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Depending on the background of the students, we will start by covering some topics from
the undergraduate course and proceed to more advanced topics in elementary, analytic,
geometric and/or algebraic number theory:

� Analytic number theory uses the methods of analysis; a classical theorem is that the
count of prime numbers less than x is (roughly) x{ log x and, for any integer q, these
are (almost) evenly divided into equivalence classes a pmod qq with a coprime to q.
Some other flavors: A typical question in additive number theory is: can every number
be written as a sum of three cubes? (Not quite.) A typical question in multiplicative
number theory is: how many divisors does a typical number have? (n has roughly
log n divisors, on average.)

� Algebraic number theory uses the methods of (abstract) algebra; a fairly recent theorem
is that for n an integer greater than 2, xn � yn � zn has only the trivial solution
x � y � z � 0 in integers. A common object of study is a number field, i.e. a finite
field extension of Q; e.g. ., in the number field Qris where i2 � �1, which elements
should be considered “integers”? Which of these should be considered “prime”?

� Geometric number theory uses methods of geometry; a classical theorem is that any
convex set in R2 that is symmetric about the origin and has area greater than 4 must
contain a point of Z2 other than the origin. Related areas are Diophantine geometry
and Diophantine approximation; a classical theorem is that for any irrational number
α, there are infinitely many rational numbers p{q such that |α � p{q|   1{q2.

� Elementary number theory excludes the use of complex analysis (which often makes
the proofs much less elementary). One notable entry in this category is sieve theory; an
ancient result is the Sieve of Eratosthenes, which is an efficient way of finding (small)
prime numbers.

� Applied number theory typically (but not exclusively) refers to encryption; i.e. how do
I send someone a message that only they can read? Computational number theory asks
for efficient methods of computing solutions to number-theoretic problems; e.g. how
do I find a large (random) prime number? or how can I quickly find integer solutions
to this algebraic equation (if they exist)?

My particular area is automorphic forms which involves applying analytic and alge-
braic methods (I’m more on the analysis side) to study a nice basis of the L2 space over
SLpn,ZqzGLpn,Rq, and this has applications to many areas of number theory.
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