1. Course number and name

MEE 462: Fluid Mechanics II

- 2. *Credits and contact hours* 3 credits; 3 hours per week
- 3. *Instructor's or course coordinator's name* Course coordinator: Xudong Zheng, Associate Professor, Mechanical Engineering
- 4. *Text book, title, author, and year* F.M. White, *Fluid Mechanics*, 8th Edition, McGraw-Hill Education, 2015.

a. other supplemental materials None

5. Specific course information

a. brief description of the content of the course (catalog description)

A continuation of MEE 360 including boundary-layer flows, inviscid incompressible flows, compressible flows and selected topics.

b. prerequisites or co-requisites Prerequisite: MEE 360

c. indicate whether a required, elective, or selected elective course in the program Technical elective for Mechanical Engineering

6. Specific goals for the course

a. specific outcomes of instruction.

By the end of this course, students will demonstrate an ability to:

- The student will demonstrate an understanding of fluid kinematics (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of ideal fluid flow (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of basic viscous flows (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of laminar and turbulent boundary layers (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of momentum-integral methods (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of adiabatic and isentropic compressible flow (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of normal shock waves (ABET Student Outcomes a, e).

- The student will demonstrate an understanding of converging and diverging nozzles (ABET Student Outcomes a, e).
- The student will demonstrate an understanding of duct flow with friction or heat transfer (ABET Student Outcomes a, e).

b. explicitly indicate which of the student outcomes listed in Criterion 3 or any other outcomes are addressed by the course.

Course addresses ABET Student Outcomes: [a] an ability to apply knowledge of mathematics, science, and engineering, [e] an ability to identify, formulate, and solve engineering problems.

- 7. Brief list of topics to be covered
 - Review of the kinematics of the flow field.
 - The differential equations for conservation of mass, momentum and energy.
 - The stream function, vorticity and irrotationality.
 - Simple viscous flow fields.
 - The boundary layer equations and the laminar flat plate boundary layer.
 - Momentum-integral estimates.
 - The turbulent boundary layer.
 - Boundary layers with pressure gradient.
 - Experimental external flows.
 - Review of Thermodynamics and the speed of sound.
 - Compressible adiabatic and isentropic steady flow.
 - Isentropic flow with area change.
 - The normal shock wave.
 - Converging and diverging nozzles.
 - Compressible duct flow with friction.
 - Frictionless duct flow with heat transfer.