 2016.
- [17] Development of W² A Unique Offshore Wind-Wave Generation System, National Science Foundation, Major Research Instrumentation Program, \$983,997, K. Thiagarajan (PI), Q. Zou (Co-PI), A.J. Goupee (Co-PI) and H. Dagher (Co-PI), August 2013 to July 2015.
- [18] Durability Evaluation of Composite and Cementitious Materials Through Accelerated Laboratory and Long-term Field Testing, and New Building Technology, U.S. Army Corps of Engineers ERDC, \$1,500,000, H. Dagher (PI), A. Viselli (Co-PI), A.J. Goupee (Co-PI), K. Goslin (Co-PI), L. Parent (Co-PI) and W. Davids (Co-PI), August 2013 to August 2014.
- [19] Detailed Cost of Energy Analysis for SWF System, Maine Technology Institute Seed Grant, \$25,000, A.J. Goupee (PI), May 2012 to May 2013.
- [20] Innovative Offshore Vertical-Axis Wind Turbine Rotors, U.S. Department of Energy, \$53,590, H.J. Dagher (PI), J. Nader (Co-PI) and A.J. Goupee (Co-PI), October 2011 to September 2013.
- [21] Integrated Analytical-computational Analysis of Microstructural Influences on Seismic Anisotropy, National Science Foundation, \$298,171, S. E. Johnson (PI), S.S. Vel (Co-PI), C. Gerbi (Co-PI) and A.J. Goupee (Co-PI), July 2011 to June 2014.
- [22] MTI Development Award Grant Writing Assistance for Oceanwind Technology, LLC, Maine Technology Institute Seed Grant, \$4,000, A.J. Goupee (PI), October 2010 to February 2011.
- [23] Submerged Web Foundation: Hydrodynamic Simulation, Maine Technology Institute Seed Grant, \$4,000, **A.J. Goupee** (PI), October 2010 to February 2011.

Internally Funded Research Grants

- [1] Optimization and automation of a shellfish nursery upweller, 2018 Research Reinvestment Fund Seed Grant Program, \$62,411, **A.J. Goupee** (PI), W. Friess (Co-PI) and C. Davis (Co-PI).
- [2] Distributed differential pressure measurement for assessment of building infiltration rate, 2017 Research Reinvestment Funds Undergraduate Assistantship Competition, \$7,000, W.A. Friess (PI), A. Goupee (Co-PI), D. Dvorak (Co-PI), K. Berube (Co-PI), M. Davis (Co-PI).
- [3] Advancing marine technology for naval and commercial ships using the Alfond W² Ocean Engineering Laboratory, 2016 Research Reinvestment Funds Graduate Assistantship Competition, \$20,000, K.P. Thiagarajan (PI), A.J. Goupee (Co-PI), W.A. Friess (Co-PI) and M.P. Davis (Co-PI), June 2016 to May 2017.
- [4] Validation of the Advanced Structures and Composites Center's W² Wind/Wave Basin, Funding from 2010 State of Maine Bonds for Maine marine Wind Energy Demonstration Site Fund, \$178,480, A.J. Goupee (PI), April 2015 to November 2015.
- [5] Coupled Modeling Support for 100% FEED of Aqua Ventus I Floating Offshore Wind Turbine Demonstration Project, Funding from U.S. Department of Energy project titled New England Aqua Ventus I – 100% Hull Design, \$16,667, A.J. Goupee (PI), April 2015 to December 2015.

[6] Bangor Savings Bank and Lyndon Paul LoRusso Faculty Development Award, \$1,500, A. J. Goupee (PI), May 2015.

Teaching Activities

Course Number	Course	Semester	Enrollment	Overall Rating of Instructor*
MEE 251	Strength of Materials	Fall 2015	28	5.00
MEE 252	Statics/Strength of Materials	Fall 2004 Fall 2005	19 29	4.86 4.86
MEE 270	Dynamics	Fall 2013 Fall 2014 Spring 2015 Spring 2015 Spring 2016 Fall 2016 Fall 2017 Spring 2019	28 32 65 30 49 30 12 37	4.58 4.90 4.49 4.50 4.47 4.81 4.91 4.73
MEE 442	Mechanical Laboratory II	Fall 2016	30	N/A
MEE 471	Mechanical Vibrations	Spring 2005 Spring 2017	44 64	4.48 4.54
MEE 480/ CIE 480	Wind Energy Engineering	Spring 2013 Spring 2014 Spring 2016 Spring 2017 Fall 2018	45 67 69 57 69	4.67 4.85 4.74 4.73 4.83
MEE 487 [#]	Capstone Design I	Fall 2017 Fall 2018 Fall 2019	76 86 80	4.28 3.80 4.00
MEE 488 [#]	Capstone Design II	Spring 2018 Spring 2019 Spring 2020%	74 84 80	3.86 3.67 4.41

Teaching Assignments at the University of Maine

*Scale ranges from 1 (Below Average) to 5 (Excellent)

[#]Co-taught courses

[%]Individually taught; course format adjusted due to COVID-19

Student Supervision

Ph.D. Students

- [1] W. West, Ph.D. in MEE, to be completed in 2022, Co-advisor.
- [2] C. Allen, Ph.D. in CIE, to be completed in 2021, Lead co-advisor.
- [3] M. Fowler, Ph.D. in MEE, to be completed in 2021, Lead co-advisor.
- [4] J. Ward, "Numerical and experimental investigations into the multi-body dynamics of a floating offshore wind turbine stabilized by a suspended counterweight," Ph.D. in MEE, 2020, Lead co-advisor.
- [5] A. Young, "Large payload HIAD systems: Development of computationally efficient modeling strategies and structural investigations," Ph.D. in CIE, 2017, Co-advisor.
- [6] M. Hall, "Hybrid Modeling of Floating Wind Turbines," Ph.D. in MEE, 2016.

M.S. Students

- [1] W. Ramsay, M.S. in MEE, to be completed in 2022.
- [2] B. Kohler, M.S. in MEE, to be completed in 2021, Co-advisor.
- [3] E. Lenfest, "Active blade pitch and hull-based structural control of floating offshore wind turbines," M.S. in MEE, 2021.
- [4] H. Allen, "Global performance testing, simulation, and optimization of a 6-MW annular floating offshore wind turbine hull," M.S. in MEE, 2019, Lead co-advisor.
- [5] W. West, "Design and modeling of synthetic moorings for floating offshore wind turbines using a lumped mass mooring model," M.S. in MEE, 2019, Lead co-advisor.
- [6] M. Dwyer, "Experimental verification of ABS concrete design methodologies applied to floating offshore structures," M.S. in CIE, 2017, Co-advisor.
- [7] D. Lopez, "Optimization of wind turbine blade fatigue test design, "M.S. in MEE, 2017.
- [8] J. Newton, "Characterization of a wind tunnel for use in offshore wind turbine development with mitigation measures for the wall effect of proximal structures," M.S. in MEE, 2016.
- [9] A. Dunham, P.S.M. in Engineering and Business, 2016.
- [10] C. Libby, "Design and Implementation of Data Acquisition Systems for use in a Scaled Deployment of a Floating Offshore Wind Turbine," M.S. in MEE, 2014.
- [11] M. Fowler, "Development of a Performance Matched Wind Turbine and Analysis Tools for Model Scale Testing of Floating Offshore Wind Turbines," M.S. in MEE, 2014.
- [12] A. Young, "Investigations Into the Use of a Composite Tower on Floating Offshore Wind Turbine Platforms," M.S. in CIE, 2013.
- [13] C. Allen, "The Implementation of Morison's Equation in Dynamic Modeling and Structural Analysis of a Floating Offshore Wind Turbine," M.S. in CIE, 2013.
- [14] A. Coulling, "Validation of a FAST Semi-submersible Floating Wind Turbine Numerical Model with DeepCwind Test Data," M.S. in CIE, 2013.
- [15] H. Martin, "Development of a Scale Model Wind Turbine for Testing of Offshore Floating Wind Turbine Systems," M.S. in CIE, 2011.

Service on Thesis Committees

- [1] J. Bloom, "Gait rehabilitation using biomechanics and exoskeletons," M.S. in MEE, 2020.
- [2] S. Taba, "Characterization of coated particles to use in high-temperature solid particle recievers," M.S. in MEE, 2020.

- [3] D. Chizhik, "A linear actuator/spring steel driven glove for assisting individuals with activities of daily living," M.S. in MEE, 2020.
- [4] A. French, "Investigation of infiltration measurements using wind-induced pressure response on an enclosure," M.S. in MEE, 2020.
- [5] H. Majeed, "Development of finite element techniques to simulate concrete-filled fiberreinforced polymer tube structures," Ph.D. in CIE, 2019.
- [6] W. Hsu, "Dynamic modeling and extreme tension analysis of mooring system for a floating offshore wind turbine," Ph.D. in MEE, 2017.
- [7] F. Al-Mashkoor, "Finite element analysis of impact resistance of foam materials," M.S. in MEE, 2017.
- [8] J. Clapp, "Structural behavior of inflatable, reinforced, braided, tubular members," Ph.D. in CIE, 2017.
- [9] R. Zangeneh, "Theoretical and experimental evaluation of heading instability of moored ships in waves and winds," Ph.D. in MEE, 2017.
- [10] V. Lewis, "Development of an accelerometer instrumentation array embedded into a gel matrix used to simulate brain response," M.S. in MEE, 2017.
- [11] D. Whitney, "Experimental methods and practices for the study of toroidal inflated, braided fabric members," M.S. in MEE, 2016.
- [12] A. Viselli, "Model test of a 1:8 scale floating wind turbine in the Gulf of Maine," Ph.D. in CIE, 2014.
- [13] M. MacNicoll, "Modeling the Efficiency of a Semi-submerged Ocean Wave Energy Converter," M.S. in CIE, 2013.
- [14] K. Berube, "Integration of Process Parameter Control and Digital Image Correlation Methods in the Investigation of the Variability of Marine Polymer Composite Material Properties," Ph.D. in MEE, 2012.
- [15] K. Warren, "Resistance Welding of Thermoplastic Composites for Industrial Scale Wind Turbine Blades," M.S. in MEE, 2012.

Undergraduate Students

- [1] A. Kingston, 2017, Advisor for Honor's Thesis.
- [2] B. Hebert, 2017, Advisor for Engineering Physics capstone project.
- [3] Y. Peng, 2014, Co-advisor for NSF-REU-Sensors program.
- [4] C. Howland, 2012, Committee member for Honor's Thesis.

Volunteer Teaching Activities

- [1] K. McDonald, Griffith University, Spring 2014, Internship and Independent Study at University of Maine, 3 credits.
- [2] N. Urban, College of the Atlantic, Fall 2012, Independent Study at the College of the Atlantic, 2 credits.
- [3] O. Casas, University of Maine at Augusta, Fall 2012, Independent Study at the University of Maine at Augusta, 12 credits.
- [4] M. Lankowski, University of Michigan, Summer 2012, Internship and Independent Study at University of Maine, 3 credits.

Service Activities

- Advisor, University of Maine ASME student chapter, 2017-present.
- Advisor, University of Maine Alpha Zeta Chapter of Pi Tau Sigma, 2016-present.
- Coordinator, University of Maine Ocean and Marine Engineering Minor, 2018-present
- Coordinator, University of Maine Mechanical Engineering Practice, 2018-2020.
- Reviewer, U.S. DOE Technology Commercialization Fund, 2021.
- Panel reviewer, National Science Foundation, 2019.
- Session organizer, International Ocean and Polar Engineering Conference, 2017, 2018, 2019, 2020, 2021.
- Session chair, International Ocean and Polar Engineering Conference, 2017.
- Session co-chair, International Ocean and Polar Engineering Conference, 2015.
- Session organizer, ASME International Conference on Ocean, Offshore and Arctic Engineering, 2011, 2012, 2020.
- Guest speaker, Maine Connections Academy, 2018.
- Guest speaker, Maine DOT TRACS Program, Islesboro Central School, 2017.
- Guest speaker, University of Maine SNAME student chapter, 2016.
- Guest speaker, Appleton Village School Wind Symposium, 2015.
- Guest speaker, Rockland Rotary Club, 2014.
- Guest speaker, American Indian Science and Engineering Society, 2014.
- Guest speaker, University of Maine Sigma Phi Epsilon Fraternity, 2012.
- Guest speaker, Maine Student Chapter of the American Society of Mechanical Engineers, 2010.
- Judge, Maine High School Windstorm Challenge, 2012, 2017, 2018.
- Judge, DeepCwind Wind Blade Challenge, 2010, 2013.
- Mentor, Orono High School Wind Blade Challenge Team, 2017.
- Consultant, High School Windstorm Challenge, 2010.
- Reviewer for the following journals and conference proceedings:
 - Applied Energy
 - Applied Ocean Research
 - o Challenges
 - o Composites Part B
 - Computational Materials Science
 - Control Engineering Practice
 - Energies
 - Energy Conversion and Management
 - Engineering Structures
 - o Experimental Techniques
 - Frontiers Marine Science
 - Journal of Advanced Research
 - Journal of Composite Materials
 - Journal of Fluids and Structures
 - Journal of Materials: Design and Applications
 - Journal of Mechanical Engineering Science
 - o Journal of Renewable and Sustainable Energy

- o Journal of Waterway, Port, Coastal and Ocean Engineering
- Marine Structures
- o Materials
- Ocean Engineering
- o Philosophical Transactions of the Royal Society A
- Renewable Energy
- Shock and Vibration
- Structural Engineering Mechanics
- o Structural and Multidisciplinary Optimization
- Sustainable Energy Technology and Assessments
- Wind Energy
- Wind and Structures
- Proceedings of the ASME International Conference on Ocean, Offshore and Arctic Engineering
- Proceedings of the International Offshore and Polar Engineering Conference
- o Proceedings of the International Offshore Wind Technical Conference

Professional Activities

- Member since 2012, American Society of Mechanical Engineers
- Member since 2020, International Society of Offshore and Polar Engineers
- State of Maine Engineer Intern No. 5345