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Abstract. For a fixed prime� ∈ Z we compute the�-adic Lie algebra of the image of the�-
adic Galois representationρ attached to a stable cuspidal automorphic representationπ of the
unitary similitude groupGU(3). This result depends on whetherπ admits extra twists in the sense
defined below. Two cases emerge: orthogonal image and non-orthogonal image. We show that in
the orthogonal case there exists a characterν such thatρ⊗ ν is the Galois representation attached
to the unitary adjoint lift of a cuspidal representation ofGL(2).

Introduction

Deligne’s construction of a family{ρ�} of two-dimensional�-adic Galois rep-
resentations associated to each classical Hecke eigenform is of importance in
number theory as a meeting point of algebraic and analytic theories. The images
(inGL2(Q�)) of such Galois representations were initially studied by Serre- both
those coming from elliptic curves ([S2] and [S3]), and, with Swinnerton-Dyer,
those attached to elliptic modular forms with level 1 and Hecke eigenvalues inZ
([S1] and [S4]). In each case, it was shown that for all but finitely many primes�
the image ofρ� is as large as possible, under a necessary determinant constraint.
Among other consequences, this result explains the congruences satisfied by
Ramanujan’sτ -function.

A more recent accomplishment in this area is in the theory of Picard modular
surfaces. APicard modular surface is a Shimura variety attached to a unitary
similitude groupGU(3) defined relative to an imaginary quadratic extension of
a totally real number fieldE/F . The main result of the volume [M] expresses the
zeta function of a Picard modular surface in terms of automorphicL-functions.A
consequence of this is the association to each stable cuspidal cohomological au-
tomorphic representationπ ofGU(3) a compatible system of three-dimensional
�-adic representations ofG = Gal(Q/E). The problem arises to investigate the
images of these representations following Serre. The determination of the actual
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images in the elliptic modular case relied on an understanding of the structure
of the ring of modular forms modulop. Results of this kind are not yet available
for GU(3), however we may begin the study by examining the Lie algebras of
the images, which tell us what small open subgroups of the images look like.

For a fixed prime�, we compute the�-adic Lie algebra of the image of the
�-adic representationρ attached toπ. We rule out the “CM" case where the
base change ofπo = π|U(3) to E is automorphically induced from a Hecke
character; this case reduces to the abelian theory onGL(1) which is already
well-understood ([S2],[Ri1]). The technique used for the computation is based
on methods developed by Momose and Ribet who performed the analogous
computations onGL(2) for elliptic modular forms of weightk ≥ 2 and arbitrary
level ([Mo], [Ri2]). As it turns out, the size of this Lie algebra depends on the
following two pieces of information aboutπ, explained in this paper:

(1) whetherπ admits “extra twists"
(2) whether a twist ofπo is the unitary adjoint lift of a representation ofGL2(AF ).

In Sect. 2 we review those aspects of the construction ofρ� which will be
needed in what follows. The precise connection betweenρ andπ is discussed,
and in Sect. 3 several more properties ofρ are given. Sections 4 and 5 explain the
idea of extra twisting of automorphic representations and how this affects the size
of the image ofρ. The Lie algebra of this image is computed in Sect. 6 in both
of the two cases which emerge: orthogonal image and non-orthogonal image.
In Sect. 7, we show that the orthogonal case occurs only when a twist of (the
L-packet containing)πo = π|U(3) is a unitary adjoint lift fromGL(2). Thus, the
study of the images of an orthogonal system{ρ�} reduces to the study of systems
attached to representations ofGL(2), which are already well-understood, at least
in the caseF = Q (cf. [Ri3]). The final section is a discussion of base change
and the definition, functoriality, and a descent property of the unitary adjoint
lifting from GL(2) to U(3). Because this information is used in the arguments
of Sect. 7, it may be necessary to read the results of Sect. 8 first.

In [K], we have computed the infinity type of any unitary adjoint lift. In
many cases one can show thatπo is not a unitary adjoint lift because its infinity
type is not of the right form, even after twisting. See [K] where this is carried
out for the four explicit examples of stable forms given by Finis in [F]. For
these examples, none of the systems of Hecke eigenvalues (given in [F]) has
the symmetry that extra twisting would impart, and so the associated�-adic Lie
algebras are determined.

I would like to thank J. Rogawski and D. Blasius (who suggested this prob-
lem) for the many helpful conversations and suggestions which made this paper
possible. I would also like to thank the referee for several helpful comments and
suggestions.
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1. Preliminaries

Let E/F be a purely imaginary extension of number fields of degree 2, with
F totally real. The places ofF andE will be denoted byv andw respectively.
Let AF andAE be the adeles ofF andE, with finite partsAF,f andAE,f ,
and infinte partsAF,∞ andAE,∞. For any algebraic groupH overF , we set
H∞ = H(AF,∞).

LetW be a3-dimensional vector space overE. FixΦ ∈ GL(W ) ∼= GL3(E)
satisfying tΦ = Φ, where the bar denotes complex conjugation forE/F . Φ
defines a Hermitian inner product onW by (v, w) = tv Φw, and theunitary
group U = U(3) is the set of automorphisms ofW which preserve this inner
product. As an algebraic group,U is theF -form ofGL(3) consisting of the fixed
points of the following Galois action onGL(3):

σ(g) =

g if σ ∈ Gal(F/E)

Φ−1 tg−1Φ otherwise.

If A is anyF -algebra, then

U(A) = {g ∈ GLE⊗F A(W ⊗F A)| Φ−1 tg−1Φ = g}.
Thus in particular, ifv is a place ofF which is inert or ramified inE,

U(Fv) = {g ∈ GL3(Ev)| Φ−1 tg−1Φ = g}.
Supposev splits inE, andw1, w2 lie overv inE. The bar operation gives a natural
isomorphism betweenEw1 andEw2 , and the mape ⊗ x �→ ex ⊕ ex extends
to an isomorphismE ⊗F Fv

∼= Ew1 ⊕ Ew2 . Consequently,GL(W ⊗ Fv) ∼=
GL3(Ew1) ⊕GL3(Ew2). If g ∈ GL(W ⊗ Fv) is identified with(g1, g2) under
this isomorphism, theng is identified with(g2, g1). Thus

U(Fv) ∼= GL3(Ewi)

sinceU(Fv) is by definition the set

{(g1, g2) ∈ GL3(Ew1)⊕GL3(Ew2)| (g1, g2) = (Φ−1 tg−1
2 Φ,Φ

−1 tg−1
1 Φ)}

= {(g1, Φ−1 tg−1
1 Φ)} ⊂ GL3(Ew1)⊕GL3(Ew2).

The unitary similitude group GU = GU(3) is theF -form of GL(3) ×
GL(1) defined by the following Galois action:

σ(g × λ) =
[
g × λ if σ ∈ Gal(F/E)
λΦ−1 tg−1Φ× λ otherwise.
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If v is inert inE, thenGU(Fv) consists of the transformations preservingΦ
up to multiples:

GU(Fv) = {g ∈ GLn(Ev)| Φ−1tg−1Φ = λ−1g for someλ ∈ F ∗
v }.

Let g ∈ GU(Fv). Taking determinants, we see thatλ3 = det(g) det(g). Thus
λ ∈ F ∗

v is the norm ofµ = det(g)λ−1 ∈ E∗
v . It follows that the elementµ−1g

lies inU(Fv). Thus the following decomposition holds:

GU(Fv) = Z(Fv)U(Fv),

whereZ is the center (i.e. scalar elements) ofGU(3).
Whenv splits, then arguing as forU, GU(Fv) ∼= GL3(Ewi) × GL1(Ewi).

Clearly in this case we also have

GU(Fv) = Z(Fv)U(Fv),

so we obtain the global decomposition

GU(AF ) = Z(AF )U(AF ).

Note thatZ(AF ) ∼= A∗
E .

We assume thatΦ is chosen to have signature (2,1) at precisely one infinite
placevo of F , and signature (3,0) at the other infinite places, so thatGU(AF )
is quasi-split atvo. For each infinite placev of F , letKv be a maximal compact
subgroup ofSU(Fv). Note thatKv = SU(Fv) unlessv = vo. SetK∞ =

∏Kv,
where the product is taken over the infinite places ofF . The symmetric space
attached toGU(AF ) is

X = GU∞ /K∞Z∞,

which is isomorphic to the unit ball inC2 (see [Go]).

2. The�-adic representations attached toπf

Let π be a cuspidal automorphic representation ofGU(AF ), and letπf be its
restriction toGU(AF,f ). Fix a prime� ∈ Z. We review the construction of the
�-adic Galois representation attached toπf whenπvo belongs to the discrete
series, closely following [BR1] and [R2]. More details and background can be
found in these sources, as well as [BR2].

Let τ = ⊗τv be an absolutely irreducible rational finite-dimensional rep-
resentation ofGU∞, defined over a number fieldL, on whichZ∞ acts by a
character which is the infinity type of an algebraic Hecke character ofE. Let
C∞ = C∞(τ) be the (finite) set of representationsπ∞ of GU∞ which satisfy

H2(Lie(GU∞),K′
∞, π∞ ⊗ τ∗) �= 0,
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whereτ∗ is the contragredient ofτ , andK′∞ is the centralizer of the center of
K∞ inGU∞. Suchπ∞ areτ -cohomological. (For simplicity, one may prefer to
consider the case whereτ is the trivial representation andL = Q.)

Let C′ = C′(τ) be the set consisting of the one-dimensional automorphic
representations ofGU together with the cuspidal automorphic representations
π such thatπ∞ ∈ C∞(τ). Let C′

f be the set of representationsπf such that
πf ⊗π∞ ∈ C′ for someπ∞. If π ∈ C′(τ) is infinite-dimensional, thenπvo is one
of the three discrete series representations with the same infinitesimal character
asτvo , whileπv = τv at the other infinite places, and

H2(Lie(GU∞),K′
∞, π∞ ⊗ τ∗) ∼= C.

Fix an open compact subgroupK of GU(AF,f ). We assume thatK is small
enough that the associated Shimura variety

SK(C) = GU(F )\(X ×GU(AF,f ))/K
is non-singular.SK is an algebraic variety with a canonical model overE. Let
S# be the Baily-Borel compactification ofSK(E). Whenτ is the trivial repre-
sentation, let

H2 = IH2(S# ×C,Q).
More generally, letH2 be the degree 2 intersection cohomology group ofS#×C
with coefficients in the locally constant sheafF(L) of vector spaces overL
determined byτ∗.

LetH = HK(Q) be the Hecke algebra ofQ-valued compactly supported bi-
K-invariant functions onGU(AF,f ). For anyQ-algebraA, letH(A) = H⊗A.
H(L) is a semisimple algebra with an action onH2. If πf is an admissible repre-
sentation ofGU(AF,f ), letπK

f be the finite-dimensional space ofK-fixed vectors

of πf . Recall thatπf �→ πK
f gives a bijection between the isomorphism classes

of irreducible admissibleGU(AF,f )-modules with nonzeroK-fixed vectors and
the isomorphism classes of irreducible finite-dimensionalH(C)-modules.

Fix an embeddingL ↪→ C. By the Zucker conjecture,H2 ⊗L C can be
identified with theL2 cohomology, so Matsushima’s formula (coupled with the
multiplicity one theorem forGU) yields the following decomposition ofH2⊗C
intoH(C)-isotypic components:

H2 ⊗L C ∼=
⊕

πf ∈C′
f

[ ⊕
π∞∈Π∞

H2(Lie(GU∞),K′
∞, π∞ ⊗ τ∗)

]
⊗ πK

f

whereΠ∞ = ⊗Πv is the product of the infinite components of the global
L-packet determined byπf . If πf is stable and infinite-dimensional,Π∞ has
3 members, corresponding to the holomorphic, nonholomorphic, and antiholo-
morphic members ofΠvo . Thus the summand indexed byπf is isomorphic to
C3⊗πK

f . (See Sect. 8 below or [R1]§13 for the notion of a stable representation).
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Let K be the Galois closure (overQ) of the splitting field forH2 as an
H(L)-module.K is a finite Galois extension ofQ containingL such that each
simpleH(K)-submodule ofH2 ⊗LK is absolutely irreducible (i.e.H(K) acts
onH2⊗LK like a sum of matrix algebras). In particular,H2⊗LK decomposes
just likeH2 ⊗C above.

LetH2
� be theétale cohomology groupIH2

ét(S
#×Q,F(L⊗Q Q�)). By the

comparison theorem,H2 ⊗Q�
∼= H2

� , so theH(L ⊗Q�)-action onH2 ⊗Q�

transfers to an action onH2
� . Thus there is an isomorphism ofH(K ⊗ Q�)-

modules:
H2

� ⊗L K ∼=
⊕

πf ∈C′
f

Vπf
⊗K⊗Q�

πK
f (K ⊗Q�),

whereπK
f (K ⊗ Q�) = πK

f (K) ⊗ Q� is a simpleH(K ⊗ Q�)-module (where

πK
f (K) is aK-form ofπK

f ), andVπf
is a freeK⊗Q�-module of rank≤ 3 (rank

3 occurs whenπf is stable and infinite-dimensional).
The groupAut(K) acts naturally onH2

� ⊗ K. This action permutes the
summands in the above decomposition, inducing a permutation ofC′

f . Forσ ∈
Aut(K), defineπσ

f ∈ C′
f to be image ofπf under the permutation induced by

σ. More precisely,πK
f (K) is a finite-dimensional vector space overK on which

H(K) acts irreducibly. Composition withσ gives a different irreducible repre-
sentation ofH(K), andπσ

f is the corresponding representation ofGU(AF,f ).
Locally, σ acts on the (K-rational) entries of the Langlands classes ofπf , i.e.
g(πσ

v ) = σ(g(πv)). It is easy to confuseπσ
f with a representation obtained by

composingπf with a Galois action on the adelic entries of the elements ofGU
(i.e. the action relevant to base change). However, the “base change" action per-
mutes the local Langlands classes, instead of acting on their entries.

The Galois group
G = Gal(Q/E)

acts continuously onH2
� ⊗K. This action commutes with that ofH(K ⊗Q�),

and so respects the decomposition above. SupposeπK
f is nonzero, and letρπf

be the restriction of the action ofG to Vπf
. ThenG acts on the summandVπf

⊗
πK

f (K ⊗Q�) by ρπf
⊗ 1.

We assume henceforth thatπ is stable and infinite-dimensional. The relation-
ship betweenρ = ρπf

andπ is expressed as an equality ofL-series. LetπE be
the base change lift ofπ toGL3(AE)×GL1(AE). TheL-series ofπ depends
only onπE . Let χπ be the central character ofπ, let πo = π|U, and letπoE be
the base change ofπo toE (see Sect. 8). Then by Lemma 4.1.1 of [R2],

πE = πoE ⊗ χπ

as representations ofGL3(AE) × GL1(AE), whereχπ is the characterz �→
χπ(z). Let w be a finite place ofE at which the local representationπE,w is
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unramified. By definition the localL-factor ofπf atw is

Lw(s, πf ) = Lw(s, πoE ⊗ χπ) = det(1− χπ(%w)g(πoE,w)q−s
w )

−1,

whereqw is the size of the residue field ofE atw, g(πoE,w) is the local Langlands
class atw of the representationπoE ofGL3(AE), and%w is a prime element at
w, identified with the idele(. . . , 1, 1, %w, 1, 1, . . . ).

To define the local factor of theL-series attached toρ, fix once and for all an
embedding

ε : Q ↪→ Q�,

and extend it to an isomorphismι : C −→ C�, whereC� is the completion of
Q�. The representationρ is unramified at almost all places ofE. Letw be such
a place, and letFrw be any Frobenius element atw. By definition

Lw(s, ρ) = det(1− ι−1(ρ(Frw))q−s
w )

−1,

which is the reciprocal of a polynomial of degree 3 inq−s
w with coefficients in

K. Here we interpretρ(Frw) as a 3-by-3 matrix withQ�-entries by fixing a
K⊗Q�-basis forVπf

and applying the mapk⊗x �→ ε(k)x to the matrix entries
of ρ(Frw). This local factor is independent of� for (�, w) = 1.

Theorem 2.1 (cf. [BR1], 1.9.1 and 2.2.1).Letπ andρbeasabove, viewingρasa
three-dimensionalQ�-representation, usingε. If πf is stable anddim(πf ) =∞,
then

(1) Lw(s, ρ) = Lw(s− 1, πf ), for almost all placesw ofE.
(2) One of the following two statements holds:

(a) ρ|H is irreducible for any open subgroupH ⊂ G = Gal(Q/E).
(b) There exist a cubic extensionL/E and an algebraic Hecke characterΨ

ofL such thatρ ∼= IndE
L (Ψ).

The case whereρ is induced is the case whereπoE is automorphically induced
from a Hecke character ofL, analogous to complex multiplication in the case of
elliptic modular forms. Henceforth we remove this case from consideration.

The equality ofL-factors in the theorem is equivalent to the statement that

ρ(Frw) ∼ qwχπ(%w)g(πoE,w)(1)

for almost every placew of E (“∼” denotes conjugacy). Becauseι is fixed
throughout, we always writeρ(Frw) instead ofι−1(ρ(Frw)).
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3. Properties ofρ

For each stable infinite-dimensionalπf ∈ C′
f , we have the continuous irreducible

representation

ρπf
: G −→ Aut(Vπf

) ∼= GL3(K ⊗Q�).

Fix such aπf , and setV = Vπf
andρ = ρπf

. Let V = V ⊗Q Q�. Usingε,
we regardK as a subfield ofQ�. The decompositionK ⊗Q� =

∏
σ∈Aut(K)

Q�

induces the decomposition

V =
∏

σ∈Aut(K)

Vσ.

EachVσ is a three-dimensionalQ�-vector space.
Let ρσ be the representation ofG onVσ. More precisely, given a basis forV ,

ρσ is the composite

G
ρ✲ GL3(K ⊗Q�) ⊂✲ GL3(K ⊗Q�) ✲ GL3(Q�) = Aut(Vσ),

where the last arrow is the projection given byk⊗x �→ σ(k)x = ε(σ(k))x. For
any open subgroupH ⊂ G, ρσ restricts to an irreducible representation ofH.
In fact,ρσ is identical to the representation ofG onVπσ

f
, usingε to identify the

latter representation with a map intoGL3(Q�) as in Theorem 2.1.
Equation (1) tells us that

det(ρ(Frw)) = q3wχπ(%w)3χπoE (%w),

for almost every primew ofE. Heredet is computed relative toQ�. For any open
subgroupH ⊂ G, letMH be the field generated bydet(ρ(Frw)) for Frw ∈ H.
Let

M =
⋂

H⊂G

MH .

ThenM ⊂ K. LetMλ be the image ofM⊗Q� under the mapm⊗x �→ ε(m)x.
By continuity and the Cebotarev density theorem,det(ρ) takes values inMλ on
small open subgroups. Similarly,det(ρσ(G)) ⊂M∗

λ′ for someλ′|� inM on such
subgroups. It follows that if we computedet(ρ) relative toK ⊗Q�, its image is
contained inM ⊗Q� on small open subgroups.

For example, ifχ3
πχπoE gives rise (by the class field theory isomorphism,

which we regard as fixed throughout) to a Galois character of finite order, then
M = Q, anddet(ρ) is Q∗

� -valued on sufficiently small open subgroups.
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4. Extra twisting of representations

Definition 4.1. LetΓ = Γ (πf ) ⊂ Aut(K) be the set ofσ ∈ Aut(K) such that
there exists a finite order Hecke characterχσ ofE satisfying

(πσ
f )E ∼= (πf )E ⊗ χσ,

where(πσ
f )E and(πf )E are the base change lifts ofπσ

f andπf toE.

If σ ∈ Γ , andχσ is nontrivial,πf is said toadmit an extra twist by σ.
(Because we choseK as the splitting field for all ofH2, some automorphisms
ofK may belong toΓ for the trivial reason that they fixπf .)

Under our assumption thatπoE is not automorphically induced,χσ is unique
if it exists. This follows from the fact that a cuspidal representation ofGL3(AE)
is automorphically induced if and only if it is isomorphic to a nontrivial twist of
iteslf ([AC], chapter 3). By the strong multiplicity-one theorem, an equivalent
formulation of the property definingΓ is

χπσ
f
(%w)g(πσ

oE,w) ∼ χπf
(%w)g(πoE,w)χσ(%w)

for almost all finite placesw of E, whereπσ
oE is the base change ofπσ

f |U. The
relationship betweeng(πo,v) andg(πoE,w) is given explicitly in [R2]§4.2. Using
this, it is immediate that the relationshipg(πσ

o,v) = σ(g(πo,v)) extends to the
base change, i.e.g(πσ

oE,w) = σ(g(πoE,w)).
Comparing the traces ofg(πσ

oE,w) and g(πoE,w)χσ(%w), we find thatχσ

takes values inK. It follows thatΓ is a subgroup ofAut(K) since:

(1) If σ, τ ∈ Γ , then(πτ
f )E ∼= (πf )E ⊗ χτ , and so applyingσ to both sides we

see that(πστ
f )E ∼= (πσ

f )E ⊗ σχτ
∼= (πf )E ⊗ χσσχτ , soστ ∈ Γ .

(2) If σ ∈ Γ , then(πσ
f )E ∼= (πf )E ⊗ χσ, so allowingσ−1 to act on both sides,

we have(πf )E ∼= (πσ−1

f )E ⊗ σ−1χσ, which showsσ−1 ∈ Γ .

The class field theory isomorphism allows us to identifyχσ with a character
ofG, which we also denote byχσ. Using the relationship betweenρ andπf and
the above remarks, we see thatσ ∈ Γ if and only if for almost allw,

ρσ(Frw) ∼ qwχπσ
f
(%w)g(πσ

oE,w)

∼ qwχπ(%w)g(πoE,w)χσ(%w)
∼ ρ(Frw)χσ(Frw).

Here we writeρ forρid, whereid ∈ Aut(K) is the identity. Now by the Cebotarev
density theorem, we have:

σ ∈ Γ ⇔ (πσ
f )E ∼= (πf )E ⊗ χσ ⇔ ρσ

∼= ρ⊗ χσ.
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5. The spacesEndH V

Let H be a subgroup ofG. The term “H-module” will always refer to a vec-
tor space (overQ� or Q�) with anH-action. Endomorphisms will always be
vector space endomorphisms. Thus for example,EndH V = EndQ�[H] V and
EndH Vσ = EndQ�[H] Vσ.

Recall from Sect. 3 that ifH is an open subgroup ofG, thenH acts irreducibly
onVσ by way ofρσ. For reference, we record the following basic fact.

Lemma 5.1 (Schur’s Lemma).LetH be an open subgroup ofG. Then for any
σ ∈ Aut(K), EndH Vσ = Q�.

As we will see in the next section, the Lie algebra of the image ofρ is
characterized using its commutant inEndV . The reason for introducingΓ is to
compute this commutant overQ�.

Lemma 5.2. Letσ, τ ∈ Aut(K), and letH be any open normal subgroup ofG.
ThenVσ

∼= Vτ asH-modules if and only ifτ−1σ ∈ Γ andH ⊂ kerχτ−1σ.

Proof. SupposeVσ
∼= Vτ asH-modules. Then there exists an isomorphism

A ∈ IsomQ�
(Vτ , Vσ) ∼= GL3(Q�) such that

ρσ(h) = Aρτ (h)A−1

for all h ∈ H. For anyg ∈ G, define

φ(g) = ρτ (g)−1A−1ρσ(g)A.

Clearlyφ(h) = 1 for all h ∈ H. We claim that in factφ(g) is a scalar for all
g ∈ G. This follows because one computes directly that

φ(g)−1ρτ (h)φ(g) = ρτ (h) for all g ∈ G, h ∈ H,
using the normality ofH. Henceφ(g) ∈ EndH Vτ = Q� as claimed. Thus
ρσ
∼= ρτ ⊗ φ, which is equivalent toτ−1σ ∈ Γ .
Conversely, ifτ−1σ ∈ Γ andH ⊂ kerχτ−1σ, thenρσ

∼= ρτ ⊗ φ, for
φ = τχτ−1σ, andφ is trivial onH. This says thatVσ

∼= Vτ asH-modules. ��
Proposition 5.3. LetH be an open subgroup ofG which is contained in the
kernels of all the charactersχγ (γ ∈ Γ ). ThenEndH V ∼= Ma(Q�)b where
a = #Γ andb = #(Aut(K)/Γ ).

Proof. We may assume thatH is normal, sinceG has a basis of open normal
subgroups, and if the result holds for two normal subgroups, it clearly holds for
all intermediate subgroups.

RegardEndH V as the matrix block sum of the setsHomH(Vσi , Vσj ). By
the irreducibility of theVσ ’s and Lemma 5.1, each of these sets is equal either to



Galois representations attached to representations of GU(3) 385

Q� or to 0, according to whether or notVσi andVσj are isomorphicH-modules.
Lemma 5.2 shows that they are isomorphic if and only ifσi ≡ σj mod Γ . This
says thatEndH V ∼=

∏
Aut(K)/Γ

Ma(Q�) as claimed. ��

Thus ifH1 andH2 are any sufficiently small open subgroups ofG, we see
thatEndH1 V = EndH2 V . This follows because the nestedQ�-vector spaces
EndHi V ⊂ EndH1

⋂
H2 V are actually equal since they are equal overQ� by

Proposition 5.3, and tensoring byQ� preserves the codimension. Define

X = EndH V,

for any “sufficiently small”H as in the proposition.

6. The Lie algebrag of ρ(G)

Let g be the�-adic Lie algebra of the imageρ(G) of ρ. Our goal is a description
of g.An endomorphism ofV is in the commutant of every sufficiently small open
subgroup ofG if and only if it is in the commutant of the Lie algebrag. Hence
EndgV = X, and sog ⊂ EndXV . It is clear thatK ⊗Q� ⊂ EndH V = X.
Thus

g ⊂ EndXV ⊂ EndK⊗Q�
V ∼= gl3(K ⊗Q�).

Furthermore, as we saw in Sect. 3,det(ρ) (computed relative toK ⊗ Q�) is
M ⊗Q�-valued on suchH. Hence

g ⊂ {m ∈ EndXV | tr(m) ∈M ⊗Q�}.
Note that the trace of an element ofEndXV (always computed relative toK⊗Q�)
liesa priori inK ⊗Q�.

This is nearly enough information to determineg. Let g = g⊗Q�. Then

g ⊂ EndK⊗Q�
V =

∏
σ∈Aut(K)

EndVσ.

The irreducibility ofρ on open subgroups ofG implies thatg is a reductive Lie
algebra. Let̃g be its semisimple part. Letg̃σ denote the projection of̃g toEndVσ.
g̃σ is the semisimple part of the Lie algebra of the image of the representation
ρσ. Becauseρσ remains irreducible on open subgroups ofG, g̃σ acts irreducibly
onVσ. Thusg̃σ is a simple subalgebra ofgl(Vσ) ∼= gl3(Q�). There are only two
nonzero isomorphism classes of simple Lie subalgebras ofgl3(Q�):

sl2(Q�) and sl3(Q�).

Becausẽgσ acts irreducibly, the only possibility in the first case is thatg̃σ is a
copy ofsl2(Q�) embedded ingl3(Q�) as the Lie algebra of an orthogonal group.
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Furthermore, because the action ofAut(K) on the representationsρσ preserves
the dimension of the images, if oneg̃σ is orthogonal, then all̃gσ are orthogonal.
So there are two distinct classes ofπf ’s:

(1) ρ isOrthogonal: g̃σ = so(Vσ) ∼= so3(Q�) for all σ ∈ Aut(K).
(2) ρ isNon-orthogonal: g̃σ = sl(Vσ) ∼= sl3(Q�) for all σ ∈ Aut(K).
By the compatibility of the system{ρ�}, this classification is independent of�.

In the orthogonal case, for eachσ ∈ Aut(K), ρσ(H) is contained in an
orthogonal similitude groupGO3(Q�) for some sufficiently small open normal
subgroupH ofG. This implies thatρσ(G) ⊂ GO3(Q�) becauseρσ(G) normal-
izesρσ(H) andGO3(Q�) is its own normalizer inGL3(Q�). This condition on
theρσ ’s is equivalent toρ(G) ⊂ GO3(K ⊗Q�).

Thusg ⊂ h, where

h =

{m ∈ EndXV ∩ go(V )| tr(m) ∈M ⊗Q�} in the orthogonal case

{m ∈ EndXV | tr(m) ∈M ⊗Q�} in the non-orthogonal case,

and wherego(V ) ∼= go3(K ⊗ Q�) is the Lie algebra of the orthogonal group
GO(V ).

Theorem 6.1. g = h.

Before proving the theorem, we remark that it is reasonable to expect that in
most casesπ will not admit any extra twists. In such a circumstance,Γ is trivial
(provided thatAut(K) acts faithfully onπf ’s orbit inC′

f ), andEndgV = Qn
� by

Proposition 5.3, wheren = [K : Q]. HenceX = K⊗Q� since itsQ�-dimension
is n, and so Theorem 6.1 tells us that ifρ is non-orthogonal, we have

g = {m ∈ EndK⊗Q�
V | tr(m) ∈M ⊗Q�}.

The proof of Theorem 6.1 uses the following basic lemma.

Goursat’s Lemma (Lie Algebra Version):Lets1 ands2 be simple Lie algebras,
and letg be a Lie subalgebra ofs1× s2 such that the projectionspi of g to si are
both surjective. Then eitherg is all of s1×s2 or g is the graph of an isomorphism
s1 ∼= s2.

Proof. LetN × 0 = ker(p2). ThenN is an ideal ofs1. To see this, letn ∈ N
andx ∈ s1 be arbitrary. Then there existsy ∈ s2 such that(x, y) ∈ g sincep1
is surjective. It is immediate thatN × 0 is an ideal ofg. HenceN × 0 contains
[(n, 0), (x, y)] = ([n, x], [0, y]) = ([n, x], 0), and so[n, x] ∈ N as claimed.
Thus by the simplicity ofs1 eitherN = 0 orN = s1. In the former case,g ∼= s2,
and we also must haveg ∼= s1 since we now know thatg is simple. Sop2 ◦p−1

1 is
an isomorphisms1 ∼= s2. In the latter case, we see thatg = s1× s2, as required.

��
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Proof. (Theorem 6.1).Let h = h⊗Q�. Then

g ⊂ h ⊂ EndK⊗Q�
V =

∏
σ∈Aut(K)

EndVσ.

It suffices to show thatg = h sinceg is aQ�-subspace ofh and change of base
preserves the codimension. Leth̃ = {m ∈ h| tr(m) = 0} be the semisimple
part ofh. We only need to prove that̃g = h̃, since the abelian parts ofg andh
are both equal toM ⊗Q�. This will follow once we verify the conditions of the
following lemma forg̃ andh̃ with sσ = sl(Vσ) in the non-orthogonal case, and
sσ = so(Vσ) in the orthogonal case.

Lemma 6.2. Let Σ be a finite set, and for eachσ ∈ Σ let sσ be a finite-
dimensional simple Lie algebra over a field of characteristic 0. Letg and h
be subalgebras of

∏
σ

sσ, with g ⊆ h. Suppose that

(1) h maps onto each factorsσ.
(2) g andh have equal images insσ × sτ , for σ �= τ .
Theng andh are equal.

Proof. [Ri2], 4.6 ��
By construction,̃gσ = h̃σ = sσ. Thus condition 1 is automatic. Now for

σ �= τ in Aut(K), let g̃σ,τ (resp.h̃σ,τ ) be the image of̃g (resp.h̃) in sσ × sτ .
We need to verify condition 2, i.e. thatg̃σ,τ = h̃σ,τ . For this we apply Goursat’s
Lemma to see that eitherg̃σ,τ = sσ×sτ or elsẽgσ,τ is the graph of an isomorphism
sσ
∼= sτ .
We can now show in either case thatg̃σ,τ = h̃σ,τ . First we point out that̃gσ,τ

(resp.h̃σ,τ ) is the graph of an isomorphismsσ
∼= sτ if and only if Vσ

∼= Vτ

asg-modules (resp.h-modules). To see this for example in the orthogonal case,
choose bases forVσ andVτ in such a way that the bottom arrow in the following
diagram is the identity map:

so3(Q�) so3(Q�)

sσ sτ

✲
❄ ❄

✲

id.

∼

where the top arrow is a lift tõgσ,τ followed by the projection tosτ . The iden-
tification of these two bases then gives ag-isomorphism betweenVσ andVτ .
Conversely, ifϕ is a g-isomorphism fromVσ to Vτ , define a map fromsσ to
sτ by lifting an element ofsσ to g̃ and projecting tosτ . Becausesσ andsτ are
simple, it just suffices to check that this map is well-defined. SupposeX,Y ∈ g̃
both project toXσ ∈ sσ, and letXτ andYτ be their projections tosτ . Then for
anyv ∈ Vτ ,Xτv = ϕ(Xσϕ

−1(v)) = ϕ(Yσϕ
−1(v)) = Yτv. HenceXτ andYτ

are the same endomorphism ofVτ , so our map is well-defined.
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If Vσ andVτ arenot isomorphicg-modules, we may conclude thatg̃σ,τ (and
hencẽhσ,τ ) equalssσ × sτ .

On the other hand, ifVσ
∼= Vτ as g-modules, letϕ : Vσ → Vτ be an

intertwining operator forg. Thenϕ extends to an element ofEndgV = X. This
shows thatϕ also commutes withh, since

h ⊂ EndXV

implies that
EndhV ⊃ EndEndXV V = X.

This last equality follows immediately from the fact thatX ∼= Ma(Q�)b (Propo-
sition 5.3). ThusVσ andVτ are isomorphicg-modules only if they are isomorphic
h-modules. Hence, using the remarks made above, in the case thatg̃σ,τ

∼= sσ,
we see that̃hσ,τ

∼= sσ, and sõgσ,τ = h̃σ,τ .
This completes the verification of the two conditions of the lemma, and proves

the theorem.

7. The orthogonal case

We now show that the study of the orthogonal case essentially reduces to the study
of Galois representations attached to representations ofGL2(AF ). It is more
convenient here to work on the groupU than onGU. In fact the representation
theories of these groups do not differ in any significant way sinceGU = Z ·U.

Letπf ∈ C′
f , and letρ be the associated�-adic representation (always viewed

in this section as a map intoGL3(Q�), usingε as usual). Letπo = πf |U, and
assume as usual thatπoE is not automorphically induced. We can associate to
πo an �-adic Galois representationρo as follows. By Theorem 2.1,L(s, ρ) =
L(s − 1, πoE ⊗ χπ). Becauseχπ is an algebraic Hecke character ofE, we
may identify it with a character ofG, which we also denote byχπ. Let ρo =
ρ ⊗ χπ

−1. Because twisting by a character does not affect the irreducibility of
a representation,ρo satisfies property 2(a) in Theorem 2.1. Note thatρo also
satisfiesL(s, ρo) = L(s− 1, πo), and thus its isomorphism class is independent
of the choice ofπ restricting toπo. Hence it is meaningful to discuss the�-adic
representation attached toπo.

Now supposeρ is orthogonal so that its image inGL3(Q�) is contained in
an orthogonal similitude group. By possibly replacingρ with an isomorphic
representation, we shall assume that this orthogonal group is defined by the
standard bilinear form given by the identity matrix. Thus the statement thatρ
is orthogonal is equivalent to the statement thatρ is self-dual up to a twist:
ρ ∼= ρ∗ ⊗ ν for some Galois characterν. Thenρo is also orthogonal becauseρo

andρ only differ by a twist. Theorem 7.3 below shows that a twist of theL-packet
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containingπo is the unitary adjoint lift of a cuspidal representation ofGL(2)F .
Thus by functoriality, up to a twist by a character any orthogonalρ comes from
a representation ofGL2(AF ).

For details on the unitary adjoint lifting, and a summary of the properties
of the other functorial liftings discussed in this section please refer to Sect. 8.
For basic information on automorphic induction, see [R3]. We repeatedly use
the fact that a cuspidal representation ofGL3(AE) is automorphically induced
from a Hecke character of a three-dimensional extension ofE if and only if it
isomorphic to a nontrivial twist of itself ([AC], chapter 3).

Lemma 7.1. Supposeτ1 and τ2 are automorphic representations ofGL(2)
whose adjoint lifts toGL(3) differ by a twist:Ad(τ1) ∼= Ad(τ2) ⊗ ω for some
Hecke characterω. Then eitherω = 1 or Ad(τi) are automorphically induced
from Hecke characters.

Proof. By the fact that any adjoint lift is self-dual, we have

Ad(τ2)⊗ ω ∼= Ad(τ2)∗ ⊗ ω−1 ∼= Ad(τ2)⊗ ω−1.

HenceAd(τ2) ∼= Ad(τ2)⊗ω2. So eitherAd(τ2) is automorphically induced, or
elseω2 = 1. In the latter case, taking central characters in the initial condition,
we see thatχAd(τ1) = χAd(τ2)ω

3. But the central character of any adjoint lift is
trivial. Henceω3 = 1 andω2 = 1, and soω = 1. ��
Lemma 7.2. LetΠ andΠ ′ be stableL-packets onU and letπ andπ′ be their
respective base change lifts toE. Supposeπ′ ∼= π⊗µ for some Hecke character
µ ofE. Then either there exists a characterχ ofU(AF ) such thatΠ ′ ∼= Π ⊗ χ
or elseπ andπ′ are automorphically induced.

Proof. As the base change ofΠ ′, π′ satisfiesπ′ ∼= π′∗. This implies that

π ⊗ µ ∼= (π ⊗ µ)∗ ∼= π ⊗ µ−1,

which givesπ ⊗ µµ ∼= π. So eitherµµ = 1 or elseπ is automorphically
induced. In the first case, letµF = µ|IF

, whereIF denotes the ideles ofF . Then
µFµF = µ2

F = 1. In factµF is actually trivial: taking central characters of the
relationshipπ′ ∼= π ⊗ µ, we haveχπ′ = χπµ

3. Becauseπ andπ′ descend toU,
their central characters have trivial restrictions toIF . Henceµ3

F = 1 andµ2
F = 1,

and soµF = 1. This, together with the conditionµµ = 1, is the criterion for
descendingµ to a characterχ of U. Then(Π ⊗ χ)E = π ⊗ µ ∼= π′. By the
injectivity of this base change lifting,Π ′ ∼= Π ⊗ χ. ��
Theorem 7.3. Let πo be a cuspidal automorphic representation ofU(AF ) be-
longing to a stableL-packetΠ, with associated�-adic Galois representation
ρ. Assume that the image ofρ is contained in an orthogonal group. Then either
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(πo)E is automorphically induced from a Hecke character, or else there is some
characterψ ofU(AF ) such thatΠ ⊗ ψ is the unitary adjoint lift of a cuspidal
representation ofGL2(AF ).

Proof. Letπ = (πo)E . Thenπ is cuspidal. Assume thatπ is not automorphically
induced. Becauseρ is orthogonal, it is self-dual up to a twist:ρ ∼= ρ∗ ⊗ ν for
some Galois characterν. We also writeν for the associated Hecke character of
E. For almost every placew of E, ρ(Frw) ∼ qwg(πw). Putting these together,
we haveqwg(πw) ∼ q−1

w g(πw)−1ν(%w), for almost allw, and hence by strong
multiplicity-one

π ∼= π∗ ⊗ |·|2AF
ν,

where|·|AF
is the the adelic norm (composed withdet). Taking central characters

in this equation gives
χπ = χ−1

π |·|6AF
ν3,

and so|·|2AF
ν = (χπ|·|−2

AF
ν−1)2 is a square. Settingµ = χ−1

π |·|2AF
ν, we see that

π ∼= π∗ ⊗ (µ−1)2 and so
π ⊗ µ ∼= (π ⊗ µ)∗,

i.e. a twist ofπ is self-dual. We may also assume thatπ ⊗ µ has trivial central
character. (Otherwise, lettingω be the central character ofπ ⊗ µ, π ⊗ µω−1

is self-dual with trivial central character.) The image of the adjoint lifting from
GL(2) to GL(3) is the set of self-dual representations ofGL(3) with trivial
central characters (see Sect. 8). Thus there exists a cuspidal representationτ of
GL2(AE) whose adjoint liftAd(τ) is π ⊗ µ.

We wish to show thatπ ⊗ µ is the base change lift of anL-packet onU.
This holds if (π ⊗ µ)∗ ∼= π ⊗ µ and the central characterω of π ⊗ µ has
trivial restriction to the idelesIF of F . We are already assuming thatω = 1,
so the second condition is automatic. To verify the first condition, note that as
a base change fromU, π satisfiesπ∗ ∼= π. Because theGal(E/F ) action on
representations commutes with the adjoint lifting, we see that

Ad(τ) = π ⊗ µ ∼= π∗ ⊗ µ ∼= π ⊗ µ2µ ∼= (π ⊗ µ)⊗ µµ = Ad(τ)⊗ µµ.
Lemma 7.1 applied toτ andτ tells us thatµµ = 1 (since we assume thatπ, and
henceπ ⊗ µ, is not automorphically induced), and so by the above equation,

π ⊗ µ ∼= π ⊗ µ ∼= (π ⊗ µ)∗

as needed. Thus we may writeπ⊗µ = (Π ′)E for some stable cuspidalL-packet
Π ′ of representations ofU.

Becauseπ ⊗ µ is an adjoint lift,Π ′ is the unitary adjoint lift of a cuspidal
representation ofGL(2)F by Proposition 8.3 below. The fact thatΠ andΠ ′
differ by a twist follows by Lemma 7.2. ��
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8. Appendix: The unitary adjoint lifting from GL(2) to U(3)

The lifting of representations described here is a special case of the following
general conjecture:

Langlands functoriality conjecture: LetG andG′ be reductive groups overF ,
and letρ : LG −→ LG′ be anL-map between theirL-groups. Then given anL-
packetΠ = ⊗Πv of automorphic representations ofG(AF ), there exist a finite
setS of places ofF and anL-packetρ(Π) = ⊗Π ′

v of automorphic representa-
tions ofG′(AF ) such that forv �∈ S,Πv andΠ ′

v are unramified localL-packets,
andg(π′

v) ∼ ρ(g(πv)), whereπv andπ′
v are the unique unramified elements of

these local packets, with Langlands classesg(πv) andg(π′
v) respectively.

Remarks:

(1) See [BR2] for definitions ofL-groups,L-maps, Langlands classes, and a
description of the conjectural partition of the set of irreducible admissible
local representations ofG into finite sets calledL-packets. The existence of
L-packets is established forU(n) for n ≤ 3 in [R1].

(2) Conjugacy in theL-groupĜ�WF means conjugacy by an element of the
dual group factor.

(3) The lifting ρ(Π) is unique if strong multiplicity-one holds forL-packets
onG′. For example, ifG′ = GL(n), thenL-packets are singletons and the
strong multiplicity-one theorem holds. ForU, strong multiplicity-one for
L-packets also holds ([R1], Theorem 13.3.5).

(4) When confusion is unlikely, we denote a Langlands classg(πv) by its pro-
jection to the dual group.

In this section we define anL-mapAdU : LGL(2) −→ LU and verify the
conjecture forAdU in the case which is needed in Sect. 7. The construction of
AdU amounts to filling in the following diagram:

LGL(2)F

LGL(3)E

LGL(2)E LU(3)F
� ✒

✒ �

BC AdU

Ad BC

The definitions of the adjoint liftingAd from GL(2) to GL(3) and the base
change liftingsBC for GL(2) andU are recalled below.
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Base change forGL(2) fromF toE

The functoriality conjecture applies toL-maps between algebraic groups over the
same field. So to obtain a lifting of representations fromGL2(AF ) toGL2(AE)
we need to consider a reductive group which overF looks likeGL(2)E , namely
the restriction of scalars̃G = ResEF (GL(2)). By definition,G̃(A) = GL2(E⊗F

A) for anyF -algebraA.
Fix an embeddingF ↪→ C, and letΣ be the set ofF -embeddingsE ↪→ C.

TheL-group ofG̃ depends only on its dual group

̂̃
G(C) =

∏
σ∈Σ

GL2(C) = GL2(C)×GL2(C).

The Galois groupGal(E/F ) acts onΣ, and this gives a natural action of

Gal(E/F ) on ̂̃G which permutes the coordinates. TheL-groupLG̃ is defined as
GL2(C)×GL2(C)�WF , where the Weil groupWF acts through its projection
to Gal(E/F ). TheL-group ofGL(2) is GL2(C) ×WF , and the base change
L-map is

BC : GL2(C)×WF −→ [GL2(C)×GL2(C)]�WF

defined by the diagonal embedding:(g, σ) �→ (g, g, σ). The lifting of automor-
phic representations corresponding to thisL-map is due to Saito, Shintani and
Langlands, and holds more generally forE/F cyclic of prime degree.

There is a correspondence between the local Langlands classes of a repre-
sentation ofG̃(AF ) and those of the same representation viewed as a repre-
sentation ofGL2(AE) (cf. [BR2] §3.5). Using the latter perspective, the re-
lationship between a representationπ of GL2(AF ) and its base change lift
πE is g(πE,w) ∼ g(πv)dw for almost all placesv of F andw|v in E, where
dw = [Ew : Fv].

If π is an automorphic representation ofGL2(AE), letπ be the representation
given byg �→ π(g). TheGal(E/F ) actionπ �→ π has the effect of interchanging
the local componentsπw andπw (cf. [R3] §15).π is the base change lift of an
automorphic representation ofGL2(AF ) if and only if it is fixed by this action,
i.e. if and only ifπ ∼= π.

The adjoint lifting fromGL(2) toGL(3)

GL2(C) acts by conjugation on the 3-dimensional complex vector spacesl2(C)
of 2× 2matrices with trace 0. For each choice of basis forsl2 this action yields
a map

Ad : GL2(C) −→ GL3(C).
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The image ofAd in GL3(C) is the orthogonal groupSO3(C) defined relative
to the symmetric bilinear form onsl2(C),

X · Y = tr(XY ).

For our purposes, we computeAd relative to the basis

{(
0 1
0 0

)
,

( −i√
2
0

0 i√
2

)
,

(
0 0
1 0

)}

for sl2(C). Then the formtr(XY ) is represented by the matrix

Φ3 =

 1
−1
1

 .
Because we are interested in the adjoint lifting for groups overE, working

over the ground fieldF , we again use restriction of scalars, and the adjointL-map
from LGL(2)E to LGL(3)E is defined as:

Ad : [GL2(C)×GL2(C)]�WF −→ [GL3(C)×GL3(C)]�WF

sending(g, g, σ) �→ (Ad(g), Ad(g), σ). Functoriality for thisL-map was proven
by Gelbart and Jacquet ([GJ]).

Let π be a representation ofGL3(AE). From the fact that

Ad(
(
a
d

)
) =

 a
d
1

d
a

 ∼
 d

a
1

a
d


it follows that if π is an adjoint lift, it satisfiesg(πw) ∼ g(πw)−1 for almost
every placew. Thusπ ∼= π∗, whereπ∗ is the representation contragredient to
π. It is also clear thatπ must have trivial central character. In fact the image of
the adjoint lifting is precisely the set of automorphic representations with trivial
central characters which are self-dual (see table (1) in [GRS]). Furthermore ifπ
is cuspidal, then any descent toGL(2) is also cuspidal.

The kernel ofAd is the set of scalar matrices. This implies that the fibers
of the adjoint lifting are twist classes of representations, i.e.π1 andπ2 have the
same adjoint lift if and only ifπ1 ∼= π2 ⊗ χ for some Hecke characterχ.
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Base change forU

The L-group ofU is GL3(C) � WF , with action ofWF factoring through
Gal(E/F ) given by c(g) = Φ−1

3
tg−1Φ3 for complex conjugationc, where

Φ3 =

 1
−1
1

. Define a map fromLU to LResEF (GL(3)):

BC : GL3(C)�WF −→ [GL3(C)×GL3(C)]�WF

by (g, σ) �→ (g, Φ3
tg−1Φ−1

3 , σ). The transfer ofL-packets corresponding to this
L-map exists and is injective ([R1], chapter 13).

Remark.Let G̃ = ResEF (GL(3)), and letŨ = ResEF (U). Of course the two
groups are isomorphic. Define a map

H : LŨ −→ LG̃

by (x, y, σ) �→ (x, Φ−1
3

ty−1Φ3, σ). H is an isomorphism ofL-groups. TheL-
mapBC defined above isH ◦ ψ, whereψ : LU −→ LŨ is the standard base
changeL-map forU as defined in [R1].

An L-packetΠ onU is discreteif some member ofΠ occurs in the discrete
spectrum ofU (cf. [R2] §2). A discreteL-packetΠ is stable if it is not the
functorial transfer of a discrete representation of the endoscopic subgroupH =
U(2)×U(1).Π is cuspidal if every discrete element ofΠ is cuspidal.

Theorem 8.1 ([R1], Theorem 13.3.3). The base change lifting fromU to
GL3(AE) defines a bijection between the set of stableL-packetsΠ onU and the
set of discrete automorphic representationsπ ofGL(3)E which satisfyπ ∼= π∗
andχπ|IF

= 1, whereχπ is the central character ofπ. Furthermore, a discrete
L-packetΠ is infinite-dimensional⇔ Π is cuspidal⇔ BC(Π) is cuspidal.

Definition ofAdU

Define anL-map fromLGL(2)F to LU:

AdU : GL2(C)×WF −→ GL3(C)�WF

by (g, σ) �→ (Ad(g), σ).AdU is a homomorphism because

Φ−1
3

tAd(g)−1Φ3 = Ad(g).

This equality holds sinceAd(g) preserves the bilinear formtr(XY ) which is
given by the matrixΦ3. This also insures the commutativity of the diagram since

Ad(BC(g, σ)) = (Ad(g), Ad(g), σ)
= (Ad(g), Φ−1

3
tAd(g)−1Φ3, σ) = BC(AdU(g, σ)).
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We now verify the functoriality ofAdU in the case needed for this paper.
The same proof will work in the general case provided one verifies that the
above descent conditionπ ∼= π∗ andχπ|IF

= 1 is valid for all automorphic
representations ofGL(3)E , not just the cuspidal ones.

Proposition 8.2. Let π be a cuspidal representation ofGL2(AF ), let πE =
BC(π), and letπ3 = Ad(πE). Suppose thatπ3 is cuspidal. Then there exist a
stable cuspidalL-packetΠ = AdU(π) onU(AF ) and a finite setS of places
of F , including all places whereπ andΠ are ramified, such that for allv �∈ S,
AdU(g(πv)) ∼ g(π′

v), whereπ
′
v is the unique unramified element of the local

L-packetΠv.Π is called theunitary adjoint lift of π.

Proof. As a cuspidal representation ofGL3(AE),π3 is the base change lift of an
L-packet of representations ofU(AF ) if and only if π3 ∼= π∗

3 andχπ3 |IF
= 1.

The second condition is automatic sinceχπ3 = 1, π3 being an adjoint lift. The
conditionπ3 ∼= π∗

3 only needs to be verified locally at almost every place ofE
by the strong multiplicity-one theorem forGL(3).

Let v be any place ofF which lies outside the exceptional sets for all of the

lifts of π discussed here. Write

(
a
d

)
for the class ofg(πv). Letw be any place

of E lying overv. Set

dw = [Ew : Fv] =
[
1 if v splits inE
2 if v is inert inE.

Then by the property of the base change lifting,

g(πE,w) ∼ g(πv)dw ∼
(
adw

ddw

)
.

This is clearly independent of the choice ofw|v in E. Hence

g(π3,w) ∼
 a

d
1

d
a

dw

is also independent of the choice ofw|v. This shows thatπ3 ∼= π3 since for
almost every placew of E, g(π3,w) = g(π3,w) = g(π3,w). On the other hand,
π3 ∼= π∗

3 sinceπ3 is an adjoint lift. Putting these statements together, we see that
π∗

3
∼= π3.
Hence there exists a stable cuspidalL-packetΠ of automorphic representa-

tions ofU(AF ) such thatBC(Π) = π3. DefineAdU(π) = Π. LetS be the finite
set of placesv of F which are exceptional either for the base change ofΠ toE
or for any of the lifts ofπ discussed here. For eachv �∈ S, let π′

v be the unique
unramified element ofΠv. Viewingπ3 as a representation ofResEF (GL(3)) over
AF , the relationshipg(π′

v) ∼ AdU(g(πv)) follows immediately by comparing
the Langlands classesg(π3,v) ∼ BC(g(π′

v)). ��
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The next task is to give a descent condition forAdU for stableL-packets.
We first remark that the center ofU consists of the unitary scalar matrices and
may be indentified withU(1). A property ofL-packets is that all elements of an
L-packet have the same central character.

Proposition 8.3. LetΠ be a stable cuspidalL-packet onU with central char-
acterχΠ . Letπ = BC(Π). Then the following are equivalent:

(1) Π is the unitary adjoint lift of a cuspidal representation ofGL2(AF )
(2) Π ∼= Π∗ andχΠ = 1
(3) π is the adjoint lift of a cuspidal representation ofGL2(AE).

Proof. (1)⇒ (2): SupposeΠ = AdU(τ). Let v be a place ofF at which both

Π andτ are unramified. Write

(
a
d

)
for the class ofg(τv). Theng(Πv) = a

d
1

d
a

 × wv, wherewv ∈ WF projects toFrv in Gal(E/F ). This shows

both thatΠv
∼= Π∗

v , and that the unramified element ofΠv has trivial central
character. HenceΠ ∼= Π∗ andχΠ = 1 by strong multiplicity-one forL-packets
onU(n) for n ≤ 3.

(2)⇒ (3): Letv be a place ofF whereΠ is unramified. Ifv splits inE, letw1
andw2 lie overv in E. ThenU(Fv) ∼= GL3(Ew1), and the unramified element
of Πv may be viewed as an unramified representation ofGL3(Ew1). Then (as
described in [R2],§4.2) we can takeg(πw1) = g(Πv) andg(πw2) = g(Πv)−1.
Thusπwi

∼= π∗
wi

if and only ifΠv
∼= Π∗

v . If v is inert inE, then the condition
πv
∼= π∗

v is automatic sinceπv = πv, andπv
∼= π∗

v . HenceΠ ∼= Π∗ impliesπ
is self-dual. By the injectivity of the base change forU(1), we have(χΠ)E =
χπ = 1. Thus the conditions are met forπ to be the adjoint lift of a cuspidal
representation ofGL2(AE).

(3) ⇒ (1): Suppose there exists a cuspidal representationτ of GL2(AE)
whose adjoint liftAd(τ) is π. We wish to descendτ further to a representation
of GL2(AF ). For this we need to verify thatτ ∼= τ . We first check thatτ and
τ are in the same fiber of the adjoint lifting. As a base change lift fromU, π
satisfiesπ∗ ∼= π, and as an adjoint lift it satisfiesπ∗ ∼= π. TheGal(E/F ) action
on representations commutes with the adjoint lifting, so

Ad(τ) = π ∼= π∗ ∼= π = Ad(τ).
The fibers ofAd are twist classes of representations, so the above implies that
τ ∼= τ ⊗ ω for some Hecke characterω. Lapid and Rogawski have classified all
such representations:

Theorem 8.4. ([LR]) Letω be a Hecke character of a number fieldE, let σ be
an automorphism ofE with fixed fieldF , and letτ be a cuspidal representation
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ofGL2(AE) such thatσ(τ) ∼= τ ⊗ ω. LetK be the extension ofF attached to
the restrictionωF of ω to IF . Then[K : F ] ≤ 2 and
(1) If K = F (i.e.ωF is trivial), thenτ ⊗ ψ is the base change lift of a cuspi-

dal representation ofGL2(AF ), whereψ is any Hecke character such that
ψ1−σ = ω.

(2) If K/F is a quadratic extension, thenL = KE is a quadratic extension of
E, and there exists a Hecke characterθ ofL such thatτ = AIEL (θ).

In our situation,τ is not automorphically induced from a Hecke character
becauseAd(τ) = π is cuspidal (cf. [R3]§13). Hence replacingτ by τ ⊗ ψ, we
may assume thatτ ∼= τ , so there exists a cuspidal representationτF ofGL2(AF )
whose base change isτ . By the commutativity of the diagram, and the injectivity
of theU base change lifting, it is clear thatAdU(τF ) = Π.
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