MAT 523 HOMEWORK 1: DUE FRIDAY, SEPT. 14

Do the following, but only hand in problems 1,2,3,5,7.

- (1) Show that C (the field of complex numbers) is not an ordered field.
- (2) Problem 2 on page 10.
- (3) Problem 6 on page 11.
- (4) In **R**, find the sup and inf of the following sets: $\{e^r | r \in \mathbf{Q}\}, \{\sin x | x \in \mathbf{Q}\}, \{2 \frac{1}{n} | n \in \mathbf{N}\}$
- (5) Let $E \subset \mathbf{R}$ and suppose $g \in \mathbf{R}$ is an upper bound for E. Prove that g is the least upper bound of E if and only if for all $\epsilon > 0$ $E \cap [g \epsilon, g] \neq \emptyset$, i.e., there exists $x \in E$ such that

$$g - \epsilon \le x \le g.$$

- (6) Let $E \subset \mathbf{R}$ and suppose a > 0. Prove that $\sup\{ax | x \in E\} = a \sup E$.
- (7) Let A be a bounded subset of \mathbf{R} , and let $B \subset \mathbf{R}$ be the set of upper bounds for A. Show that $\sup(A) = \inf(B)$.