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Abstract. For a fixed primel € Z we compute th&-adic Lie algebra of the image of the

adic Galois representatignattached to a stable cuspidal automorphic representatiofhthe

unitary similitude groug=U(3). This result depends on whetheadmits extra twists in the sense
defined below. Two cases emerge: orthogonal image and non-orthogonal image. We show that in
the orthogonal case there exists a characgrch thap ® v is the Galois representation attached

to the unitary adjoint lift of a cuspidal representationGit (2).

Introduction

Deligne’s construction of a familyp,} of two-dimensional-adic Galois rep-
resentations associated to each classical Hecke eigenform is of importance in
number theory as a meeting point of algebraic and analytic theories. The images
(in GL2(Qy)) of such Galois representations were initially studied by Serre- both
those coming from elliptic curves ([S2] and [S3]), and, with Swinnerton-Dyer,
those attached to elliptic modular forms with level 1 and Hecke eigenvalies in
([S1] and [S4]). In each case, it was shown that for all but finitely many primes

the image ofy is as large as possible, under a necessary determinant constraint.
Among other consequences, this result explains the congruences satisfied by
Ramanujan’s--function.

A more recent accomplishment in this area is in the theory of Picard modular
surfaces. APicard modular surface is a Shimura variety attached to a unitary
similitude groupGU(3) defined relative to an imaginary quadratic extension of
atotally real number field& / F'. The main result of the volume [M] expresses the
zeta function of a Picard modular surface in terms of automorpHimctions. A
consequence of this is the association to each stable cuspidal cohomological au-
tomorphic representatianof GU(3) a compatible system of three-dimensional
¢-adic representations 6f = Gal(Q/FE). The problem arises to investigate the
images of these representations following Serre. The determination of the actual
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images in the elliptic modular case relied on an understanding of the structure
of the ring of modular forms module. Results of this kind are not yet available
for GU(3), however we may begin the study by examining the Lie algebras of
the images, which tell us what small open subgroups of the images look like.
For a fixed primeZ, we compute thé-adic Lie algebra of the image of the
(-adic representatiop attached tor. We rule out the “CM" case where the
base change of, = 7|y to £ is automorphically induced from a Hecke
character; this case reduces to the abelian theor¢zbfl) which is already
well-understood ([S2],[Ri1]). The technique used for the computation is based
on methods developed by Momose and Ribet who performed the analogous
computations oL (2) for elliptic modular forms of weight > 2 and arbitrary
level ([Mo], [Ri2]). As it turns out, the size of this Lie algebra depends on the
following two pieces of information about, explained in this paper:

(1) whetherr admits “extra twists"
(2) whetheratwistof, is the unitary adjointlift of arepresentation@f.o (A ).

In Sect. 2 we review those aspects of the constructiopy avhich will be
needed in what follows. The precise connection betweandr is discussed,
and in Sect. 3 several more propertiep @fe given. Sections 4 and 5 explain the
idea of extra twisting of automorphic representations and how this affects the size
of the image ofp. The Lie algebra of this image is computed in Sect. 6 in both
of the two cases which emerge: orthogonal image and non-orthogonal image.
In Sect. 7, we show that the orthogonal case occurs only when a twist of (the
L-packet containingy, = 7|y (s) is a unitary adjoint lift fromGL(2). Thus, the
study of the images of an orthogonal systgwp} reduces to the study of systems
attached to representations@l.(2), which are already well-understood, at least
in the caseF’ = Q (cf. [Ri3]). The final section is a discussion of base change
and the definition, functoriality, and a descent property of the unitary adjoint
lifting from GL(2) to U(3). Because this information is used in the arguments
of Sect. 7, it may be necessary to read the results of Sect. 8 first.

In [K], we have computed the infinity type of any unitary adjoint lift. In
many cases one can show thatis not a unitary adjoint lift because its infinity
type is not of the right form, even after twisting. See [K] where this is carried
out for the four explicit examples of stable forms given by Finis in [F]. For
these examples, none of the systems of Hecke eigenvalues (given in [F]) has
the symmetry that extra twisting would impart, and so the associaaelit Lie
algebras are determined.

I would like to thank J. Rogawski and D. Blasius (who suggested this prob-
lem) for the many helpful conversations and suggestions which made this paper
possible. I would also like to thank the referee for several helpful comments and
suggestions.
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1. Preliminaries

Let E/F be a purely imaginary extension of number fields of degree 2, with
F totally real. The places of' and E will be denoted by andw respectively.
Let Ar and Ag be the adeles of" and E, with finite partsAr ; andAg ;,
and infinte partsA r ., and A . For any algebraic groufd over F', we set
Ho = H(Ap).

Let W be a3-dimensional vector space ovBt Fix ® € GL(W) = GL3(FE)
satisfying?® = &, where the bar denotes complex conjugation ofF'. @
defines a Hermitian inner product é# by (v, w) = o ®w, and theunitary
group U = U(3) is the set of automorphisms &F which preserve this inner
product. As an algebraic groug,is the F'-form of GL(3) consisting of the fixed
points of the following Galois action o@L(3):

g if o € Gal(F/E)

a(g) =
&~ 1t571d otherwise.

If AisanyF-algebra, then
U(A) = {g € GLpgpa(W ®p A)| o757 = g}.

Thus in particular, ifv is a place off” which is inert or ramified inF,

U(F,) = {g € GLs(E,)| 7' g 'd = g}.

Suppose splits inE, andwy , wo, lie overvin E. The bar operation gives a natural
isomorphism betweet,,, and E,,,, and the mag @ x — ex & ex extends
to an isomorphisnt ®r F, = E,, ® E,,. ConsequentlyGL(W ® F,) =
GL3(Ey,) ® GL3(Ey,). If g € GL(W ® F,) is identified with(g;, g2) under
this isomorphism, thep is identified with(gs, g1). Thus

U(F,) = GLy(Ey,)

sinceU(F,) is by definition the set

{(91,92) € GL3(Buw,) ® GL3(Ew,)| (g1,92) = (27" g5 '@, gy ' D)}
= {(917¢_1 tgflé)} - GL3(Ew1) @ GL3(Ew2)'
The unitary similitude group GU = GU(3) is the F-form of GL(3) x
GL(1) defined by the following Galois action:

gx A if o€ Gal(F/E)

o(g xA) = 551 tg1d x A otherwise.
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If visinertinE, thenGU(F,) consists of the transformations preservihg
up to multiples:

GU(F,) = {g € GL,(E,)| &7 ''g'® = \~1g for some) € F*}.

Let g € GU(F,). Taking determinants, we see thet = det(g) det(g). Thus
A € F} is the norm ofu = det(g)\~! € E:. It follows that the element—1g
lies inU(F,). Thus the following decomposition holds:

GU(Fv) = Z(Fv) U(Fv)>

whereZ is the center (i.e. scalar elements)®f/(3).
Whenw splits, then arguing as fdi, GU(F,) = GL3(Ey,) x GL1(Ey,).
Clearly in this case we also have

GU(Fy) = Z(Fy) U(F),
so we obtain the global decomposition
GU(Ap) =Z(Ar)U(AF).

Note thatZ (Ar) = A7,.

We assume thab is chosen to have signature (2,1) at precisely one infinite
placev, of F', and signature (3,0) at the other infinite places, so @atA r)
is quasi-split ab,. For each infinite place of F, let I, be a maximal compact
subgroup oSU(F},). Note that'C,, = SU(F},) unlessv = v,. SetKo = [[ K,
where the product is taken over the infinite placed ofThe symmetric space
attached taGU(Ar) is

X =GUq /Koo Zo,

which is isomorphic to the unit ball i€? (see [Go]).

2. The£-adic representations attached tar ¢

Let = be a cuspidal automorphic representatiorGaf (A ), and letry be its
restriction toGU(AF,¢). Fix a primel € Z. We review the construction of the
(-adic Galois representation attachedrtowhenr,  belongs to the discrete
series, closely following [BR1] and [R2]. More details and background can be
found in these sources, as well as [BR2].

Let 7 = ®7, be an absolutely irreducible rational finite-dimensional rep-
resentation ofGU,,, defined over a number fielfl, on which Z., acts by a
character which is the infinity type of an algebraic Hecke charactdf. dfet
Cs = Cx(7) be the (finite) set of representations, of GU, which satisfy

H?(Lie(GUs), Kby, Moo ® TF) # 0,
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wheret* is the contragredient af, andK’_ is the centralizer of the center of
Ko In GU. Suchr, arer-cohomological (For simplicity, one may prefer to
consider the case wheres the trivial representation and= Q.)

Let C' = C'(7) be the set consisting of the one-dimensional automorphic
representations diU together with the cuspidal automorphic representations
7 such thatro, € Coo(7). Let C} be the set of representations such that
Tf®To € C' for somen. If m € C'(7) is infinite-dimensional, then,, is one
of the three discrete series representations with the same infinitesimal character
asm,,, while 7, = 7, at the other infinite places, and

H*(Lie(GUy), KLy, oo @ %) 22 C.

Fix an open compact subgroépof GU(A r r). We assume thd€ is small
enough that the associated Shimura variety

Sk(C) = GUF\(X x GU(Agy))/K

is non-singularSx is an algebraic variety with a canonical model o¥erLet
S# be the Baily-Borel compactification - (F). Whenr is the trivial repre-
sentation, let

H?=TH*(S" x C,Q).
More generally, leff? be the degree 2 intersection cohomology grou§iofk C
with coefficients in the locally constant she&{ L) of vector spaces ovek
determined by-*.

LetH = Hx(Q) be the Hecke algebra €3-valued compactly supported bi-
KC-invariant functions otz U(A r 7). For anyQ-algebraA, letH(A) = H ® A.

H (L) is a semisimple algebra with an action BR. If 7y isan admissible repre-
sentation oGU (A ¢), Iet7rf’C be the finite-dimensional space/6ffixed vectors

of 7. Recall thatr ¢ +— 7er gives a bijection between the isomorphism classes
of irreducible admissibl&U(A ¢, r)-modules with nonzer&-fixed vectors and
the isomorphism classes of irreducible finite-dimensigtéC)-modules.

Fix an embedding. — C. By the Zucker conjecturelf? @ C can be
identified with theZ? cohomology, so Matsushima’s formula (coupled with the
multiplicity one theorem fo6:U) yields the following decomposition df? @ C
into H(C)-isotypic components:

H'e,C= P | @ H*(Lie(GUx), KL, Too ® )| @ 7§
Tl'fec/f Wooenoo

whereIl,, = ®II, is the product of the infinite components of the global
L-packet determined by;. If 7; is stable and infinite-dimensionall., has

3 members, corresponding to the holomorphic, nonholomorphic, and antiholo-
morphic members of7,, . Thus the summand indexed by is isomorphic to
C?’@wf’c. (See Sect. 8 below or [R§1.3 for the notion of a stable representation).
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Let K be the Galois closure (ove®) of the splitting field for H? as an
H(L)-module.K is a finite Galois extension @) containingL such that each
simpleH (K )-submodule off? @, K is absolutely irreducible (i.64(K) acts
on H? ®r, K like a sum of matrix algebras). In particul&f? @ ;, K decomposes
just like H? ® C above.

Let H? be thetale cohomology groupH? (S# x Q, F(L ®q Q¢)). By the
comparison theorenf{? @ Q, = HZ, so the}(L ® Q,)-action onH? ® Q,
transfers to an action of/7. Thus there is an isomorphism &f(K ® Q)-
modules:

H}@L K= P Vi, Oxoaq, TF (K © Qq),
WfEC}

wherers (K @ Q) = 7 (K) © Qg is a simple (K @ Q)-module (where
wf’C(K) is a K -form of wf’c), andV;, is a freeK ©® Q,-module of rank< 3 (rank
3 occurs whenr; is stable and infinite-dimensional).

The groupAut(K) acts naturally onl%Q2 ® K. This action permutes the
summands in the above decomposition, inducing a permutatidga.(ﬁoro €
Aut(K), definer € C} to be image ofr; under the permutation induced by
o.More preciselyyrf’C(K) is a finite-dimensional vector space ovéron which
H(K) acts irreducibly. Composition with gives a different irreducible repre-
sentation ofH(K'), and7 is the corresponding representation(@f/(A r ¢).
Locally, o acts on the K -rational) entries of the Langlands classesr¢f i.e.
g9(7) = o(g(my,)). It is easy to confuse? with a representation obtained by
composingr s with a Galois action on the adelic entries of the elementsGf
(i.e. the action relevant to base change). However, the “base change" action per-
mutes the local Langlands classes, instead of acting on their entries.

The Galois group

G = Gal(Q/E)

acts continuously ot/ ® K. This action commutes with that 8(K ® Qq),
and so respects the decomposition above. Supppse nonzero, and lgp,,
be the restriction of the action 6f to Vi Thend acts on the summarIde ®
T (K @ Q) by pr, ® 1.

We assume henceforth thats stable and infinite-dimensional. The relation-
ship betweemn = p., andr is expressed as an equality bfseries. Letrg be
the base change lift of to GL3(Ag) x GL;(Ag). The L-series ofr depends
only onwg. Let x, be the central character of let 7, = 7|y, and letr g be
the base change af to F (see Sect. 8). Then by Lemma 4.1.1 of [R2],

TE = ToE ® Xy

as representations 6¥L3(Ag) x GL;(Ag), wherey, is the character —
x=(Z). Letw be a finite place of at which the local representatior); ,, is
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unramified. By definition the local-factor ofr; atw is

Lw(87 ﬂ'f) = Lw(S, ToE ® Yﬂ') = det(l - Yﬂ(w’w)g(ﬂ—oEfw)q;s)_l?

whereg,, is the size of the residue field &fatw, g(7, £ ., ) is the local Langlands
class atw of the representation, p of GL3(Ag), andw,, is a prime element at
w, identified with the idel€. .. , 1,1, w,,1,1,...).

To define the local factor of the-series attached g fix once and for all an
embedding

EZQ‘%Q@,

and extend it to an isomorphism C — C,, whereC; is the completion of
Q. The representationis unramified at almost all places éf. Letw be such
a place, and leffr,, be any Frobenius elementat By definition

Lu(s,p) = det(1 — 1~ (p(Fry))gz*)

which is the reciprocal of a polynomial of degree 3yjp* with coefficients in
K. Here we interprep(Fr,,) as a 3-by-3 matrix withQ,-entries by fixing a
K ® Qq-basis forV;, and applying the map® x — ¢(k)x to the matrix entries
of p(Fr,,). This local factor is independent éfor (¢,w) = 1.

Theorem 2.1 (cf. [BR1],1.9.1and 2.2.1) etw andp be as above, viewingas a
three-dimensional,-representation, using If 7 ; is stable andlim (7 ;) = oo,
then

(1) Lu(s,p) = Lw(s — 1,m), for almost all placesv of £.
(2) One of the following two statements holds:
(@) ply is irreducible for any open subgroui C G = Gal(Q/E).
(b) There exist a cubic extensidr E and an algebraic Hecke characteér
of L such thatp = Ind¥ (¥).

The case wherg is induced is the case whereg is automorphically induced

from a Hecke character df, analogous to complex multiplication in the case of

elliptic modular forms. Henceforth we remove this case from consideration.
The equality ofL-factors in the theorem is equivalent to the statement that

(1) p(Fry) ~ Qwa(ww)g(WoE,w)

for almost every placev of E (“~” denotes conjugacy). Becausds fixed
throughout, we always write(Fr,,) instead of. ! (p(Fry,)).



382 A.H. Knightly

3. Properties ofp

For each stable infinite-dimensional € C}, we have the continuous irreducible
representation

pry i G — Aut(Va,) = GL3 (K ® Q).

Fix such ary, and setV’ = V., andp = py,. LetV = V ®q Q. Usinge,

we regardK as a subfield of),. The decompositok @ Q, = [[ Q
ceAut(K)
induces the decomposition

v= I] V.
ceAut(K)

EachV is a three-dimension&),-vector space.
Let p, be the representation 6f on'V,,. More precisely, given a basis fof,
po 1S the composite

G P GLy(K © Qi) = GL3(K © Q,) — GL3(Q,) = Aut(V,),

where the last arrow is the projection givenbg © — o(k)z = (o (k))x. For
any open subgroupl C G, p, restricts to an irreducible representationfof
In fact, p,, is identical to the representation @fon Vﬂ(fr, usinge to identify the

latter representation with a map infd.3(Q,) as in Theorem 2.1.
Equation (1) tells us that

det(ﬂ(Fl"w)) = qg}Yw (ww>3X7ToE (ww)v

for almost every primev of E. Heredet is computed relative tQ,. For any open
subgroupH C G, let My be the field generated biet(p(Fry,)) for Fr,, € H.
Let
M = ﬂ Mpy.
HCG

ThenM C K.LetM) betheimage oM ® Q, underthe mapm @ x +— e(m)zx.
By continuity and the Cebotarev density theorelat,p) takes values i/, on
small open subgroups. Similarlgt(p, (G)) C My, for some)\'|¢in M on such
subgroups. It follows that if we computiet(p) relative toK ® Qg, its image is
contained inM ® Q, on small open subgroups.

For example, ify2 .., gives rise (by the class field theory isomorphism,
which we regard as fixed throughout) to a Galois character of finite order, then
M = Q, anddet(p) is Qj-valued on sufficiently small open subgroups.
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4. Extra twisting of representations

Definition 4.1. LetI" = I'(7y) C Aut(K) be the set of € Aut(K') such that
there exists a finite order Hecke characjgr of ' satisfying

(mF)e = (7f)E @ Xo,
where(r$)p and(7y) p are the base change lifts off andr; to E.

If o € I', andx, is nontrivial, 7 is said toadmit an extra twist by o.
(Because we chosE as the splitting field for all of72, some automorphisms
of K may belong ta’” for the trivial reason that they fix;.)

Under our assumption that z is not automorphically induceg,, is unique
if it exists. This follows from the fact that a cuspidal representatio@of(A r)
is automorphically induced if and only if it is isomorphic to a nontrivial twist of
iteslf (JAC], chapter 3). By the strong multiplicity-one theorem, an equivalent
formulation of the property defining' is

X7 (@) 9(Mp,0) ~ Xy (@) 9(To,0) Xor (@)

for almost all finite places of £/, wheren?y, is the base change af;|y. The
relationship betweeg(r, ,) andg(r, £ . ) is given explicitly in [R2]§4.2. Using
this, it is immediate that the relationshign?,) = o(g(m,.)) extends to the
base change, i.g(7x ,,) = 0(9(Top,w))-

Comparing the traces af(77 ) and g(m.g,w)Xo(@w), We find thatx,
takes values itk. It follows that!" is a subgroup oA ut(K) since:

1) Wo,7el, then(w})E = (1f)E ® Xr, and so applying to both sides we
see thatn{")p = (1§)E @ oXr = (Tf)E ® XoOXr, SOOT € I,

(2) Ifo € I' then(nf)p = (7f)E @ Xo, SO allowings—! to act on both sides,
we have(ry)p = (w;_l)E ® 01Xy, Which showsr—! € I
The class field theory isomorphism allows us to idengifywith a character

of G, which we also denote by, . Using the relationship betwegrandr; and
the above remarks, we see that [ if and only if for almost alhw,

Po(Fry) ~ Qwa; (ww)g(ﬂgE,w)

~ QuXnr (ww)g(ﬂ-oE,w)Xo' (ww)
~ p(Fry)xo (Fry).

Here we writep for p;4, whereid € Aut(K) istheidentity. Now by the Cebotarev
density theorem, we have:

cel & (MHE=(THE®Xe © po=pRXo-



384 A.H. Knightly

5. The spaceEndy V

Let H be a subgroup ofr. The term ‘H-module” will always refer to a vec-
tor space (oveQ, or Q,) with an H-action. Endomorphisms will always be
vector space endomorphisms. Thus for examplely V' = Endq, )V and
Endy V, = End QuIH ]VU.

Recall from Sect. 3that iff is an open subgroup 6f, thenH actsirreducibly
onV, by way of p,.. For reference, we record the following basic fact.

Lemma 5.1 (Schur's Lemma)Let H be an open subgroup 6. Then for any
o€ Aut(K), Endy V, = Q,.

As we will see in the next section, the Lie algebra of the image i
characterized using its commutantind V. The reason for introducing is to
compute this commutant ove€y,.

Lemma5.2. Leto, 7 € Aut(K), and letH be any open normal subgroup@f
ThenV, = V, as H-modules if and only if ~'o € I"and H C ker x,-1,.

Proof. Supposel,, = V; as H-modules. Then there exists an isomorphism
A € Isomg (VT,V) GL3(Q,) such that

po(h) = Apr(R)A™!
forall h € H. For anyg € G, define

d(g) = pr(9) T A po(g) A

Clearly¢(h) = 1 for all h € H. We claim that in fact(g) is a scalar for all
g € G. This follows because one computes directly that

d(9) " p-(h)p(g) = p-(h) forall g€ G,h € H,

using the normality ofif. Hence¢(g) € Endy V, = Q, as claimed. Thus
po = pr ® ¢, which is equivalentto—lo € I

Conversely, ifr~'oc € I'and H C kerx,-1,, thenp, = p, ® ¢, for
¢ = TX,-1,, @ndg is trivial on H. This says that,, = V. asH-modules. O

Proposition 5.3. Let H be an open subgroup @& which is contained in the
kernels of all the characterg., (v € I'). ThenEndy V' = M,(Q,)" where
a=#I"andb = #(Aut(K)/I").

Proof. We may assume thdf is normal, since has a basis of open normal
subgroups, and if the result holds for two normal subgroups, it clearly holds for
all intermediate subgroups.

RegardEndy V' as the matrix block sum of the sé®my (V,,, Vs,)- By
the irreducibility of thel/,’s and Lemma 5.1, each of these sets is equal either to
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Q, or to 0, according to whether or n&}, andV,, are isomorphidZ-modules.
Lemma 5.2 shows that they are isomorphic if and onby; i€ 0; mod I'. This

saysthabndy V= [ M,.(Q) as claimed. 0
Aut(K)/I

Thus if H; and Hs are any sufficiently small open subgroups(gfwe see
thatEndy, V' = Endpg, V. This follows because the neste}}-vector spaces
Endp, V' C Endy, g, V are actually equal since they are equal oQerby
Proposition 5.3, and tensoring iy, preserves the codimension. Define

X =EndyV,

for any “sufficiently small’H as in the proposition.

6. The Lie algebrag of p(G)

Let g be thel-adic Lie algebra of the imagg GG) of p. Our goal is a description
of g. An endomorphism o¥ is in the commutant of every sufficiently small open
subgroup of& if and only if it is in the commutant of the Lie algebgaHence
EndgV = X, and sog C Endx V. Itis clear thatk ® Q, C Endg V' = X.
Thus

g C EndxV C Endggq, V = gl3 (K ® Q).

Furthermore, as we saw in Sect.®t(p) (computed relative td @ Qy) is
M ® Qg-valued on sucltH . Hence

g C {m € Endx V| tr(m) € M ® Qq}.

Note thatthe trace of an elementafd x V' (always computed relative I6 @ Q)
liesa priori in K ® Q. B
This is nearly enough information to determind_etg = g ® Q,. Then

§CEndgyq, V= ][] EndV.
oceAut(K)

The irreducibility ofp on open subgroups @f implies thatg is a reductive Lie
algebra. Lef be its semisimple part. Lgt. denote the projection gfto End V.

go is the semisimple part of the Lie algebra of the image of the representation
po- Because, remains irreducible on open subgroupgfg, acts irreducibly
onV,. Thusg, is a simple subalgebra gf(V,) = gl;(Q,). There are only two
nonzero isomorphism classes of simple Lie subalgebrag, 6®,):

slh(Q,) and sl3(Qy).

Becausgy,, acts irreducibly, the only possibility in the first case is thatis a
copy ofsl»(Q,) embedded inl;(Q,) as the Lie algebra of an orthogonal group.
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Furthermore, because the actionfoft(K') on the representations preserves
the dimension of the images, if ogg is orthogonal, then afi, are orthogonal.
So there are two distinct classesmgfs:

(1) pisOrthogonal: g, = s0(V,) = s03(Q,) forallo € Aut(K).
(2) pisNon-orthogonal g, = sl(V,) = sl3(Q,) forall o € Aut(K).

By the compatibility of the systerfio,}, this classification is independentof
In the orthogonal case, for each e Aut(K), po(H) is contained in an
orthogonal similitude group:O3(Q,) for some sufficiently small open normal
subgroupH of G. This implies thap, (G) € GO3(Q,) because, (G) normal-
izesp,(H) andGO3(Q,) is its own normalizer irGL3(Q,). This condition on
the p,’s is equivalent tp(G) € GO3(K @ Q).
Thusg C b, where

{m € EndxV Ngo(V)| tr(m) € M ® Q,} in the orthogonal case

{m € Endx V| tr(m) € M ® Q,} inthe non-orthogonal case,

and whereggo(V') = gos(K ® Q) is the Lie algebra of the orthogonal group
GO(V).

Theorem 6.1. g = h.

Before proving the theorem, we remark that it is reasonable to expect that in
most cases will not admit any extra twists. In such a circumstantds trivial
(provided that\ut(K') acts faithfully onr;'s orbitinC}), andEnd, V = Q, by
Proposition 5.3, where = [K : Q]. HenceX = K ® Q, since itsQ,-dimension
isn, and so Theorem 6.1 tells us thapifs non-orthogonal, we have

g={m € Endggq, V| tr(m) € M ® Q}.
The proof of Theorem 6.1 uses the following basic lemma.

Goursat’'s Lemma (Lie Algebra Version)Lets; ands, be simple Lie algebras,
and letg be a Lie subalgebra af; x s, such that the projections of g tos; are
both surjective. Then eithgris all of s; x s, or g is the graph of an isomorphism
51 = s59.

Proof. Let N x 0 = ker(p2). ThenN is an ideal ofs;. To see this, leh € N
andz € s; be arbitrary. Then there exisise s, such that(z,y) € g sincep;
is surjective. It is immediate thal x 0 is an ideal ofg. HenceN x 0 contains
[(n,0), (z,9)] = ([n.2],0,4]) = ([n,2],0), and so[n,z] € N as claimed.
Thus by the simplicity 0§, eitherN = 0or N = s;. In the former casey = so,
and we also must haye> s; since we now know thagis simple. S@, op;1 is
an isomorphisns; = s,. In the latter case, we see that s1 x s9, as required.
0
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Proof. (Theorem 6.1).eth = h ® Q,. Then

§ChHCEndy,qg, V= I Endvi.
ceAut(K)

It suffices to show thaf = b sinceg is aQ,-subspace of and change of base
preserves the codimension. Ugt= {m € b| tr(m) = 0} be the semisimple
part of ). We only need to prove that= b, since the abelian parts gfandh
are both equal td/ ® Q,. This will follow once we verify the conditions of the
following lemma forg andf with s, = s[(V5) in the non-orthogonal case, and
s, = s0(V) in the orthogonal case.

Lemma 6.2. Let X' be a finite set, and for eackh € X let s, be a finite-
dimensional simple Lie algebra over a field of characteristic 0. g¢.eind b
be subalgebras df] s, with g C h. Suppose that

(1) b maps onto each facta, .
(2) g andh have equal images if, x s, foro # 7.

Theng andb are equal.
Proof. [Ri2], 4.6 O

By constructiong, = b, = s,. Thus condition 1 is automatic. Now for
o # 7in Aut(K), let g, - (resp. bm) be the image of (resp.h) in s, X s;.

We need to verify condition 2, i.e. thgf - = hU,T For this we apply Goursat’s
Lemmato seethateithgy , = s, xs, or elsey, ; isthe graph of anisomorphism
5, = 5;.

We can now show in either case tlgat, = GU,T. First we point out thag, -
(resp.ﬂw) is the graph of an isomorphismy = s if and only if V, = V,
asg-modules (respy-modules). To see this for example in the orthogonal case,
choose bases faf, andV; in such a way that the bottom arrow in the following
diagram is the identity map:

~

So Sr
l l
503(Qz)4>503(Qé)

where the top arrow is a lift t, - followed by the projection ta.. The iden-
tification of these two bases then giveg-ssomorphism betweeil, and V.
Conversely, ify is ag-isomorphism froml/, to V., define a map from,, to
s, by lifting an element of, to g and projecting ta... Because, ands. are
simple, it just suffices to check that this map is well-defined. Suppo3é € g
both project toX,, € s,, and letX, andY; be their projections te... Then for
anyv € V., X;v = o(X,071(v)) = (Yoo ! (v)) = Yyv. HenceX, andY;
are the same endomorphismiaf, so our map is well-defined.
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If V, andV- arenotisomorphicg-modules, we may conclude th@t . (and
henceh, ,) equalss, x s,.

On the other hand, i¥, = V. asg-modules, letp : V, — V., be an
intertwining operator fof. Theny extends to an element 8lndg V' = X. This
shows thatp also commutes with, since

E C End§7

implies that
EDdEV D) EndEndévv = ?

This last equality follows immediately from the fact thaez M, (Q,)” (Propo-
sition 5.3). Thud/, andV;: are isomorphig-modules only if they are isomorphic
h-modules. Hence, using the remarks made above, in the casg, that s,,
we see thab, , = s,, and sGj, , = b,

This completes the verification of the two conditions of the lemma, and proves
the theorem.

7. The orthogonal case

We now show that the study of the orthogonal case essentially reduces to the study
of Galois representations attached to representatiodslef A ). It is more
convenient here to work on the grolipthan onGU. In fact the representation
theories of these groups do not differ in any significant way s(ate= 7 - U.

Letny € C}, and letp be the associatedadic representation (always viewed

in this section as a map intdL3(Q,), usinge as usual). Letr, = m¢|y, and
assume as usual thaig is not automorphically induced. We can associate to
7, an ¢-adic Galois representatign as follows. By Theorem 2.1(s, p) =
L(s — 1,75 ® X,). Becausex, is an algebraic Hecke character Bf we
may identify it with a character of7, which we also denote by,.. Let p, =
p ® X, . Because twisting by a character does not affect the irreducibility of
a representatiory, satisfies property 2(a) in Theorem 2.1. Note thatlso
satisfiesL(s, p,) = L(s — 1,7,), and thus its isomorphism class is independent
of the choice ofr restricting tor,. Hence it is meaningful to discuss thedic
representation attached#o.

Now suppose is orthogonal so that its image {®L3(Q,) is contained in
an orthogonal similitude group. By possibly replacingvith an isomorphic
representation, we shall assume that this orthogonal group is defined by the
standard bilinear form given by the identity matrix. Thus the statementithat
is orthogonal is equivalent to the statement thas self-dual up to a twist:
p = p* ® v for some Galois charactetr Thenp, is also orthogonal becauge
andp only differ by a twist. Theorem 7.3 below shows that a twist offhpacket
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containingr, is the unitary adjoint lift of a cuspidal representation(df(2) r.
Thus by functoriality, up to a twist by a character any orthogegnadmes from
a representation @k Lo (A F).

For details on the unitary adjoint lifting, and a summary of the properties
of the other functorial liftings discussed in this section please refer to Sect. 8.
For basic information on automorphic induction, see [R3]. We repeatedly use
the fact that a cuspidal representationfs (A ) is automorphically induced
from a Hecke character of a three-dimensional extensiali fand only if it
isomorphic to a nontrivial twist of itself ([AC], chapter 3).

Lemma 7.1. Supposer; and 7, are automorphic representations 6fL(2)
whose adjoint lifts td5L(3) differ by a twist: Ad(m) = Ad(m) ® w for some
Hecke charactew. Then eithew = 1 or Ad(r;) are automorphically induced
from Hecke characters.

Proof. By the fact that any adjoint lift is self-dual, we have
Ad(y) ® w = Ad(m)* @w ™! = Ad(m) @ w™t.

HenceAd(m;) = Ad(m2) ® w?. So eitherdd(r;) is automorphically induced, or
elsew? = 1. In the latter case, taking central characters in the initial condition,
we see thak sq(-) = XAd(TZ)wi”. But the central character of any adjoint lift is
trivial. Hencew? = 1 andw? = 1, and sav = 1. 0

Lemma 7.2. Let IT and IT’ be stableL-packets orilJ and letr and#’ be their
respective base change lifts & Suppose’ = 7 ® u for some Hecke character
w of E. Then either there exists a characteof U(A r) such thatll’ = IT ® x
or elser and«’ are automorphically induced.

Proof. As the base change &f’, =’ satisfiest’ = 7*. This implies that

TOuE TN 2ron

which givest ® pup = . So eitheruzm = 1 or elser is automorphically
induced. In the first case, lgt- = p|r,., wherelr denotes the ideles d@f. Then
pwrlip = p% = 1. Infactu is actually trivial: taking central characters of the
relationshipr’ = 7 ® i, we havey, = x.u>. Becauser andr’ descend tdJ,
their central characters have trivial restrictiongtoHenceu?. = 1andu% = 1,
and sour = 1. This, together with the conditiopz = 1, is the criterion for
descending: to a charactex of U. Then(II ® x)p = 7 ® u = 7'. By the
injectivity of this base change lifting]’ = IT ® . 0

Theorem 7.3. Let 7, be a cuspidal automorphic representationlofA ) be-
longing to a stablel-packet/I, with associated-adic Galois representation
p. Assume that the image pis contained in an orthogonal group. Then either
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(m,) g is automorphically induced from a Hecke character, or else there is some
charactery of U(A ) such that/l ® « is the unitary adjoint lift of a cuspidal
representation oG Lo (A ).

Proof. Letm = (m,)g. Thenr is cuspidal. Assume thatis not automorphically
induced. Becausg is orthogonal, it is self-dual up to a twist: = p* ® v for
some Galois charactet We also writev for the associated Hecke character of
E. For almost every place of E, p(Fr,,) ~ qu,g(myw). Putting these together,
we haveg,g(my) ~ ¢, g(mw) tv(w.y), for aimost allw, and hence by strong
multiplicity-one

TET® |"iFV,
wherel| 5 ,. is the the adelic norm (composed witéx). Taking central characters
in this equation gives

Xr =X |-, 77,

and so-|3 v = (x«|-|a,v"")?is a square. Setting = x;!|-[4, v, we see that

T2t @ (p )2 and so
TRpE (T p)",

i.e. a twist ofr is self-dual. We may also assume tha® p has trivial central
character. (Otherwise, letting be the central character af® u, 7 ® puw ™!

is self-dual with trivial central character.) The image of the adjoint lifting from
GL(2) to GL(3) is the set of self-dual representations@K.(3) with trivial
central characters (see Sect. 8). Thus there exists a cuspidal representdtion
GL2(Ag) whose adjoint liftAd(7) is m ® p.

We wish to show thatr ® p is the base change lift of ah-packet onU.
This holds if (7 ® p)* = 7 ® p and the central character of 7 ® p has
trivial restriction to the ideledr of F. We are already assuming that= 1,
so the second condition is automatic. To verify the first condition, note that as
a base change frofd, = satisfiest™ = 7. Because th&al(E/F') action on
representations commutes with the adjoint lifting, we see that

Ad(?):ﬂ@ﬂ%ﬂ*@ﬁ%ﬂ@)/ﬂﬁ%(7r®u)®uﬁ:Ad(7-)®uﬁ_

Lemma 7.1 applied te and7 tells us thajuzz = 1 (since we assume that and
hencer ® u, is not automorphically induced), and so by the above equation,

TORLETRUE (T )"

as needed. Thus we may writex . = (II')  for some stable cuspidatpacket
IT' of representations df.

Becauser ® p is an adjoint lift, I’ is the unitary adjoint lift of a cuspidal
representation o&1L(2) by Proposition 8.3 below. The fact that and I1’
differ by a twist follows by Lemma 7.2. 0
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8. Appendix: The unitary adjoint lifting from GL(2) to U(3)

The lifting of representations described here is a special case of the following
general conjecture:

Langlands functoriality conjecture: LetG andG’ be reductive groups ovet,
and letp : “G — LG’ be anL-map between theik-groups. Then given ah-
packet/I = ®II, of automorphic representations 6f A i), there exist a finite
setS of places off" and anL-packetp(11) = ®II], of automorphic representa-
tions of G’(A r) such thatforw ¢ S, I1, and II], are unramified local.-packets,
andg(w.) ~ p(g(my)), wherer, and~!, are the unique unramified elements of
these local packets, with Langlands clasgés,) and g(r,) respectively.

Remarks:

(1) See [BR2] for definitions of-groups,L-maps, Langlands classes, and a
description of the conjectural partition of the set of irreducible admissible
local representations @f into finite sets called.-packets. The existence of
L-packets is established for(n) for n < 3 in [R1].

(2) Conjugacy in the')—group@ x Wr means conjugacy by an element of the
dual group factor.

(3) The lifting p(II) is unique if strong multiplicity-one holds fak-packets
onG’. For example, ili’ = GL(n), thenL-packets are singletons and the
strong multiplicity-one theorem holds. Faér, strong multiplicity-one for
L-packets also holds ([R1], Theorem 13.3.5).

(4) When confusion is unlikely, we denote a Langlands cldss) by its pro-
jection to the dual group.

In this section we define ah-map Ady : *GL(2) — *U and verify the
conjecture forAdy in the case which is needed in Sect. 7. The construction of
Ady amounts to filling in the following diagram:

LGL(3)g
Ad BC
LGL(2)g LUB3)r
S
D
LGL(2)p

The definitions of the adjoint liftingdd from GL(2) to GL(3) and the base
change liftings5C for GL(2) andU are recalled below.
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Base change foGL(2) from F' to E

The functoriality conjecture applies femaps between algebraic groups over the
same field. So to obtain a lifting of representations fiGi (A ) to GL2(Ag)
we need to consider a reductive group which avdooks like GL(2) g, namely
the restriction of scalai§ = Res%(GL(2)). By definition,G(A) = GLy(E®p
A) for any F-algebraA.

Fix an embedding” — C, and letX be the set of’-embeddingsF — C.
The L-group ofG depends only on its dual group

G(C) = [] GLa(C) = GL,(C) x GLs(C).
ceX

The Galois groupGal(E/F) acts onX, and this gives a natural action of

Gal(E/F) onG which permutes the coordinates. ThayroupZG is defined as
GL2(C) x GL2(C) x Wp, where the Weil groupVr acts through its projection
to Gal(E/F'). The L-group of GL(2) is GL2(C) x Wp, and the base change
L-map is

BC : GLQ(C) X WF — [GLQ(C) X GLQ(C)] X WF

defined by the diagonal embeddirig; o) — (g, g, ). The lifting of automor-
phic representations corresponding to thisnap is due to Saito, Shintani and
Langlands, and holds more generally fof /' cyclic of prime degree.

There is a correspondence between the local Langlands classes of a repre-
sentation ofG(Ar) and those of the same representation viewed as a repre-
sentation ofGLy(Ag) (cf. [BR2] §3.5). Using the latter perspective, the re-
lationship between a representationof GL2(A ) and its base change lift
75 IS g(Tpw) ~ g(m,)% for almost all places of F andwl|v in E, where
dy = [Ey : Fy).

If 7 is an automorphic representation@f.2 (A ), letT be the representation
given byg — 7(g). TheGal(E/F') actiont — 7 has the effect of interchanging
the local components,, andny (cf. [R3] §15). 7 is the base change lift of an
automorphic representation 6fl.o (A ) if and only if it is fixed by this action,

i.e. ifand only ifr & 7.

The adjoint lifting fromGL(2) to GL(3)

GL4(C) acts by conjugation on the 3-dimensional complex vector spat€)
of 2 x 2 matrices with trace 0. For each choice of basissfethis action yields
amap
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The image ofAd in GL3(C) is the orthogonal groufO3(C) defined relative
to the symmetric bilinear form osi,(C),

XY = tr(XY).

For our purposes, we computil relative to the basis

(67 5)-(00)]

for sl2(C). Then the formtr(XY') is represented by the matrix

e ()

Because we are interested in the adjoint lifting for groups @eworking
over the ground field’, we again use restriction of scalars, and the adjbintap
from “GL(2) g to “GL(3)  is defined as:

Ad : [GLy(C) x GLy(C)] x Wp —» [GL3(C) x GL3(C)] x Wp

sending g, g,0) — (Ad(g), Ad(g), o). Functoriality for thisL-map was proven
by Gelbart and Jacquet ([GJ]).
Let m be a representation 6fL3(A ). From the fact that

-2

it follows that if 7 is an adjoint lift, it satisfiegj(r,) ~ g(m,)~* for almost
every placew. Thusw = 7*, wherer* is the representation contragredient to
m. Itis also clear thatr must have trivial central character. In fact the image of
the adjoint lifting is precisely the set of automorphic representations with trivial
central characters which are self-dual (see table (1) in [GRS]). Furthermore if
is cuspidal, then any descent®d.(2) is also cuspidal.

The kernel ofAd is the set of scalar matrices. This implies that the fibers
of the adjoint lifting are twist classes of representations;i,eandmy have the
same adjoint lift if and only ifr; = 7 ® x for some Hecke charactgt

S}
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Base change fot

The L-group of U is GL3(C) x Wp, with action of Wy factoring through
Gal(E/F) given byc(g) = @gltg—l@g for complex conjugatiore, where
1
d3=| -1 |.Defineamap frordU to “ResE(GL(3)):
1

BC : GL3(C) x Wr — [GL3(C) x GL3(C)] x Wp
by (g,0) = (9,93 g~ @3, o). The transfer of -packets corresponding to this
L-map exists and is injective ([R1], chapter 13).
Remark.Let G = ResE(GL(3)), and letU = ResZ(U). Of course the two
groups are isomorphic. Define a map
H:'U —tag

by (z,y,0) + (z, P51 ty~1d3,0). H is an isomorphism of.-groups. Thel-
map BC defined above i$] o ¢, wherey : U — LU is the standard base
changel-map forU as defined in [R1].

An L-packet/T onU is discreteif some member of/ occurs in the discrete
spectrum ofU (cf. [R2] §2). A discreteL-packetlI is stable if it is not the

functorial transfer of a discrete representation of the endoscopic subgretip
U(2) x U(1). IT is cuspidalif every discrete element df is cuspidal.

Theorem 8.1 ([R1], Theorem 13.3.3). The base change lifting fromJ to
GL3(A ) defines a bijection between the set of stdbleackets7 onU and the
set of discrete automorphic representationef GL(3) g which satisfyr =~ 7*
andxr|r. = 1, wherex, is the central character of. Furthermore, a discrete
L-packet!I is infinite-dimensionats IT is cuspidaks- BC(II) is cuspidal.

Definition of Ady
Define anL-map from*GL(2) to *U:

Ady : GL2(C) x Wp — GL3(C) x Wp
by (g,0) — (Ad(g), o). Ady is a homomorphism because

o3 Ad(g) " P = Ad(g).
This equality holds sinceld(g) preserves the bilinear formy(XY) which is
given by the matrixps. This also insures the commutativity of the diagram since
Ad(BC(g,0)) = (Ad(g), Ad(g),0)
= (Ad(g), @3 'Ad(g)~'®3,0) = BC(Adu(g,0)).



Galois representations attached to representations of GU(3) 395

We now verify the functoriality ofAdy in the case needed for this paper.
The same proof will work in the general case provided one verifies that the
above descent condition = 7* and x|, = 1 is valid for all automorphic
representations dkL(3) z, not just the cuspidal ones.

Proposition 8.2. Let = be a cuspidal representation 6fLy(Ar), let 7 =
BC(m), and letrs = Ad(mg). Suppose thats is cuspidal. Then there exist a
stable cuspidalL-packet/] = Ady(7) on U(A ) and a finite sefS of places
of F', including all places where and IT are ramified, such that for alt ¢ .S,
Ady(g(my)) ~ g(m,), wherer! is the unique unramified element of the local
L-packetl],. I1 is called theunitary adjoint lift of .

Proof. As a cuspidal representation@L3(A ), 73 is the base change lift of an
L-packet of representations bf{ A r) if and only if 73 = 73 andx, |7, = 1.
The second condition is automatic singg, = 1, w3 being an adjoint lift. The
condition7Ts = 73 only needs to be verified locally at almost every placé’of
by the strong multiplicity-one theorem f6fL(3).

Let v be any place of” which lies outside the exceptional sets for all of the
lifts of r discussed here. Writg d> for the class ofj(r, ). Letw be any place
of £ lying overv. Set

1if vsplitsinE

dy = [Ey : Fy] = [2 if visinertinF.

Then by the property of the base change lifting,

d av
g(ﬂ'E,w) ~ g(ﬂ'v) Yo~ < ddw> :

This is clearly independent of the choicewlffv in E. Hence
a dw
d

g<773,w) ~ 1
d

is also independent of the choice ©fv. This shows thatrs = 73 since for
almost every place of E, g(T3.4,) = g(m3w) = g(m3,,). On the other hand,

3 = 75 sincers is an adjoint lift. Putting these statements together, we see that
7'(';’))< = T7s.

Hence there exists a stable cuspiflgbacket/T of automorphic representa-
tions of U(A ) such that3C(I1) = m3. DefineAdy(w) = II. LetS be the finite
set of place® of F' which are exceptional either for the base chang& @b £
or for any of the lifts ofr discussed here. For eachZ S, let 7/, be the unique
unramified element off,,. Viewing 3 as a representation Bles (GL(3)) over
A, the relationshig (7)) ~ Ady(g(m,)) follows immediately by comparing
the Langlands classe$ns ,,) ~ BC(g(m))). 0



396 A.H. Knightly

The next task is to give a descent condition fofy; for stable L-packets.
We first remark that the center &f consists of the unitary scalar matrices and
may be indentified witfJ(1). A property of L-packets is that all elements of an
L-packet have the same central character.

Proposition 8.3. Let IT be a stable cuspidal-packet onU with central char-
actery . Letm = BC(II). Then the following are equivalent:

(1) ITI is the unitary adjoint lift of a cuspidal representation@f.2(A r)
) H=MI*andxy =1
(3) = is the adjoint lift of a cuspidal representation GiLo (A g).

Proof. (1) = (2): Supposdl = Ady (7). Letwv be a place of' at which both

IT and7 are unramified. Write<a d) for the class ofy(7,). Theng(I1,) =

d
1 ] X w,, Wherew, € Wr projects toFr, in Gal(E/F). This shows
both tﬁlatﬂv = Iy, and that the unramified element B, has trivial central
character. Henc& = IT* andy 7 = 1 by strong multiplicity-one for.-packets
onU(n) forn < 3.

(2) = (3): Letwv be a place of" wherell is unramified. Ifv splits inE, letw,
andws, lie overv in E. ThenU(F,) = GL3(Ey, ), and the unramified element
of IT,, may be viewed as an unramified representatiosb§(E,,, ). Then (as
described in [R2]§4.2) we can take(my, ) = g(II,,) andg(my,) = g(I1,) " .
Thusm,, = . ifand only if I1, = II7. If v is inert in E, then the condition
m, = m, IS automatic since, = m,, andw, = 7. Hencell = II* impliesw
is self-dual. By the injectivity of the base change (1), we have(x;)r =
x~ = 1. Thus the conditions are met farto be the adjoint lift of a cuspidal
representation a&Ly(Ag).

(3) = (1): Suppose there exists a cuspidal representatioh GLs(A g)
whose adjoint liftAd(r) is 7. We wish to descend further to a representation
of GL2(Ar). For this we need to verify that = 7. We first check that and
7 are in the same fiber of the adjoint lifting. As a base change lift fidmr
satisfiest™ = 7, and as an adjoint lift it satisfies" = 7. TheGal(E/F') action
on representations commutes with the adjoint lifting, so

Ad(T) =72 " =27 = Ad(r).

The fibers ofAd are twist classes of representations, so the above implies that
T = 7 ® w for some Hecke character. Lapid and Rogawski have classified all
such representations:

Theorem 8.4. ([LR]) Letw be a Hecke character of a number fidld let o be
an automorphism oF with fixed fieldF', and letr be a cuspidal representation
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of GL2(Ag) such thatr (1) = 7 ® w. Let K be the extension df attached to
the restrictionwy ofw to Ir. Then[K : F] < 2 and

(1) If K = F (i.e.wp is trivial), thenT ® v is the base change lift of a cuspi-
dal representation ofzLy (A r), wherey is any Hecke character such that
P17 = w.

(2) If K/F is a quadratic extension, thelh= K F is a quadratic extension of
FE, and there exists a Hecke characteof L such thatr = ATZ ().

In our situation,r is not automorphically induced from a Hecke character
becausedd(r) = = is cuspidal (cf. [R3E13). Hence replacing by 7 ® v, we
may assume that> 7, so there exists a cuspidal representationf GL2 (A r)
whose base changerisBy the commutativity of the diagram, and the injectivity
of the U base change lifting, it is clear thaidy (7r) = II.
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