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Abstract

We give an adelic treatment of the Kuznetsov trace formula as a rel-
ative trace formula on GL(2) over Q. The result is a variant which in-
corporates a Hecke eigenvalue in addition to two Fourier coefficients on
the spectral side. We include a proof of a Weil bound for the general-
ized twisted Kloosterman sums which arise on the geometric side. As
an application, we show that the Hecke eigenvalues of Maass forms at a
fixed prime, when weighted as in the Kuznetsov formula, become equidis-
tributed relative to the Sato-Tate measure in the limit as the level goes
to infinity.
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1 Introduction

1.1 Some history

A Fourier trace formula for GL(2) is an identity between a product of two
Fourier coefficients, averaged over a family of automorphic forms on GL(2),
and a series involving Kloosterman sums and the Bessel J-function. The first
example, arising from Petersson’s computation of the Fourier coefficients of
Poincaré series in 1932 [P1] and his introduction of the inner product in 1939
[P2], has the form

Γ(k − 1)

(4π
√
mn)k−1

∑

f∈Fk(N)

am(f)an(f)

‖f‖2 = δm,n+2πik
∑

c∈NZ+

S(m,n; c)

c
Jk−1(

4π
√
mn

c
),

where Fk(N) is an orthogonal basis for the space of cusp forms Sk(Γ0(N)), and

S(m,n; c) =
∑

xx≡1 mod c

e2πi(mx+nx)/c

is a Kloosterman sum. Because of the existence of the Weil bound

|S(m,n; c)| ≤ τ(c)(m,n, c)1/2c1/2 (1.1)

where τ is the divisor function, and the bound

Jk−1(x)≪ min(xk−1, x−1/2)

for the Bessel function, the Petersson formula is useful for approximating ex-
pressions involving Fourier coefficients of cusp forms. For example, Selberg used
it in 1964 ([Sel3]) to obtain the nontrivial bound

an(f) = O(n(k−1)/2+1/4+ε) (1.2)

in the direction of the Ramanujan-Petersson conjecture an(f) = O(n(k−1)/2+ε)
subsequently proven by Deligne.

In his paper, Selberg mentioned the problem of extending his method to
the case of Maass forms. This was begun in the late 1970’s independently
by Bruggeman and Kuznetsov ([Brug], [Ku]). The left-hand side of the above
Petersson formula is now replaced by a sum of the form

∑

uj∈F

am(uj)an(uj)

‖uj‖2
h(tj)

cosh(πtj)
, (1.3)

where m,n > 0, F is an (orthogonal) basis of Maass cusp forms of weight k = 0
and level N = 1, tj is the spectral parameter defined by ∆uj = ( 14 + t2j )uj for
the Laplacian ∆, and h(t) is an even holomorphic function with sufficient decay.
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There is a companion term coming from the weight 0 part of the continuous
spectrum, describable in terms of the Eisenstein series

E(s, z) =
1

2

∑

c,d∈Z

(c,d)=1

y1/2+s

|cz + d|1+2s
(Re(s) > 1

2 , y > 0, z = x+ iy).

More accurately, it involves the analytic continuation to s on the imaginary line.
This analytic continuation is provided by the Fourier expansion

E(s, z) = y1/2+s + y1/2−s
√
π Γ(s)ζ(2s)

Γ(1/2 + s)ζ(1 + 2s)
(1.4)

+
2y1/2π1/2+s

Γ(1/2 + s)ζ(1 + 2s)

∑

m 6=0

σ2s(m)|m|sKs(2π|m|y)e2πimx.

Here σ2s(m) =
∑

0<d|m d
2s is the divisor sum, and Ks is the K-Bessel function.

The continuous contribution to the Kuznetsov/Bruggeman formula is the fol-
lowing integral of the product of two Fourier coefficients of E(it, z) against the
function h(t):

1

π

∫ ∞

−∞

(m/n)itσ2it(m)σ2it(n)

|ζ(1 + 2it)|2 h(t)dt. (1.5)

The Fourier trace formula is then the equality between the sum of (1.3) and
(1.5) on the so-called spectral side, with the geometric side given by

δm,n
π2

∫ ∞

−∞
h(t) tanh(πt) t dt+

2i

π

∑

c∈Z+

S(m,n; c)

c

∫ ∞

−∞
J2it(

4π
√
mn

c
)
h(t) t

cosh(πt)
dt.

(1.6)
Using this together with the Weil bound (9.2), Kuznetsov proved a mean-square
estimate for the Fourier coefficients an(uj) ([Ku], Theorem 6), which immedi-
ately implies the bound

an(uj)≪j,ε n
1/4+ε

in the direction of the (still open) Ramanujan conjecture an(uj) = O(nε). (See
also [Brug], §4.) This extended Selberg’s result (1.2) to the case of Maass forms.

Kuznetsov also “inverted” the formula to give a variant in which a gen-
eral test function appears on the geometric side in place of the Bessel integral.
(Motohashi has given an interesting conceptual explanation of this, showing
that the procedure is reversible, [Mo2].) This allows for important applications
to bounding sums of Kloosterman sums. Namely, Kuznetsov proved that the
estimate ∑

c≤X

S(m,n; c)

c
≪m,n,ε X

θ+ε (1.7)

holds with θ = 1
6 ([Ku], Theorem 3). The Weil bound alone yields only θ =

1
2 , showing that Kuznetsov’s method detects considerable cancellation among
the Kloosterman sums due to the oscillations in their arguments. Linnik had
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conjectured in 1962 that (1.7) holds with θ = 0, and Selberg remarked that this
would imply the Ramanujan-Petersson conjecture for holomorphic cusp forms
of level 1, ([Sel3]; see also §4 of [Mu]). By studying the Dirichlet series

Z(s,m, n) =
∑

c

S(m,n; c)

c2s
,

Selberg also codified a relationship between sums of Kloosterman sums and the
smallest eigenvalue λ1 of the Laplacian, leading him to conjecture that λ1 ≥ 1

4
for congruence subgroups. He obtained the inequality λ1 ≥ 3

16 using the Weil
bound (9.2). This inequality is also a consequence of the generalized Kuznetsov
formula given in 1982 by Deshouillers and Iwaniec ([DI]).

Fourier trace formulas have since become a staple tool in analytic number
theory. We mention here a sampling of notable results in which they have
played a role. Deshouillers and Iwaniec used the Kuznetsov formula to deduce
bounds for very general weighted averages of Kloostermans sums, showing in
particular that Linnik’s conjecture holds on average ([DI], §1.4). They list some
interesting consequences in §1.5 of their paper. For example, there are infinitely
many primes p for which p+1 has a prime factor greater than p21/32. They also
give applications to the Brun-Titchmarsh theorem and to mean-value theorems
for primes in arithmetic progressions (see also [Iw1], §12-13).

Suppose f(x) ∈ Z[x] is a quadratic polynomial with negative discriminant.
If p is prime and ν is a root of f in Z/pZ, then the fractional part {νp} ∈ [0, 1)
is independent of the choice of representative for ν in Z. Duke, Friedlander,
and Iwaniec proved that for (p, ν) ranging over all such pairs, the set of these
fractional parts is uniformly distributed in [0, 1], i.e. for any 0 ≤ α < β ≤ 1,

#{(p, ν)| p ≤ x, f(ν) ≡ 0 mod p, α ≤ {νp} < β}
#{p ≤ x| p prime} ∼ (β − α)

as x→∞ ([DFI]). Their proof uses the Kuznetsov formula to bound a certain
related Poincaré series via its spectral expansion. See also Chapter 21 of [IK].

Applications of Fourier trace formulas to the theory of L-functions abound.
Using the results of [DI], Conrey showed in 1989 that more than 40% of the zeros
of the Riemann zeta function are on the critical line ([Con]).1 Motohashi’s book
[Mo1] discusses other applications to ζ(s), including the asymptotic formula for
its fourth moment. In his thesis, Venkatesh used a Fourier trace formula to carry
out the first case of Langlands’ Beyond Endoscopy program for GL(2) ([L], [V1],
[V2]). This provided a new proof of the result of Labesse and Langlands char-
acterizing as dihedral those forms for which the symmetric square L-function
has a pole, as well as giving an asymptotic bound for the dimension of holomor-
phic cusp forms of weight 1, extending results of Duke. Fourier trace formulas
have also been used by many authors in establishing subconvexity bounds for
GL(1), GL(2) and Rankin-Selberg L-functions; see [MV] and its references, al-
though this definitive paper does not actually use trace formulas. Subconvexity

1Conrey, Iwaniec and Soundararajan have recently proven that more than 56% of the zeros
of the family of Dirichlet L-functions lie on the critical line, [CIS].
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bounds have important arithmetic applications, notably to Hilbert’s eleventh
problem of determining the integers that are integrally represented by a given
quadratic form over a number field ([IS1], [BH]). Other applications of Fourier
trace formulas include nonvanishing of L-functions at the central point ([Du],
[IS2], [KMV]) and the density of low-lying zeros of automorphic L-functions
(starting with [ILS]).

1.2 Overview of the contents

Zagier is apparently the first one to observe that Kuznetsov’s formula can be
obtained by integrating each variable of an automorphic kernel function over
the unipotent subgroup. His proof is detailed by Joyner in §1 of [Joy]. See also
the description by Iwaniec on p. 258 of [Iw1], and the article [LiX] by X. Li,
who also extended the formula to the setting of Maass forms for SLn(Z), [Gld].
Related investigations have been carried out by others, notably in the context
of base change by Jacquet and Ye (cf. [Ja] and its references).

Our primary purpose is to give a detailed account of this method over the
adeles of Q, for Maass cusp forms of arbitrary level N and nebentypus ω′. We
obtain a variant of the Kuznetsov trace formula by using the kernel function
attached to a Hecke operator Tn. The final formula is given in Theorem 7.14 on
page 86, and it differs from the usual version by the inclusion of eigenvalues of
Tn on the spectral side. The cuspidal term thus has the form

∑

uj∈F(N)

λn(uj) am1
(uj)am2

(uj)

‖uj‖2
h(tj)

cosh(πtj)
. (1.8)

This is a complement to the article [KL1], which dealt with Petersson’s formula
from the same viewpoint. As we pointed out there, the above variant can
alternatively be derived from the classical version (see Section 7.7 below). It is
also possible to invert the final formula to get a version with the test function
appearing on the geometric side rather than the spectral side, although we will
not pursue this. See Theorem 2 of [BKV] or [A], p. 135.

The incorporation of Hecke eigenvalues in (1.8) allows us to prove a result
about their distribution (Theorem 10.2). To state a special case, assume for
simplicity that the nebentypus is trivial, and that the basis F(N) is chosen so
that a1(uj) = 1 for all j. Then for any prime p ∤ N , we prove that the multiset
of Hecke eigenvalues λp(uj), when weighted by

wj =
1

‖uj‖2
h(tj)

cosh(πtj)
,

becomes equidistributed relative to the Sato-Tate measure in the limit as N →
∞. This means that for any continuous function f on R,

lim
N→∞

∑
uj∈F(N) f(λp(uj))wj∑

uj∈F(N) wj
=

1

π

∫ 2

−2

f(x)

√
1− x2

4 dx.
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This can be viewed as evidence for the Ramanujan conjecture, which asserts
that λp(uj) ∈ [−2, 2] for all j. The above result holds independently of both p
and the choice of h from a large family of suitable functions. We discuss some
of the history of this problem and its relation to the Sato-Tate conjecture in
Section 10.

The material in the first six sections can be used as a basis for any number
of investigations of Maass forms with the GL(2) trace formula. Sections 2-4 are
chiefly expository. We begin with the goal of explaining the connection between
the Laplace eigenvalue of a Maass form and the principal series representation
of GL2(R) determined by it. We then give a detailed account of the passage
between a Maass form on the upper half-plane and its adelic counterpart, which
is a cuspidal funcion on GL2(A). We also describe the adelic Hecke operators
of weight k = 0 and level N corresponding to the classical ones Tn.

Although similar in spirit with the derivation of Petersson’s formula in
[KL1], the analytic difficulties in the present case are considerably more subtle.
Whereas in the holomorphic case the relevant Hecke operator is of finite rank,
in the weight zero case it is not even Hilbert-Schmidt. The setting for the adelic
trace formula is the Hilbert space

L2(ω) =





φ : G(A)→ C

φ(zγg) = ω(z)φ(g) (z ∈ Z(A), γ ∈ G(Q)),∫
Z(A)G(Q)\G(A)

|φ|2 <∞,

where G = GL2, Z is the center, and ω is a finite order Hecke character.
Relative to the right regular representation R of G(A) on L2(ω), there is a
spectral decomposition L2(ω) = L2

disc(ω) ⊕ L2
cont(ω). The classical cusp forms

correspond to certain elements in the discrete part, while the continuous part
is essentially a direct integral of certain principal series representations H(it) of
G(A). We begin Section 6 by describing this in detail, following Gelbart and
Jacquet [GJ]. For a function f ∈ L1(ω) attached to a classical Hecke operator,
we then investigate the kernel

K(x, y) =
∑

γ∈Z(Q)\G(Q)

f(x−1γy) (1.9)

of the operator R(f). We assume that f∞ is bi-invariant under SO(2), com-
pactly supported in G(R)+, and sufficiently differentiable. Then letting φ range
through an orthonormal basis for the subspace of vectors in H(0) of weight 0
and level N , the main result of the section is a proof that the spectral expansion

K(x, y) = δω,1
3

π

∫

G(A)

f(g)dg +
∑

ϕ∈F(N)

R(f)ϕ(x)ϕ(y)

‖ϕ‖2

+
1

4π

∑

φ

∫ ∞

−∞
E(πit(f)φit, x)E(φit, y)dt,

is absolutely convergent and valid for all x, y. These are, respectively, the resid-
ual, cuspidal, and continuous components of the kernel.
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In Section 5, we discuss the Eisenstein series. We give an explicit description
of the finite set of Eisenstein series E(φs, g) that contribute to the above expres-
sion for K(x, y). Their Fourier coefficients involve generalized divisor sums and
Dirichlet L-values on the right edge of the critical strip, directly generalizing
(1.4). We derive bounds for these Fourier coefficients, which are useful for both
the convergence and applications of the Kuznetsov formula. For this purpose we
require lower bounds for Dirichlet L-functions on the right edge of the critical
strip, reviewed in Section 2. (We note that more generally, in establishing abso-
lute convergence of the spectral side of Jacquet’s GL(n) relative trace formula,
Lapid makes use of lower bounds for Rankin-Selberg L-functions on the right
edge of the critical strip due to Brumley, [Lap], [Brum].)

In Section 7 we integrate each variable ofK(x, y) against a character over the
unipotent group N(Q)\N(A). Using the geometric form (1.9) of the kernel, we
obtain the geometric side of the Kuznetsov formula as a sum of orbital integrals
whose finite parts evaluate to generalized twisted Kloosterman sums, defined by

Sω′(m2,m1; n; c) =
∑

dd′≡n mod c

ω′(d)e2πi(dm2+d
′m1)/c (for N |c),

where ω′ is the Dirichlet character of modulus N attached to ω. These sums also
arise in the generalized Petersson formula of [KL1]. After an extra averaging at
the archimedean place, we obtain the J-Bessel integrals as in (1.6). Using the
spectral form of the kernel we obtain the spectral side of the Kuznetsov formula,
giving the main result, Theorem 7.14. The function h(t) of (1.8) is the Selberg
transform of the archimedean test function f∞.

The hypothesis that f∞ be smooth and compactly supported amounts to
requiring that h(iz) be an even Paley-Wiener function. This is very restrictive,

ruling out well-behaved functions like the Gaussian h(t) = e−t
2

. In Section 8, we
carefully study the various transforms involved under more relaxed hypotheses,
and show that the Kuznetsov formula remains valid. We start with a function f
on G(A) which is Cm for m sufficiently large, and has polynomial decay rather
than compact support. We then express f as a limit of compactly supported
Cm functions (for which we have already established the Kuznetsov formula),
and then show that the Kuznetsov formula is preserved in the limit. A key step
is proving that R(f) is a Hilbert-Schmidt operator on the cuspidal subspace (cf.
Corollary 8.33).

In Section 9, we prove the Weil bound

|Sχ(a, b; n; c)| ≤ τ(n)τ(c)(an, bn, c)1/2c1/2c1/2χ , (1.10)

where cχ is the conductor of χ, and τ is the divisor function. Various identities
relate the generalized sum to classical twisted Kloosterman sums Sχ(a, b; c) =
Sχ(a, b; 1; c). Therefore we reduce to proving a Weil bound for the latter sums.
The latter is well-known, but seems to be a gap in the literature. Furthermore,
it is sometimes erroneously asserted that |Sχ(a, b; c)| ≤ τ(c)(a, b, c)1/2c1/2. We
give a counterexample on p. 125. For these reasons, we have included all of the
details of the proof of (1.10).
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For simplicity, in this paper we only treat forms of weight k = 0 over Q, and
we deal only with positive integer Fourier coefficients for the cusp at infinity.
There are many expositions of the Kuznetsov formula in the classical language
which extend beyond this scope and give other applications. See especially [DI],
[CPS], [Mo3] and [BM]. The latter incorporates general weights and cusps over
a totally real field. We also recommend the text of Baker [B].
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2 Preliminaries

2.1 Notation and Haar measure

Notation and normalization of measures is the same as in [KL2], where full
details are given. Let G = GL2, letM = {

( ∗ 0
0 ∗
)
} ⊆ G be the diagonal subgroup,

and let N = {
(
1 ∗
0 1

)
} ⊆ G be the upper triangular unipotent subgroup. The

Borel subgroup of upper triangular matrices is denoted B = MN = NM . We
write G for G/Z, where Z is the center of G, and generally for a subset S ⊆ G,
S denotes the image of S in G. Let

K∞ = {kθ :=
(

cos θ sin θ
− sin θ cos θ

)
| θ ∈ R} (2.1)

denote the compact subgroup SO(2) of G(R).
Let Z+ denote the set of positive integers and let R+ denote the group of

positive reals. If p is prime, we let Qp and Zp denote the p-adic numbers and
p-adic integers, respectively. For any rational integer x > 0, we often use the
notation

xp = ordp(x),

so that x =
∏
p p

xp , N =
∏
p p

Np , etc.

Let A,Afin be the adeles and finite adeles of Q. Then Ẑ =
∏
p Zp is an open

compact subgroup of Afin. For an element d ∈ Q∗ , we let

dN ∈ A∗ (2.2)

be the idele which agrees with d at places p|N and is 1 at all other places.

Let Kp = G(Zp) and Kfin = G(Ẑ) denote the standard maximal compact
subgroups of G(Qp) and G(Afin) respectively. By the Iwasawa decomposition,

G(A) =M(A)N(A)K,

where
K = K∞ ×Kfin.

For an integer N ≥ 1, define the following nested congruence subgroups of Kfin:

K0(N) = {
(
a b
c d

)
∈ Kfin| c ≡ 0 mod N Ẑ},

K1(N) = {
(
a b
c d

)
∈ K0(N)| d ≡ 1 mod N Ẑ},

K(N) = {k ∈ Kfin| k ≡
(
1 0
0 1

)
mod N Ẑ}.

Each of these is open and compact in G(Afin). By the strong approximation
theorem, we have

G(A) = G(Q)(G(R)+ ×K1(N)), (2.3)

where as usual G(Q) is embedded diagonally in G(A), and G(R)+ is the sub-
group of GL2(R) consisting of matrices with positive determinant. We will also
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use the local subgroups K0(N)p = {
(
a b
c d

)
∈ Kp| c ∈ NZp}, and similarly for

K1(N)p.
We take Γ0(N), Γ1(N) and Γ(N) to be the intersections of the above con-

gruence subgroups with SL2(Z) as usual. We set

ψ(N) = [Kfin : K0(N)] = [SL2(Z) : Γ0(N)] = N
∏

p|N
p prime

(1 +
1

p
), (2.4)

and locally ψ(N) =
∏
p ψp(N), where

ψp(N) = [Kp : K0(N)p] = pNp−1(p+ 1).

Haar measure will be normalized as follows. See §7 of [KL2] for more detail.
OnR we take Lebesgue measure dx, and onR∗ we take dy

|y| . OnQp we normalize

by meas(Zp) = 1, and on Q∗
p we take meas(Z∗

p) = 1. These choices determine
measures on A and A∗ ∼= Z(A), with meas(Q\A) = 1. We normalize dk on
K∞ by meas(K∞) = 1, and use the above measures on R and R∗ to define
measures on N(R) ∼= R and M(R) ∼= R∗ × R∗. These choices determine a
measure on G(R) by the Iwasawa decomposition: writing g = mnk, we take
dg = dmdndk. We normalize Haar measure on G(Qp) so that meas(Kp) = 1,
and on G(Afin) by taking meas(Kfin) = 1. We then adopt the product measure
on G(A) = G(R)×G(Afin). Having fixed measures on G(A) and Z(A) ∼= A∗ as
above, we give G(A) = G(A)/Z(A) the associated quotient measure. It has the
property that meas(G(Q)\G(A)) = π/3. In the quotient measure on G(Qp),
we have meas(Kp) = 1. We also take meas(K∞) = 1, which is not the quotient
measure on K∞/{±1}.

For any real number x, we denote

e(x) = e2πix.

We let θ : A −→ C∗ denote the standard character of A. It is defined by

θp(x) =

{
e(−x) = e−2πix if p =∞
e(rp(x)) = e2πirp(x) if p <∞,

(2.5)

where rp(x) ∈ Q is the p-principal part of x, a number with p-power denominator
characterized (up to Z) by x ∈ rp(x) + Zp. Then θ is trivial on Q, and θfin =∏
p<∞ θp is trivial precisely on Ẑ. For m ∈ Q, we define the character θm by

θm(x) = θ(−mx) = θ(mx).

It is well-known that every character of Q\A arises in this way, i.e. Q ∼= Q̂\A
by the the map m 7→ θm.

If V is a space of functions on a group G, then unless otherwise specified, we
denote the right regular action of G on V by R. Thus for φ ∈ V and g, x ∈ G,

R(g)φ(x) = φ(xg).
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2.2 Characters and Dirichlet L-functions

For a positive integer N , a Dirichlet character modulo N is a homomorphism

χ̃ : (Z/NZ)∗ −→ C∗, (2.6)

extended to a function on Z by taking χ̃(n) = 0 if gcd(n,N) > 1. The simplest
example is when (2.6) is the trivial homomorphism. In this case we say that χ̃
is the principal character modulo N .

If d|N and χ′ is a Dirichlet character modulo d, then it defines a Dirichlet
character χ̃ modulo N by the composition

χ̃ : (Z/NZ)∗ −→ (Z/dZ)∗ −→ C∗, (2.7)

where the last arrow is χ′. We say that χ̃ is the character of modulusN induced

from χ′. Conversely, if χ̃ is a Dirichlet character modulo N that factors through
the projection to (Z/dZ)∗ for some positive d|N as above, then we say d is an
induced modulus for χ̃. The conductor of χ̃ is the smallest induced modulus
cχ̃ for χ̃. Equivalently, cχ̃ is the smallest positive divisor of N for which χ̃(a) = 1
whenever gcd(a,N) = 1 and a ≡ 1 mod cχ̃. If cχ̃ = N , then χ̃ is primitive.

Write A∗ = Q∗(R+ × Ẑ∗). A Hecke character is a continuous homomor-
phism χ : A∗ −→ C∗, trivial on Q∗. The restriction of χ to R+ is of the form
x 7→ xs for a unique complex number s. Therefore the Hecke character

χ0(a) = χ(a)|a|−s

is trivial on Q∗R+, so it has finite order (cf. Lemma 12.1 of [KL2]; beware that
in the bijection discussed after that lemma, Dirichlet characters should read
primitive Dirichlet characters). Thus an arbitrary Hecke character is uniquely
of the form χ0 ⊗ | · |s, where χ0 has finite order. The local components χp :
Q∗
p −→ C∗ (p ≤ ∞) are given by

χp(a) = χ(1, . . . , 1,
pth

a , 1, 1, . . .),

so that χ =
∏
p χp.

For a finite order Hecke character χ, we let

cχ ∈ Z+

denote the conductor of χ. This is the smallest positive integer which has the
property that χ(a) = 1 for all a ∈ (1 + cχẐ) ∩ Ẑ∗. For any N ∈ cχZ

+ we can
attach to χ a Dirichlet character χ′ = χ′

N of modulus N and conductor cχ, via

χ : Q∗(R+ × Ẑ∗) −→ Ẑ∗ −→ (Z/NZ)∗ −→ C∗, (2.8)

where the last arrow defines χ′. The case N = cχ defines a bijection between
the set of finite order Hecke characters of conductor N and the set of primitive
Dirichlet characters modulo N . For any integer d prime to N , we have

χ′(d) =
∏

p|N
χp(d) = χ(dN ) (d,N) = 1, (2.9)

with dN as in (2.2).
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Lemma 2.1 (Dirichlet vs. Hecke L-functions). In the above situation,

L(s, χ′) = LN (s, χ), (2.10)

where the partial L-function on the right is defined by the Euler product

LN (s, χ) =
∏

p∤N

(1− χp(p)p−s)−1. (2.11)

Remark: If N = cχ, i.e. χ
′ is primitive, then LN (s, χ) = L(s, χ) by definition.

Proof. It is easy to show that 1 = χ(p) = χp(p)χ
′(p) for any p ∤ N ([KL2],

(12.7)). Therefore

L(s, χ′) =
∑

n>0

χ′(n)n−s =
∏

p∤N

(1− χ′(p)p−s)−1 = LN (s, χ).

We will need lower bounds for Dirichlet L-functions on the right edge of
the critical strip, since such L-values arise in the denominators of the Fourier
coefficients of Eisenstein series.

Theorem 2.2. Let χ be a non-principal Dirichlet character modulo N . Write
s = σ + it. There exists a constant c > 0 for which the following statements
hold.

1. If χ is non-real, then for 1− c

(log(N(⌊|t|⌋+ 2)))9
< σ ≤ 2,

L(s, χ)−1 ≪
(
log
(
N(⌊|t|⌋+ 2)

))7

for an absolute implied constant.

2. If χ is real, then in the region 1− c

(log(N(⌊|t|⌋+ 2)))9
< σ ≤ 2, |t| ≥ 1,

L(s, χ)−1 ≪
(
log
(
N(⌊|t|⌋+ 2)

))7

for an absolute implied constant.

3. If χ is real and ε > 0 is given such that Nε ≥ logN , then in the region
1− c

N9ε < σ ≤ 2, 1
10Nε ≤ |t| ≤ 1, we have

L(s, χ)−1 ≪ N7ε

for an absolute implied constant.

4. If χ is real and ε > 0 is given, then when N is sufficiently large (depending
on ε), for |s− 1| ≤ 1

Nε/2 we have

L(s, χ)−1 ≪ε N
ε/2

for an ineffective implied constant depending on ε.
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Proof. See equations (3), (4) and (5) on page 218 of Ramachandra’s book [Ra].
The fourth case requires Siegel’s Theorem, which is why the constant in that
case is not effective.

Corollary 2.3. Fix ε > 0. For all Dirichlet characters χ of modulus N ,

L(1 + it, χ)−1 ≪ε N
ε(log(|t|+ 3))7 (2.12)

for an ineffective implied constant depending only on ε.

Proof. Note that since log 3 > 1,

log(N(⌊|t|⌋+ 2)) ≤ logN + log(|t|+ 3) = log(|t|+ 3)

(
logN

log(|t|+ 3)
+ 1

)

≤ log(|t|+ 3)(logN + 1)≪ε log(|t|+ 3)Nε/7.

Therefore by parts 1 and 2 of the theorem, (2.12) holds if χ is non-real, or if χ
is a non-principal real character and |t| ≥ 1.

Suppose χ is real and non-principal, and let ε′ = ε/7. We need to establish
(2.12) for |t| ≤ 1. Because 1

10Nε′ ≤ 1
Nε′/2 , we see that either 1

10Nε′ ≤ |t| ≤ 1 or

|t| ≤ 1
Nε′/2 must hold. Therefore as long as N is sufficiently large (N ≥ C(ε)),

L(1 + it, χ)−1 ≪ N7ε′ ≪ Nε(log(3 + |t|))7,

as needed. We still have to treat the case N < C(ε), |t| ≤ 1. We know that
L(1 + it, χ)−1 is continuous in t, and hence bounded on |t| ≤ 1. There are only
finitely many characters χ with modulus < C(ε), so their L-functions can be
bounded uniformly on |t| ≤ 1. Thus L(1+ it, χ)≪ 1 on |t| ≤ 1 when N < C(ε).

Lastly, suppose χ is the principal character moduloN . Recall the well-known
estimate ζ(1 + it)−1 ≪ (log(3 + |t|))7 ([In], Theorem 10, p.28). Then

L(1 + it, χ)−1 = ζ(1 + it)−1
∏

p|N
(1− p−(1+it))−1 (2.13)

≪ (log(3 + |t|))7
∏

p|N
(1− 1

p
)−1 ≪ (log(3 + |t|))7

∏

p|N
2

≪ε (log(3 + |t|))7Nε.
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3 Bi-K∞-invariant functions on GL2(R)

Our objective is to study the cusp forms of weight 0, realized as certain right
K∞-invariant L2-functions on G(R) × G(Afin). In order to isolate the K∞-
invariant subspace of L2, we will use an operator R(f∞ × ffin), where f∞ is a
bi-K∞-invariant function on G(R). In this section we review the properties of
such functions which will be useful in what follows.

3.1 Several guises

Let m be a fixed nonnegative integer or∞. Define Cmc (G+//K) to be the space
of m-times continuously differentiable functions f on

G(R)+ = {g ∈ G(R)| det(g) > 0},
whose support is compact modulo Z(R), and which satisfy

f(zkgk′) = f(g) (3.1)

for all z ∈ Z(R) and k, k′ ∈ K∞. In later sections, we will view these as functions
on G(R) by setting f(g) = 0 if det(g) < 0. When m = 0, we sometimes denote
the space by Cc(G

+//K).
In terms of the Cartan decomposition

G(R)+ = Z(R)K∞

{(
y1/2

y−1/2

)}
K∞, (3.2)

an element f ∈ Cmc (G+//K) depends only on the parameter y. As a function
of y, it is invariant under y 7→ y−1, since f(

(
1

−1

)
g
( −1
1

)
) = f(g). Thus we

have the following isomorphism

Cmc (G+//K) −→ Cmc (R+)w,

where Cmc (R+)w is the space of smooth compactly supported functions on R+

(the set of positive real numbers) that are invariant under y 7→ y−1. The value
of such a function depends only on the unordered pair {y, y−1}. The set of
such pairs is in 1-1 correspondence with the real interval [0,∞) via {y, y−1} ↔
y + y−1 − 2.

Proposition 3.1. Suppose m ≥ 0 and 0 ≤ 3m′ ≤ m + 1. Then for y ∈ R+,
the substitution

u = y + y−1 − 2 (3.3)

defines a C-linear injection Cmc (R+)w −→ Cm
′

c ([0,∞)) whose image contains
Cmc ([0,∞)). In particular, this map is an isomorphism in the two cases m =
m′ = 0 and m = m′ =∞.

Proof. We first consider the case of smooth functions. Let a(y) ∈ C∞
c (R+)w,

and let A(u) = a(y) be the associated function of u ∈ [0,∞). It is easy to see
that A is C∞ on (0,∞), however the smoothness at the endpoint u = 0 is not
obvious because dy

du = (1− 1
y2 )

−1 blows up at y = 1. It is helpful to write y = ex,

and define h(x) = a(ex) = A(u). Then:

15



• h(−x) = h(x) is even

• h ∈ C∞
c (R)

• u = ex + e−x − 2, so du
dx = ex − e−x = 2 sinh(x).

For u > 0, write

A(n)(u) =
pn(x)

2n(sinhx)2n−1
.

When n = 1 this holds with p1(x) = h′(x), and by differentiating, we find in
general that

pn+1(x) = sinh(x)p′n(x)− (2n− 1) cosh(x)pn(x). (3.4)

We claim that pn+1(x) vanishes at least to order 2n + 1 at 0. We prove the
claim by induction, the base case being p1(0) = h′(0) = 0, h′ being odd since h
is even. It is clear that pn+1(x) vanishes to at least order 2n− 1 at 0, since this
is true of both terms on the right-hand side of (3.4) by the inductive hypothesis.
It remains to show that

p
(2n−1)
n+1 (0) = p

(2n)
n+1(0) = 0.

By differentiating (3.4), we see that for 0 ≤ j ≤ 2n− 1,

p
(j)
n+1(x) = sinh(x)p(j+1)

n (x)− (2n− 1− j) cosh(x)p(j)n (x) + Lj(x),

where L0(x) = 0 and Lj(x), j > 0, is a linear combination of derivatives of pn
of order < j. In particular, Lj(0) = 0 for all j ≤ 2n − 1. Taking j = 2n − 1
gives

p
(2n−1)
n+1 (0) = sinh(0)p(2n)n (0) + L2n−1(0) = 0.

Furthermore, it follows inductively from (3.4) that pn+1(x) is an odd function,

so that the even order derivative p
(2n)
n+1(0) vanishes. This proves the claim.

Now we can prove by induction that A(n)(u) is defined and continuous at
u = 0. This is clear when n = 0. Assuming it holds for some given n ≥ 0, we
note that by L’Hospital’s rule,

A(n+1)(0) = lim
u→0+

A(n)(u)−A(n)(0)

u
= lim
u→0+

A(n+1)(u) = lim
x→0

pn+1(x)

2n+1(sinhx)2n+1
,

provided the limit exists. The denominator vanishes exactly to order 2n + 1
at 0, and we just showed that pn+1(x) vanishes at least to order 2n + 1 at 0.
Therefore we may apply L’Hospital’s rule 2n+1 times, at which point we get a
nonvanishing denominator at 0, giving a finite limit as needed.

Now suppose a(y) (hence h(x)) is only assumed to be m-times continuously
differentiable. In order for the above argument to run with m′ = n + 1, we
need pn+1(x) (hence h

(n+1)(x)) to be (2n+1)-times continuously differentiable,
i.e. m ≥ 3n + 2 = 3m′ − 1. It is clear that the resulting map Cmc (R+)w →
Cm

′
c ([0,∞)) is injective. On the other hand, given A ∈ Cmc ([0,∞)) and defining

a(y) = A(y + y−1 − 2) = A(u), it follows from the fact that du
dy = (1 − y−2) is

smooth on R+ that a ∈ Cmc (R+)w, so A is in the image of the map.
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We define, for f ∈ Cmc (G+//K),

V (u) = V (y + y−1 − 2) = f(

(
y1/2

y−1/2

)
). (3.5)

By the preceding discussion, we have the following.

Proposition 3.2. Suppose 0 ≤ 3m′ ≤ m+ 1. Then the assignment f 7→ V de-
fines an injection Cmc (G+//K)→ Cm

′
c ([0,∞)) whose image contains Cmc ([0,∞)).

In particular, it is an isomorphism if m = m′ = 0 or m = m′ =∞.

For g =
(
a b
c d

)
∈ G(R)+, we can recover the parameter y + y−1 as follows.

Writing g = (
√
det g)kθ′

( y1/2
y−1/2

)
kθ, we see that tg g = (det g)k−1

θ

( y
y−1

)
kθ,

where tg denotes the transpose. Therefore

y + y−1 =
tr(tg g)

det g
=
a2 + b2 + c2 + d2

ad− bc . (3.6)

Thus we can recover f from V via:

f(

(
a b
c d

)
) = V (

a2 + b2 + c2 + d2

ad− bc − 2). (3.7)

We can also identify f with a function of two variables on the complex upper
half-plane H. Recall the correspondence

G(R)+/Z(R)K∞ ←→ H

induced by
(
a b
c d

)
7→
(
a b
c d

)
(i) = ai+b

ci+d . By this, the following function is well-
defined:

k(z1, z2) = f(g−1
1 g2) (z1, z2 ∈ H), (3.8)

where gj(i) = zj for j = 1, 2. Clearly

k(γz1, γz2) = k(z1, z2)

for all γ ∈ G(R)+, and in particular for any real scalar c > 0,

k(cz1, cz2) = k(z1, z2). (3.9)

Proposition 3.3. With notation as above, for g1, g2 ∈ G(R)+ we have

k(z1, z2) = V

( |z1 − z2|2
y1y2

)
= f(g−1

1 g2).

Proof. Writing g−1
1 g2 =

( y1 x1

0 1

)−1( y2 x2

0 1

)
=
( y2

y1

(x2−x1)
y1

0 1

)
, by (3.6) we have

u =
a2+b2+c2+d2

ad−bc
−2 =

y2
y1

+
(x2 − x1)2

y1y2
+
y1
y2
− 2y1y2
y1y2

=
(x2 − x1)2 + (y2 − y1)2

y1y2
.
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3.2 The Harish-Chandra transform

Given f ∈ Cmc (G+//K), its Harish-Chandra transform is the function of y ∈ R+

defined by

(Hf)(y) = y−1/2

∫

R

f(

(
1 x

1

)(
y1/2

y−1/2

)
)dx.

The absolute convergence follows easily from the compactness of the support of
f . It is clear that Hf is also compactly supported.

If we identify f with V , and let u = y + y−1 − 2 as before, the transform is
traditionally denoted

Q(u) =

∫

R

V (u+ x2)dx,

following Selberg. To see the equivalence, by (3.6) we have

(Hf)(y) = y−1/2

∫

R

f(

(
y1/2 xy−1/2

0 y−1/2

)
)dx =

∫

R

f(

(
y1/2 x

y−1/2

)
)dx

=

∫

R

V (y + y−1 + x2 − 2)dx =

∫

R

V (u+ x2)dx. (3.10)

From this, we see that Hf belongs to the space Cmc (R+)w.

Proposition 3.4. Suppose m,m′ ≥ 0 with 3m′ ≤ m + 1. Then the Harish-
Chandra transform defines a commutative diagram

Cmc (G+//K)
f 7→ Hf

✲ Cmc (R+)w

Cm
′

c ([0,∞))

❄
V 7→ Q

✲ Cm
′

c ([0,∞)),

❄

where all arrows are injective. The image of the bottom map V 7→ Q contains
Cmc ([0,∞)). When m = m′ = ∞, all arrows are isomorphisms. Generally, if
m′ > 0 then for u = y + y−1 − 2 and

Hf(y) = Q(u) =

∫

R

V (u+ x2)dx,

the inverse transform is given by

V (u) = − 1

π

∫

R

Q′(u+ w2)dw. (3.11)

Remarks: For the smooth case, see also [Lang], §V.3, Theorem 3, p. 71. For
more detail about the inverse transformation, see Propositions 8.16 and 8.17
below. For example, we will show that the image of the bottom map contains
Cm

′+1
c ([0,∞)). In fact, given Q in this space, if we define V by (3.11), then

V ∈ Cm′
c ([0,∞)) and Q(u) =

∫
R
V (u+ x2)dx.
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Proof. The commutativity of the diagram follows from (3.10). The vertical maps
are injective by Propositions 3.1 and 3.2 above. As described there, the image of
the right-hand vertical map Hf 7→ Q contains Cmc ([0,∞)), so by commutativity
of the diagram, the same holds for the image of the bottom map V 7→ Q. It
follows that when m′ = ∞, all arrows are surjective. The injectivity of the
horizontal arrows is a consequence of the inversion formula (3.11), so it just
remains to prove the latter. We can differentiate Q(u) under the integral sign
because V ∈ Cm′

c ([0,∞)) for m′ ≥ 1 (cf. Proposition 8.3). Thus

Q′(u) =

∫

R

V ′(u+ x2)dx.

Hence

− 1

π

∫

R

Q′(u+ w2)dw = − 1

π

∫

R

∫

R

V ′(u+ w2 + x2)dxdw

= − 1

π

∫ 2π

0

∫ ∞

0

V ′(u+ r2)rdrdθ = −2
∫ ∞

0

V ′(u+ t)
dt

2
= V (u).

3.3 The Mellin transform

For Φ ∈ Cmc (R+), its Mellin transform is the function of C defined by

(MΦ)(s) =

∫ ∞

0

Φ(y)ys
dy

y
. (3.12)

This is a Fourier transform on the multiplicative group R+. We also denote the
above byMsΦ. It is easily shown to be an entire function of s. When m ≥ 2,
we have

Φ(y) =
1

2πi

∫

Re(s)=σ

(MΦ)(s)y−sds (3.13)

for any σ ∈ R. This is the Mellin inversion formula, which we will prove under
somewhat more general hypotheses in Propositions 8.10 and 8.11.

We say that an entire function η : C −→ C is Paley-Wiener of order m
if there exists a real number C ≥ 1 depending only on η such that

|η(σ + it)| ≪m,η
C |σ|

(1 + |t|)m . (3.14)

We let PWm(C) denote the space of such functions. If the above holds for
all m > 0 with the same C, then η belongs to the Paley-Wiener space

PW∞(C) = PW (C).

Proposition 3.5. Suppose m ≥ 0. Then the Mellin transform defines an in-
jection

M : Cmc (R+) −→ PWm(C)

whose image contains PWm+2(C). On PWm+2(C), the inverse map is given
by (3.13). In particular, if m =∞ the transform is an isomorphism.
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Proof. (See also [Lang], §V.3, Theorem 4, p. 76.) First we show that the image
of the Mellin transform lies in PWm(C). When m = 0 this is obvious. Given
Φ ∈ Cmc (R+) for m > 0, we may apply integration by parts to (3.12) to get

MΦ(s) = Φ(y)
ys

s

∣∣∣∣
∞

0

− 1

s

∫ ∞

0

Φ′(y)ys+1 dy

y
.

Since Φ is compactly supported in R+, the first term on the right vanishes.
Continuing, we find

MΦ(s) =
(−1)m

s(s+ 1) · · · (s+m− 1)

∫ ∞

0

Φ(m)(y)ys+m
dy

y
.

Using this, it is straightforward to see thatMΦ satisfies (3.14). The injectivity
of the map is immediate from the inversion formula (3.13).

For η ∈ PW 2(C), we can define Φ(y) = 1
2πi

∫
Re s=σ

η(s)y−sds as in (3.13),
the convergence being absolute for any σ by (3.14) with m = 2. To see that Φ
is compactly supported, consider

Φ(y) =
1

2πi

∫

Re s=σ

η(s)y−sds≪
∫ ∞

−∞

Cσ|y|−σ
(1 + |t|)2 dt≪ (C|y|−1)σ.

If |y| > |C|, then the right-hand side approaches 0 as σ → ∞, so Φ(y) = 0.
Thus Suppφ ⊆ [−C,C].

Lastly, if η ∈ PWm+2(C) and Φ is defined as above, then η = MΦ (cf.
Proposition 8.11), and it is not hard to show that Φ ∈ Cmc (R+). The idea
is that after differentiating under the integral sign m times, we still have an
integrand with sufficient (quadratic) decay in t = Im s for convergence. See
Proposition 8.13 below for details.

3.4 The Selberg transform

If we restrict the Mellin transform to the space Cmc (R+)w defined on p. 15, it
gives an injection to the space PWm(C)even of even functions that are Paley-
Wiener of order m. The composition of the Harish-Chandra and Mellin trans-
forms is called the spherical transform, which we denote by

(Sf)(s) =Ms(Hf).

BecauseMs and H are injective, we immediately see the following.

Proposition 3.6. For m ≥ 0, the spherical transform

S : Cmc (G+//K)
f 7→ Sf

✲ PWm(C)even

is injective, and its image contains PWm+2(C)even. In particular, when m =∞
it is an isomorphism.
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The Selberg transform of f ∈ Cmc (G+//K) is a variant of the above,
defined by

h(t) = (Sf)(it) =MitHf. (3.15)

It is given explicitly by

h(t) =

∫ ∞

0

∫ ∞

−∞
f(
(
1 x
0 1

)( y1/2
y−1/2

)
)y

1
2+it

dx dy

y2
=

∫∫

H

k(i, z)y
1
2+itdz, (3.16)

where dz = dx dy
y2 is the G(R)+-invariant measure on H. Note that s 7→ h(−is)

is Paley-Wiener of order m.

Proposition 3.7. Suppose m > 2 and h(−is) = (Sf)(s) ∈ PWm(C)even. Then
the inverse of the Selberg transform is given by

V (u) =
1

4π

∫ ∞

−∞
P− 1

2+it
(1 + u

2 )h(t) tanh(πt) t dt,

for the Legendre function Ps(z) = P 0
s (z). In particular, we have

f(1) = V (0) =
1

4π

∫ ∞

−∞
h(t) tanh(πt) t dt. (3.17)

Proof. (See also (2.24) of [Za] or (1.64′) of [Iw2].) Beginning with the fact that
Ms(Hf) = h(−is), we apply Mellin inversion (3.13) to get, for y > 0,

(Hf)(y) = 1

2πi

∫

Re s=0

h(−is)y−sds = 1

2π

∫

R

h(r)y−irdr =
1

2π

∫

R

h(r)yirdr,

since h is even. Write y = ev and u = y + y−1 − 2 = ev + e−v − 2, and define

g(v) = Q(u) = (Hf)(y).

Then g(v) =
1

2π

∫

R

h(r)eirvdr, and differentiating (cf. Proposition 8.3),

g′(v) =
i

2π

∫

R

rh(r)eirvdr = − 1

2π

∫

R

sin(rv)r h(r)dr

since h is even. We have used the fact that m > 2, so in particular the above is
absolutely convergent. Now we invert the Harish-Chandra transform via (3.11)
to get

V (w) = − 1

π

∫

R

Q′(w + x2)dx = − 2

π

∫ ∞

0

Q′(w + x2)dx

= − 1

π

∫ ∞

w

Q′(u)du√
u− w = − 1

π

∫ ∞

cosh−1(1+w
2 )

g′(v)dv√
ev + e−v − 2− w

=
1

2π2

∫ ∞

−∞

∫ ∞

cosh−1(1+w
2 )

sin(rv)√
ev + e−v − 2− w

dv rh(r)dr.
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The interchange of the integrals is justified by the absolute convergence of the
integral, which follows easily by the fact thatm > 2. As observed by Zagier ([Za]
(2.24)), using the identities 8.715.2 and 8.736.7 of [GR], it is straightforward to
show that the above is

=
1

4π

∫

R

P− 1
2+ir

(1 +
w

2
) tanh(πr)r h(r)dr.

It is sometimes desirable to extend all of these transforms to functions with
sufficient decay rather than just the case of compact support. We will discuss
this in detail in Section 8, but we mention here that the following conditions
are equivalent:

• V (u) = O(u−
1+A

2 ) as u→∞

• Q(u) = O(u−A/2) as u→∞

• h(t) is holomorphic in the horizontal strip | Im(t)| < A/2.

See [Za], p. 320.

3.5 The principal series of G(R)

Here we recall the construction of the principal series of G(R) and prove some
well-known simple properties. Detailed background is given, e.g., in §11 of
[KL2]. For ε1, ε2 ∈ {0, 1} and s1, s2 ∈ C, define a character χ = χ(ε1, ε2, s1, s2)
of B(R) by

χ(

(
a b
0 d

)
) = sgn(a)ε1 |a|s1 sgn(d)ε2 |d|s2 .

Every character of B(R) has this form. We let πχ = π(ε1, ε2, s1, s2) denote the
representation of G(R) unitarily induced from χ. The underlying representation
space Vχ consists of measurable functions on G(R) satisfying

φ(

(
a b
0 d

)
g) = χ(

(
a b
0 d

)
)
∣∣∣a
d

∣∣∣
1/2

φ(g),

with inner product given by

〈φ1, φ2〉 =
∫

K∞

φ1(k)φ2(k)dk.

The action of G(R) is given by right translation

πχ(g)φ(x) = φ(xg).

The representation πχ is unitary when χ is unitary, i.e. when s1, s2 ∈ iR. See
§11.3 of [KL2] for details.
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We say that a vector has weight k if it transforms by the scalar eikθ under
the action of kθ ∈ K∞. A natural basis for Vχ is {φk| k ∈ ε1 + ε2 + 2Z}, where
φk is characterized by

φk(kθ) = eikθ.

This function spans the one-dimensional space of weight k vectors in Vχ.
We define the spectral parameter of πχ by

t = − i
2
(s1 − s2). (3.18)

The representation πχ is reducible if and only if t 6= 0 and 2it + ε1 + ε2 is an
odd integer. Furthermore, the Casimir element ∆ in the center of the universal
enveloping algebra U(gC), whose right regular action on C∞(G(R)+) is given

in the coordinates z
(
1 x
0 1

)( y1/2
y−1/2

)
kθ by

R(∆)φ = −y2
(
∂2φ

∂x2
+
∂2φ

∂y2

)
+ y

∂2φ

∂x∂θ
, (3.19)

acts on the K∞-finite vectors of Vχ by the scalar

πχ(∆) =
1

4
+ t2. (3.20)

(See e.g. [KL2], pp. 169, 185.)
The only irreducible finite dimensional unitary representations of G(R) are

the unitary characters. For the infinite dimensional ones, we have the following.

Proposition 3.8. Let π be an irreducible infinite dimensional unitary represen-
tation of G(R). Then π contains a nonzero vector of weight 0 (resp. weight 1) if
and only if π ∼= π(ε1, ε2, s1, s2) is an irreducible principal series representation
with ε1 + ε2 even (resp. odd), and either:
· s1, s2 ∈ iR (unitary principal series) or
· t ∈ iR, 0 < |t| < 1

2 , and s1 + s2 ∈ iR (complementary series),
for t as in (3.18). The vector is unique up to scalar multiples.

Proof. Any irreducible unitary representation π is infinitesimally equivalent
with a subrepresentation of a principal series representation of G(R). A proper
subrepresentation containing a vector of weight 0 or 1 is necessarily finite dimen-
sional (see e.g. [KL2], p. 164). Therefore π ∼= π(ε1, ε2, s1, s2) is itself a principal
series representation. Since π is unitary, one of the two given scenarios must
hold.

Generally, if φ is any continuous function on G(R), we extend the right
regular action of G(R) to an action of f ∈ Cmc (G+//K) by defining

R(f)φ(g′) =

∫

G(R)

f(g)R(g)φ(g′)dg =

∫

G(R)

f(g)φ(g′g)dg.
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If φ is right Z(R)K∞-invariant, it can be viewed as a function on H, and after
replacing g by g′−1g in the above, we find

R(f)φ(g′) =

∫

H

k(z′, z)φ(z)
dx dy

y2
, (3.21)

where k(z′, z) is the function attached to f in (3.8).
As shown by Selberg [Sel2], if φ(z) is an eigenfunction of the Laplacian with

eigenvalue 1
4 + t2, then in the sense of (3.21), R(f)φ = h(t)φ for the Selberg

transform h of f (see also Theorem 1.16 of [Iw2]). We prove this here in the
special case of interest to us. We use the setting of weight k functions as an
example of how the results of this section immediately generalize from k = 0.

Proposition 3.9. Let π = πχ be as above. Let f∞ be a continuous function
whose support lies in G(R)+ and is compact modulo Z(R), satisfying

f∞(zk−1
θ1
gkθ2) = χ(z)−1e−ik(θ2−θ1)f∞(g) (z ∈ Z(R), kθj ∈ K∞).

Then the operator π(f∞) preserves the one-dimensional subspace Vk of weight
k vectors in Vχ, and vanishes on its orthogonal complement. If this subspace is
nonzero (i.e. k ≡ ε1 + ε2 mod 2), then

π(f∞)φk = h(t)φk, (3.22)

where t is the spectral parameter (3.18) of π, and h is the Selberg transform of
f∞, defined in (3.15).

Proof. We will prove the first claim in a more general context in Lemma 3.10
below, so we grant it for now. Hence if φ = φk ∈ Vχ, φ is an eigenvector of
π(f∞) since dimVk = 1. The eigenvalue λ is given by

λ = π(f∞)φ(1) =

∫

G(R)

f∞(g)φ(g)dg =

∫

SL2(R)

f∞(g)φ(g)dg,

by our normalization of Haar measure (cf. (7.27) on page 95 of [KL2]). Here we
have used the fact that f∞ is supported on G(R)+. Now since f∞ and φ have
opposite weights on the right, the integrand is right K∞-invariant. Therefore
we have

λ =

∫ ∞

0

∫ ∞

−∞
f∞(

(
1 x
0 1

)( y1/2
y−1/2

)
)φ(
(
1 x
0 1

)( y1/2
y−1/2

)
)
dx dy

y2

=

∫ ∞

0

∫ ∞

−∞
f∞(

(
1 x
0 1

)( y1/2
y−1/2

)
)y(s1−s2)/2y1/2y−2dx dy

=

∫ ∞

0

[
y−1/2

∫ ∞

−∞
f∞(

(
1 x
0 1

)( y1/2
y−1/2

)
) dx

]
yit
dy

y
=MitH(f∞) = h(t),

as required.
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Lemma 3.10. Let G be a locally compact group, let K ⊆ G be a closed sub-
group, and let π be a unitary representation of G on a Hilbert space V with
central character χ. Then for any bi-K-invariant function f ∈ L1(G,χ−1) (i.e.
integrable mod center, with central character χ−1), the operator π(f) on V given
by

π(f)v =

∫

G

f(g)π(g)v dg

has its image in the K-fixed subspace V K , and annihilates the orthogonal com-
plement of this subspace.

Remark: If the bi-K-invariance of f is replaced by the property

f(k−1gk′) = τ(k)τ(k′)−1f(g)

for a character τ of K, then the above holds with Vτ = {v ∈ V |π(k)v = τ(k)v}
in place of V K , as is easily seen by adjusting the proof below.

Proof. See page 140 of [KL2] for a detailed discussion of π(f). In particular,
the vector π(f)v is characterized by the property that

〈π(f)v, w〉 =
∫

G

f(g) 〈π(g)v, w〉 dg

for all w ∈ V . Since π is unitary, for any k ∈ K we have

〈π(k)π(f)v, w〉 =
〈
π(f)v, π(k−1)w

〉
=

∫

G

f(g)
〈
π(g)v, π(k−1)w

〉
dg

=

∫

G

f(g) 〈π(kg)v, w〉 dg =

∫

G

f(k−1g) 〈π(g)v, w〉 dg = 〈π(f)v, w〉

by the left K-invariance of f . Thus π(k)π(f)v = π(f)v ∈ V K as claimed.
The adjoint of π(f) is the operator π(f∗), where

f∗(g) = f(g−1) ∈ L1(G,χ−1).

The right K-invariance of f means that f∗ is left K-invariant, so the operator
π(f)∗ = π(f∗) also has its image in V K . If w ∈ (V K)⊥, then for any v ∈ V K
we have

〈π(f)w, v〉 = 〈w, π(f∗)v〉 = 0.

Hence π(f)w ∈ V K ∩ (V K)⊥ = {0}, as needed.
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4 Maass cusp forms

Here we review some well-known properties of Maass cusp forms, and spell out
their connection with the representation theory of the adele group GL2(A).

4.1 Cusp forms of weight 0

More detail on the material below can be found e.g. in Iwaniec [Iw2]. Fix a
level N ∈ Z+, and let ω′ be a Dirichlet character whose conductor divides N
and which satisfies

ω′(−1) = 1. (4.1)

We view ω′ as a character of Γ0(N) via ω′(
(
a b
c d

)
) = ω′(d). Note that ω′(γ) = 1 if

γ ∈ Γ1(N). Let L2(N,ω′) denote the space of measurable functions u : H −→ C

(modulo functions that are 0 a.e.) such that

u(γz) = ω′(γ)u(z) (4.2)

for all γ ∈ Γ0(N), and whose Petersson norm

‖u‖2 =
1

ψ(N)

∫

Γ0(N)\H
|u(x+ iy)|2 dx dy

y2
(4.3)

is finite. Taking γ =
(−1

−1

)
in (4.2) gives ω′(−1) = 1 if u(z) 6= 0, which is

why we imposed (4.1).
Let δ ∈ G(Q)+, and write

δ−1Γ1(N)δ ∩N(Q) = {
(
1 tMδ
0 1

)
| t ∈ Z},

where Mδ > 0 (see Lemma 3.7 of [KL2]). If u is any continuous function
satisfying (4.2), we set

uδ(z) = u(δ(z)).

Then uδ(z+Mδ) = uδ(z), so for all y > 0, it has a Fourier expansion about the
cusp q = δ(∞) of the form

uδ(z) =
∞∑

m=−∞
am,δ(u, y) e(nx/Mδ).

We drop δ and just write am(u, y) when q = ∞. An element u ∈ L2(N,ω′) is
cuspidal if its constant terms vanish:

a0,δ(u, y) =
1

Mδ

∫ Mδ

0

u(δ(x+ iy))dx = 0 (4.4)

for all δ ∈ G(Q)+ and a.e. y > 0. The subspace of cuspidal functions is denoted
L2
0(N,ω

′).
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The hyperbolic Laplacian is defined as an operator on C∞(H) by

∆ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
. (4.5)

This operator commutes with the action of G(R)+:

(∆u)(gz) = ∆(u(gz)).

By this invariance, ∆ descends to an operator on C∞
c (Γ1(N)\H), which is dense

in L2(N,ω′). One can show that relative to the Petersson inner product, this
operator is symmetric and positive:

〈∆φ, ψ〉 = 〈φ,∆ψ〉 , (4.6)

〈∆φ, φ〉 = 1
[Γ(1):Γ1(N)]

∫

Γ1(N)\H
‖∇φ(x+ iy)‖2dx dy ≥ 0 (4.7)

([Lang], §XIV.4). The operator ∆ extends to an elliptic operator on the distri-
bution space D′(Γ1(N)\H) of continuous linear functionals on C∞

c (Γ1(N)\H).
See [F1], p. 284. Identifying φ ∈ L2(N,ω′) with the functional f 7→ 〈f, φ〉
realizes L2(N,ω′) as a subspace of D′(Γ1(N)\H), although this subspace is not
stable under the extended operator ∆.

A Maass cusp form of level N and nebentypus ω′ is an eigenfunction u
of ∆ in the subspace L2

0(N,ω
′) ([Ma]). By the elliptic regularity theorem, such

an eigenfunction is necessarily smooth, i.e. u ∈ C∞(H) (cf. [F2] p. 214, or
[Lang] p. 407). We write ∆u = ( 14 + t2)u for the Laplace eigenvalue and call
t the spectral parameter of u. It is also customary to use s(1 − s) for the
eigenvalue, where the relationship is given by s = 1

2 + it. We will not use this
notation, preferring instead to use s = it.

Theorem 4.1. The cuspidal subspace L2
0(N,ω

′) has an orthogonal basis consist-
ing of Maass cusp forms. Each cuspidal eigenspace of ∆ is finite dimensional,
and the eigenvalues are positive real numbers λ1 ≤ λ2 ≤ · · · with no finite limit
point.

Remarks: (1) A famous conjecture of Selberg asserts that λ1 ≥ 1
4 , or equiva-

lently, that all of the spectral parameters t are real, [Sar1]. (It is not hard to
show that the set of t /∈ R is finite; see Corollary 7.3 on page 72.) Selberg
proved that λ1 ≥ 3

16 . See §6.2 of [DI], where this is proven as a consequence of
the Kuznetsov formula. The best bound to date is λ1 ≥ 1

4 − ( 7
64 )

2 ≈ 0.238037...,
due to Kim and Sarnak [KS].

(2) In the case of level N = 1, Cartier conjectured that the eigenvalues occur
with multiplicity one ([Car]). Until very recently, it was widely believed that the
eigenvalues of ∆ on the newforms of level N should occur with multiplicity one.
However, Strömberg has discovered counterexamples on Γ0(9) which, despite
coming from newforms, nevertheless arise out of the spectrum of a congruence
subgroup of lower level ([St]). Some of his examples were found independently
by Farmer and Lemurell.
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Proof. (Sketch. See also [Iw2], §4.3 and [IK], §15.5.) The existence of the
basis is a consequence of the complete reducibility of L2

0(G(Q)\G(A), ω) (see
Proposition 4.8 below). The discreteness of the set of eigenvalues and the finite
dimensionality of the eigenspaces both follow from (7.3) on page 71. The fact
that there are infinitely many linearly independent cusp forms can be seen from
Weyl’s Law (see (7.4)). By (4.7) the eigenvalues of ∆ are nonnegative. If ∆u = 0
for u ∈ L2

0(N,ω
′), then u is a harmonic function on Γ1(N)\H. By the maximum

principle ([F2], p. 72), the supremum of |u(z)| occurs on the boundary, i.e. at
a cusp, where u vanishes. Hence u = 0. This shows that the λj are strictly
positive.

If u is a Maass cusp form with ∆-eigenvalue 1
4 + t2, its Fourier expansion at

∞ has the well-known form

u(x+ iy) =
∑

m∈Z−{0}
am(u) y1/2Kit(2π|m|y)e2πimx (4.8)

for constants am(u) called the Fourier coefficients of u (see e.g. [Bu], §1.9).
The K-Bessel function can be defined by

Ks(z) =
1

2

∫ ∞

0

e−z(w+w−1)/2 ws
dw

w
, (4.9)

for s ∈ C and Re(z) > 0.

4.2 Hecke operators

For u ∈ L2(N,ω′) and an integer n > 0, the Hecke operator Tn is given by

Tnu(z) = n
−1/2

∑

ad=n

d>0

d−1∑

r=0

ω′(a)u(
az + r

d
).

One shows in the usual way that Tnu ∈ L2(N,ω′).
We also define T−1u(x + iy) = u(−x + iy). A Maass cusp form is even

(resp. odd) if T−1u = u (resp. T−1u = −u). If u is even, then in (4.8) we have
a−n = an, while if u is odd, an = −a−n.

Proposition 4.2. The Hecke operators for gcd(n, N) = 1 are normal operators
on L2(N,ω′). They commute with each other and with ∆. Hence the family
of operators {∆, T−1, Tn| gcd(n, N) = 1} is simultaneously diagonalizable on
L2
0(N,ω

′).

Proof. We can compute the adjoint of Tn as in §3.9 of [KL2]. The proof of diag-
onalizability in the holomorphic case relies crucially on the finite dimensionality
of Sk(N,ω

′). In order to get the diagonalizability of Tn on L2
0(N,ω

′) we can
use the fact that each Tn preserves the ∆-eigenspace L2

0(N,ω
′, 14 + t2), which is

finite-dimensional. These subspaces exhaust the cuspidal spectrum by Theorem
4.1. See also Proposition 4.8 below.
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A Maass eigenform is a cusp form u which is a simultaneous eigenvector of
the operators Tn for n ≥ 1, (n, N) = 1. We write Tnu = λn(u)u for the Hecke
eigenvalue. In this situation,

an(u) = a1(u)λn(u)

whenever gcd(N, n) = 1. This is a consequence of the fact that for any cusp
form u,

am(Tnu) =
∑

ℓ| gcd(n,m)

ω′(ℓ) a nm
ℓ2
(u), (4.10)

which is proven in the same way as for holomorphic cusp forms.
We now define a function which serves as the adelic counterpart to Tn (see

Lemma 4.6 below). Fix integers N, n ∈ Z+ with gcd(n, N) = 1, and let ω be a
Hecke character of conductor dividing N . Define fn : G(Afin) → C as follows.
Let

M1(n, N) = {g =
(
a b
c d

)
∈M2(Ẑ)| det g ∈ nẐ∗ and c, (d− 1) ∈ N Ẑ}.

Let M1(n, N)p be the local component of this set in G(Qp). Note that if p ∤ n,
then M1(n, N)p = K1(N)p = K1(N) ∩ Kp. The function fn is supported on
Z(Afin)M1(n, N) and given by

fn(zm) =
ω(z)

meas(K1(N))
=
ψ(N)

ω(z)
. (4.11)

It is clear that fn is well-defined and bi-K1(N)-invariant. For any finite prime
p, define a local function fnp on G(Qp), supported on Z(Qp)M1(n, N)p, by

fnp (zm) =
ωp(z)

meas(K1(N)p)
. (4.12)

Then fn(g) =
∏
p f

n

p (gp).
We now recall the definition of the unramified principal series of G(Qp).

Suppose p ∤ N , so ωp is an unramified unitary character of Q∗
p. For ν ∈ C, let

χ(
(
a b
0 d

)
) = χ1(a)χ2(d)

∣∣∣a
d

∣∣∣
ν

p
(4.13)

be an unramified quasicharacter of the Borel subgroup B(Qp). Here we take χ1

and χ2 to be finite order unramified characters of Q∗
p with

χ1(z)χ2(z) = ωp(z).

Let Vχ be the space of functions φ : G(Qp) −→ C with the following properties:

(i) For all
(
a b
0 d

)
∈ B(Qp) and all g ∈ G(Qp),

φ(

(
a b
0 d

)
g) = χ1(a)χ2(d)

∣∣∣a
d

∣∣∣
ν+1/2

p
φ(g).
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(ii) There exists an open compact subgroup J ⊆ G(Qp) such that φ(gk) =
φ(g) for all k ∈ J and all g ∈ G(Qp).

We let πχ denote the representation of G(Qp) on Vχ by right translation. It is
unitary when χ is unitary, i.e. when ν ∈ iR. The space Vχ has a one-dimensional
subspace of Kp-fixed vectors, spanned by the function

φ0(
(
a b
0 d

)
k) = χ1(a)χ2(d)

∣∣∣a
d

∣∣∣
ν+1/2

p
(k ∈ Kp). (4.14)

Proposition 4.3. The representation (πχ, Vχ) defined above is irreducible. Ev-
ery irreducible admissible unramified representation of G(Qp) with central char-
acter ωp is either one-dimensional or of the form πχ for some χ as above. If
πχ is unitary then either:
· ν ∈ iR (unitary principal series), or
· 0 < |Re ν| < 1

2 (complementary series).

Proof. Refer, e.g., to Theorems 4.5.1, 4.6.4, and 4.6.7 of [Bu].

The local component fnp of fn acts on the unramified vector φ0 in the fol-
lowing way.

Proposition 4.4. Assume p ∤ N , and let np = ordp(n) ≥ 0. With fnp as above,
the function φ0 of (4.14) is an eigenvector of the local Hecke operator πχ(f

n

p )
with eigenvalue

pnp/2λpnp (χ1, χ2, ν),

where

λpnp (χ1, χ2, ν) =

np∑

j=0

(pnp
p2j

)ν
χ1(p)

jχ2(p)
np−j . (4.15)

Proof. The fact that φ0 is an eigenvector is due to Proposition 3.10, together
with the fact that the space of Kp-fixed vectors is one-dimensional. Thus the
eigenvalue is equal to πχ(f

n

p )φ0(1), which can be computed using the decompo-
sition

M1(n, N)p =

np⋃

j=0

⋃

a∈Z/pjZ

(
pj a

pnp−j

)
Kp (4.16)

([KL2], Lemma 13.4) as follows:

∫

G(Qp)

fnp (g)φ0(g)dg =

np∑

j=0

pj
∣∣∣∣
pj

pnp−j

∣∣∣∣
ν+ 1

2

p

χ1(p
j)χ2(p

np−j) = pnp/2λpnp (χ1, χ2, ν).
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4.3 Adelic Maass forms

Let ω be the Hecke character attached to ω′ as in (2.8). Using (2.9) and (4.1),
we have

ω∞(−1) = ω∞(−1)ω′(−1) = ω∞(−1)
∏

p|N
ωp(−1) = ω(−1) = 1.

Since ω∞ is trivial on R+, this implies that for all x ∈ R∗,

ω∞(x) = 1. (4.17)

Let L2(ω) = L2(G(Q)\G(A), ω) be the space of measurable C-valued func-
tions ψ on G(A) (modulo functions that are 0 a.e.) satisfying ψ(zγg) =
ω(z)ψ(g) for all γ ∈ G(Q) and z ∈ Z(A) ∼= A∗, and which are square inte-
grable over G(Q)\G(A). A function ψ ∈ L2(ω) is cuspidal if its constant term
ψN vanishes for a.e. g ∈ G(A):

ψN (g) =

∫

N(Q)\N(A)

ψ(ng)dn = 0.

Let L2
0(ω) ⊆ L2(ω) denote the subspace of cuspidal functions. We let R de-

note the right regular representation of G(A) on L2(ω), and let R0 denote its
restriction to L2

0(ω), which is easily seen to be an invariant subspace.
Let L1(ω) denote the space of measurable functions f : G(A) −→ C satisfy-

ing f(zg) = ω(z)f(g) for all z ∈ Z(A) and g ∈ G(A), and which are absolutely
integrable over G(A). Such a function defines an operator R(f) on L2(ω) via

R(f)φ(x) =

∫

G(A)

f(y)φ(xy)dy,

the integral converging absolutely. Recall in fact that ‖R(f)φ‖L2 ≤ ‖f‖L1‖φ‖L2

(see e.g. [KL2], p. 140). The restriction of R(f) to L2
0(ω) is denoted R0(f). For

f, h ∈ L1(ω), the convolution

f ∗ h(x) =
∫

G(A)

f(y)h(y−1x)dy

also belongs to L1(ω), and by a straightforward computation we have

R(f ∗ h) = R(f)R(h).

To each u ∈ L2(N,ω′) we associate a function ϕu on G(A) using strong
approximation (2.3) by setting

ϕu(γ(g∞ × k)) = u(g∞(i)) (4.18)

for γ ∈ G(Q), g∞ ∈ G(R)+, and k ∈ K1(N). Using the modularity of u, it is
easy to check that ϕu is well-defined.
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Proposition 4.5. The map u 7→ ϕu defines surjective linear isometries

L2(N,ω′) −→ L2(ω)K∞×K1(N)

and
L2
0(N,ω

′) −→ L2
0(ω)

K∞×K1(N),

where the spaces on the right denote those functions satisfying ϕ(gk) = ϕ(g) for
all k ∈ K∞ ×K1(N).

Proof. First we check that ϕu(zg) = ω(z)ϕu(g) for all z ∈ Z(A). By strong
approximation, we can assume that g = g∞ × k ∈ G(R)+ × K1(N). Write

z = zQ(z∞ × zfin) for z∞ ∈ R+ and zfin ∈ Ẑ∗. We have zfin ≡ a mod N Ẑ for
some integer a relatively prime to N . Then ω(z) = ω′(a) as in (2.8). Choose
b, c, d such that γ =

(
a b
c d

)
∈ Γ0(N). Then γzfin ∈ K1(N), and

ϕu(zg) = ϕu(γzg) = ϕu(γg∞ × γzfink) = u(γg∞(i))

= ω′(d)u(g∞(i)) = ω′(a)ϕu(g) = ω(z)ϕu(g)

as needed.
For the square integrability, let DN be a fundamental domain in H for

Γ0(N)\H. We identify DN with a subset of G(R)+ via x + iy ↔
( y x
0 1

)
. Then

by Proposition 7.43 of [KL2],
∫

G(Q)\G(A)

|ϕu(g)|2dg =

∫

DNK∞×K0(N)

|ϕu(g)|2dg

= meas(K0(N))

∫∫

DN

|u(x+ iy)|2 dx dy
y2

= ‖u‖2.

This proves that the map u 7→ ϕu is an isometry of L2(N,ω′) into L2(ω)K∞×K1(N),
since it is clear from the definition (4.18) that ϕu is invariant underK∞×K1(N).
For the surjectivity, we note that the inverse map is given by

u(z) := ϕ(g∞),

where g∞ ∈ G(R)+ is any element satisfying g∞(i) = z. The function u is
well-defined since ϕ is K∞-invariant. The fact that u(z) satisfies (4.2) can be
seen as follows. For γ =

(
a b
c d

)
∈ Γ0(N), we can write γ−1 =

(
aN

aN

)
k for

k ∈ K1(N) (and aN as in (2.2)). Thus

u(γz) = ϕ(γ∞g∞) = ϕ(g∞ × γ−1
fin ) = ϕ(g∞ ×

(
aN

aN

)
k)

= ω(aN )ϕ(g∞) = ω′(a)u(z) = ω′(d)u(z).

Lastly, for any g ∈ G(R)+ ×K1(N), there exists δ ∈ G(Q)+ determined by
gfin such that

(ϕu)
N
(g) = a0,δ(u, y)

for y = Im g∞(i). This is proven just as in the holomorphic case, making the
obvious adjustments. See [KL2], pp. 200-201. Therefore u is cuspidal if and
only if ϕu is cuspidal.
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Next, we describe some properties of the correspondence u 7→ ϕu.

Lemma 4.6. The correspondence is equivariant for both ∆ and the Hecke op-
erators, in the following sense: For all u ∈ L2(N,ω′),

R(fn)ϕu =

∫

G(Afin)

fn(g)R(g)ϕu dg =
√
nϕTnu (4.19)

for fn defined in (4.11), and if u is smooth,

R(∆)ϕu = ϕ∆u. (4.20)

Proof. In both cases it suffices by strong approximation (2.3) to show that the
two functions agree on elements of the form

( y x
0 1

)
∈ G(R+) when u is smooth.

In (4.20), the symbol ∆ is used in two different ways. On the right, ∆ is the
Laplace operator (4.5), and on the left it is the Casimir element whose effect on
C∞(G(R)) is given by (3.19). But because φu is K∞-invariant, ∂

∂θφu = 0, so
we can drop the second term of (3.19) to conclude

R(∆)ϕu(
( y x
0 1

)
) = −y2

(
∂2

∂x2
+

∂2

∂y2

)
ϕu(
( y x
0 1

)
)

= ∆u(x+ iy) = ϕ∆u(
( y x
0 1

)
), (4.21)

as needed.
The proof of (4.19) is the same as that of the version for holomorphic cusp

forms given in [KL2], Proposition 13.6.

By a theorem of Gelfand and Piatetski-Shapiro, the right regular represen-
tation R0 of G(A) on L2

0(ω) decomposes into a direct sum of irreducible unitary
representations π. Each such cuspidal representation π is a restricted tensor
product of local representations: π = π∞ ⊗ πfin = π∞ ⊗

⊗
p πp (cf. [Bu], §3.4).

Proposition 4.7. We have the following decomposition:

L2
0(ω)

K∞×K1(N) =
⊕

π

Cv∞ ⊗ πK1(N)
fin , (4.22)

where π runs through the irreducible cuspidal representations with infinity type
of the form π∞ = π(ε, ε, s,−s), where either s ∈ iR or − 1

2 < s < 1
2 , and v∞

is a nonzero vector of weight 0 (unique up to multiples). Equivalently, π runs
through the constituents of L2

0(ω) which contain a nonzero K∞ ×K1(N)-fixed
vector.

Remarks: (1) Selberg’s conjecture asserts that the complementary series of
Proposition 3.8 do not actually show up here, i.e. that s ∈ iR. Likewise,
according to the Ramanujan conjecture, the unramified local factors of πfin are
unitary principal series rather than complementary series (cf. Proposition 4.3).

(2) Caution about notation: In §11 of [KL2], when discussing π(ε1, ε2, s1, s2) we
used the notation s = s1− s2. In the present document, we take s = 2(s1− s2).
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Proof. For any irreducible cuspidal representation π, the orthogonal projection
map L2

0(ω) → π commutes with the right regular action R(g). As an easy
consequence, we have

L2
0(ω)

K∞×K1(N) =
⊕

π

πK∞×K1(N).

The Casimir element ∆ acts on the smooth vectors of an irreducible finite dimen-
sional representation of G(R) by a scalar which is ≤ 0 (cf. Theorem 11.15 and
Proposition 11.22 of [KL2]). We conclude from the fact that R0(∆) is positive
definite that π∞ is infinite dimensional. The proposition now follows immedi-
ately from Proposition 3.8. Note that ω∞ is the trivial character, so s1+ s2 = 0
in the notation of that proposition, and here we have set s1 = −s2 = s.

An adelic Hecke operator of weight 0 is a function on G(A) of the form

f = f∞ × fn ∈ L1(G(A), ω) (4.23)

with f∞ ∈ Cc(G+//K∞) and fn as in (4.11). We now show that for such f ,
the operator R0(f) on L2

0(ω) is diagonalizable. By Lemma 3.10, it suffices to
consider its restriction to L2

0(ω)
K∞×K1(N):

Proposition 4.8. For each cuspidal π = π(ε, ε, s,−s) ⊗ πfin contributing to
(4.22), choose an orthogonal basis Fπ for the finite dimensional subspace Cv∞⊗
π
K1(N)
fin . Let FA =

⋃
π Fπ be the resulting orthogonal basis for L2

0(ω)
K∞×K1(N).

Then each ϕ ∈ FA is an eigenfunction of R0(f) with eigenvalue of the form

h(t)
√
nλn(ϕ), (4.24)

where t = −is is the spectral parameter of π∞, h is the Selberg transform of f∞,
and λn(ϕ) =

∏
p|n λpnp is determined from πp for p|n by (4.15). Furthermore,

if u ∈ L2
0(N,ω

′) is the function on H corresponding to ϕ, then u is a Maass
eigenform with ∆-eigenvalue 1

4 + t2, and Hecke eigenvalue λn(u) = λn(ϕ).

Proof. Let π be one of the given cuspidal representations. When p|n, πK1(N)p
p =

π
Kp
p is nonzero, so πp is an unramified unitary principal series representation.

Write π
Kp
p = Cvp. By Proposition 4.4, we have

πp(f
n

p )vp = pnp/2λpnp vp.

At the archimedean place, Proposition 3.9 gives

π∞(f∞)v∞ = h(t)v∞.

Consider any v ∈ Cv∞ ⊗ πK1(N)
fin . For any object defined as a product of

local objects, let us for the moment use a prime ′ to denote the product over
just the finite primes p ∤ n. Then

v = v∞ ⊗ v′ ⊗
⊗

p|n
vp
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for vp as above and

v′ ∈ (π′)K1(N)′ =
⊗

p∤n

πK1(N)p
p .

By the definition (4.11) of fn, we see that

π′(fn′)v′ = meas(K1(N)′)
−1
∫

K1(N)′
π′(k)v′dk = v′.

Letting ϕ ∈ L2
0(ω) denote the function corresponding to v, it follows (e.g. by

Proposition 13.17 of [KL2]) that

R(f)ϕ = π∞(f∞)v∞ ⊗ π′(fn′)v′ ⊗
⊗

p|n
πp(f

n

p )vp =
√
nλn(ϕ)h(t)ϕ.

Now let u be the element of L2
0(N,ω

′) attached to v. We need to show that
∆u = ( 14 + t2)u. For any X ∈ gR, we have

π(X)v
def
=

d

dt

∣∣∣∣
t=0

π(exp(tX)× 1fin)v =
d

dt

∣∣∣∣
t=0

π∞(exp(tX))v∞ ⊗ vfin.

Therefore
π(∆)v = π∞(∆)v∞ ⊗ vfin = ( 14 + t2)v

by (3.20). Equivalently, R(∆)ϕ = ( 14 + t2)ϕ, so by (4.20), ∆u = ( 14 + t2)u.
Lastly, by Lemma 4.6 we also have λn(u) = λn(ϕ).

With FA as in the above proposition, we let

F ⊆ L2
0(N,ω

′) (4.25)

be the corresponding orthogonal basis. It consists of Maass eigenforms as shown
above. Using Proposition 4.8, we can arrange further for each u ∈ F to be an
eigenvector of T−1.
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5 Eisenstein series

The continuous part of L2(ω) is explicitly describable in terms of Eisenstein
series (see Sec. 6.1). Because we are interested in automorphic forms of weight
k = 0 and level N , we will concentrate on K∞ × K1(N)-invariant Eisenstein
series.

5.1 Induced representations of G(A)

We begin by constructing certain principal series representations ofG(A). These
are representations induced from characters of the Borel subgroup B(A) =
M(A)N(A). Any character of B(A) is trivial on the commutator subgroup
N(A), and hence is really defined on the diagonal group M(A) ∼= A∗ × A∗.
We are only interested in G(Q)-invariant functions, so we want a character of
B(Q)\B(A), which by the above is nothing more than a pair of Hecke charac-
ters, say χ1⊗ | · |s1 and χ2⊗ | · |s2 , where χ1, χ2 have finite order. Furthermore,
we need the product of these two characters to equal our fixed central character
ω, which has finite order. This means in particular that s2 = −s1.

Thus for finite order Hecke characters χ1 and χ2 with χ1χ2 = ω, and s ∈ C,
we consider the character of B(A) defined by

(
a b
0 d

)
7→ χ1(a)χ2(d)

∣∣∣a
d

∣∣∣
s

.

We let (πs, H(χ1, χ2, s)) denote the representation of G(A) unitarily induced
from this character. This Hilbert space has a dense subspace spanned by the
continuous functions φ : G(A) −→ C satisfying

φ(

(
a b
0 d

)
g) = χ1(a)χ2(d)

∣∣∣a
d

∣∣∣
s+1/2

φ(g). (5.1)

The inner product is defined by

〈φ, ψ〉 =
∫

K

φ(k)ψ(k)dk.

This is nondegenerate since, by the decompositionG = BK, any φ ∈ H(χ1, χ2, s)
is determined by its restriction to K. The right regular representation πs =
πs(χ1, χ2) of G(A) on H(χ1, χ2, s) is unitary if s ∈ iR (for the idea, see e.g.
[KL2] Proposition 11.8). As explained in §4B-4C of [GJ], we have

H(χ1, χ2, s) ∼= H(χ2, χ1,−s) (5.2)

as representations of G(A).
Restriction toK identifiesH(χ1, χ2, s) with the subspace of L2(K) consisting

of functions satisfying

f(
(
a b
0 d

)
k) = χ1(a)χ2(d)f(k) (

(
a b
0 d

)
∈ B(A) ∩K).
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In this way, the spaces H(χ1, χ2, s) form a trivial vector bundle over the above
subspace of L2(K). Given φ ∈ H(χ1, χ2, 0) and s ∈ C, we define φs ∈
H(χ1, χ2, s) by

φs(

(
a b
0 d

)
k) = χ1(a)χ2(d)

∣∣∣a
d

∣∣∣
s+1/2

φ(k).

Equivalently, if H : G(A)→ R+ is the height function defined by

H(g) = H(

(
a

d

)(
1 x

1

)
k) = log

∣∣∣a
d

∣∣∣ , (5.3)

then
φs(g) = esH(g)φ(g).

The map from H(χ1, χ2, 0) to H(χ1, χ2, s) taking φ 7→ φs is an isomorphism of
Hilbert spaces. We set

H(χ1, χ2)
def
= H(χ1, χ2, 0).

Lemma 5.1. Suppose φ ∈ H(χ1, χ2, s) is a right K∞ ×K1(N)-invariant func-
tion, i.e. φ ∈ H(χ1, χ2, s)

K∞×K1(N). Define φ∞ : G(R)+ −→ C by

φ∞(g∞) = Im(z)s+1/2 (z = g∞(i) ∈ H), (5.4)

and for p ∤ N , define φp : G(Qp) −→ C by

φp(

(
a b
0 d

)
k) = χ1p(a)χ2p(d)

∣∣∣a
d

∣∣∣
s+1/2

p
.

Also set φ′ =
∏
p∤N φp, and define φN :

∏
p|N G(Qp) −→ C by

φN (gN ) = φ(1∞ × gN × 1′).

(When N = 1, the above is just the constant φ(1).) Then φ is factorizable as

φ(g∞ × gN × g′) = φ∞(g∞)φN (gN )φ′(g′).

Proof. Write

g∞ =

(
u 0
0 u

)(
1 x
0 1

)(
y1/2

y−1/2

)
k∞.

Then since φ is K∞-invariant,

φ(g∞ × gfin) = ω∞(u)χ1∞(y1/2)χ2∞(y−1/2)ys+
1
2φ(1∞ × gfin)

= ys+
1
2φ(1∞ × gfin) = φ∞(g∞)φ(1∞ × gfin)

since ω∞ is trivial by (4.17), and χ1∞, χ2∞ are trivial on R+. Now according
to the Iwasawa decomposition, write g′ = b′k′ for k′ ∈ K ′ =

∏
p∤N Kp and

b ∈ ∏p∤N B(Qp). Then by the same argument, using the fact that φ is right

invariant under K ′, we have

φ(1∞ × gN × g′) = φ′(g′)φ(1∞ × gN × 1′) = φ′(g′)φN (gN ).

The lemma follows.
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Proposition 5.2. If f = f∞× fn with f∞ ∈ Cc(G+//K∞), the operator πs(f)
acts by the scalar

h(t)
√
nλn(χ1, χ2, it)

on H(χ1, χ2, s)
K∞×K1(N), and vanishes on the orthogonal complement of this

finite dimensional subspace. Here, t = −is, h is the Selberg transform of f∞,
and

λn(χ1, χ2, s) =
∏

p|n
λpnp (χ1p, χ2p, s) = n

s
∑

d|n

χ1(dN )χ2((
n

d )N )

d2s
, (5.5)

for λpnp (χ1p, χ2p, s) as in Proposition 4.4.

Proof. The dimension of H(χ1, χ2, s)
K∞×K1(N) is computed in Section 5.4 be-

low. By Lemma 3.10, πs(f) vanishes on its orthogonal complement. The second
equality in (5.5) comes from the fact that for any finite order Hecke character
χ of conductor dividing N , and any positive integer d|n,

1 = χ(d) =
∏

p|n
χp(d)

∏

p|N
χp(d),

so ∏

p|n
χp(p

dp) =
∏

p|n
χp(d) =

∏

p|N
χp(d) = χ(dN ).

For φ ∈ H(χ1, χ2, s)
K∞×K1(N), write

φ = φ∞ ⊗ φN ⊗
⊗

p∤N

φp

as in the above lemma. Note that φ∞ is a weight 0 vector in an induced
representation π∞ = π(ε1, ε2, s,−s) with spectral parameter t = −is. Likewise
if p ∤ N , then φp is the Kp-fixed vector in the unramified representation πp
of G(Qp) induced from the character (χ1p, χ2p) of B(Qp) (as in (4.13), taking
ν = s). Setting fN =

∏
p|N fp, we have

πs(f)φ = π∞(f∞)φ∞ ⊗R(fN )φN ⊗
⊗

p∤N

πp(f
n

p )φp.

Here
π∞(f∞)φ∞ = h(t)φ∞

by Proposition 3.9, and if p ∤ N ,

πp(f
n

p )φp = pnp/2λpnp (χ1p, χ2p, s)φp

by Proposition 4.4, while by (4.12)

R(fN )φN (x) =
1

meas(K1(N))

∫
∏

p|N K1(N)p

φN (xk)dk = φN (x).

Therefore πs(f)φ = h(t)
√
nλn(χ1, χ2, s)φ as claimed.
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5.2 Definition of Eisenstein series

The elements of H(χ1, χ2, s) are B(Q)-invariant by construction. We use them
to define G(Q)-invariant functions (automorphic forms) on G(A) by averaging:

E(φ, s, g) = E(φs, g) =
∑

γ∈B(Q)\G(Q)

φs(γg) (φ ∈ H(χ1, χ2)).

This sum converges absolutely when Re(s) > 1/2 (see Proposition 5.6 below).
For now we will assume that s belongs to this domain. However, the Eisenstein
series E has a meromorphic continuation to the complex plane. We will prove
this well-known result below in the case where φ is K∞ ×K1(N)-invariant by
writing down the Fourier expansion of E, which is seen to be meromorphic on
C (cf. Theorem 5.16).

For a fixed level N , we will only be interested in the case where φ is a
nonzero (right) K∞ × K1(N)-invariant vector. Such φ exists if and only if
the product cχ1

cχ2
of the conductors divides N (see Corollary 5.11 below).

In this case, E(φ, s, g) is left G(Q)-invariant and right K1(N)-invariant. By
strong approximation we have G(A) = G(Q)(G(R)+ × K1(N)). Therefore it
suffices to investigate E(φ, s, g∞ × 1fin), where g∞ ∈ G(R)+ = Z(R)B(R)K∞.
Furthermore, because

1. E(φ, s, g∞) is right K∞-invariant

2. the central character ω = χ1χ2 is trivial on Z(R) (see (4.17)),

the value of E(φ, s, g∞) depends only on z = g∞(i) ∈ H. So for z = x+ iy ∈ H,
we define

Eφ(s, z) = E(φ, s, g∞ × 1fin),

for any g∞ ∈ Z(R)
(
1 x
0 1

)( y1/2
y−1/2

)
K∞. Thus

Eφ(s, z) =
∑

γ∈B(Q)\G(Q)

φs(γg∞) =
∑

γ∈B(Q)\G(Q)

esH(γ∞g∞×γfin)φ(γ∞g∞ × γfin),

where H is the height function defined in (5.3).

Lemma 5.3. A set of representatives for B(Q)\G(Q) is given by ±N(Z)\SL2(Z).
The latter set is in one-to-one correspondence with ordered pairs (c, d) of rela-
tively prime integers with c > 0, together with (0, 1), via ±N(Z)

(
a b
c d

)
↔ (c, d).

Proof. The first assertion follows from the decomposition

G(Q) = B(Q) SL2(Z) (5.6)

since B\BΓ ∼= (B∩Γ)\Γ. The decomposition (5.6) can easily be proven directly
as follows. Let g =

(
a b
c d

)
∈ G(Q). Write (c d) = t(c′ d′), where t ∈ Q,

c′, d′ ∈ Z and gcd(c′, d′) = 1. There exist integers x and y such that c′x−d′y = 1.

Then
(
d′ x
−c′ −y

)
∈ SL2(Z) and

(
a b
c d

)(
d′ x
−c′ −y

)
∈ B(Q).
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For the representatives, view Z×Z as a set of row vectors, and consider the
right action of SL2(Z) on this set. The stabilizer of (0 1) is N(Z). Therefore
N(Z)\SL2(Z) is in one-to-one correspondence with the orbit of (0 1). It is easy
to see that this orbit is the set of ordered pairs of relatively prime integers:

(0 1)

(
a b
c d

)
= (c d).

Considering instead the set ±\(Z × Z), the stabilizer of ±(0 1) is ±N(Z) and
we can take c ≥ 0, obtaining the given set of pairs (c, d).

By the above and Lemma 5.1, we have

Eφ(s, z) =
∑

γ∈±N(Z)\ SL2(Z)

esH(γ∞g∞×1fin)φ∞(γg∞)φfin(γ).

This holds since γfin ∈ SL2(Z) ⊆ Kfin and the height function is Kfin-invariant.
Now using

eH(γ∞g∞×1fin) = | Im(γz)| = y

|cz + d|2 (γ =
(
a b
c d

)
),

together with (5.4) (with s = 0), we have

Eφ(s, z) = y1/2+sφfin(0, 1) +
∑

c>0

∑

d∈Z

gcd(c,d)=1

y1/2+s

|cz + d|1+2s
φfin(c, d). (5.7)

Here we have written φfin(c, d) to denote φfin(γ). This notation is apt because
φfin is left B(Q)-invariant, so that for γ =

(
a b
c d

)
∈ SL2(Z), φfin(γ) depends only

on (c, d) by Lemma 5.3.

5.3 The finite part of φ

We eventually need to compute the Fourier coefficients of Eφ(s, z) for φ in an
orthonormal basis for H(χ1, χ2)

K∞×K1(N). Since we can take φ∞ to be the
function determined in Lemma 5.1, in order to find such a basis we just need to
write down the possibilities for φfin.

Lemma 5.4. Kfin = SL2(Z)K1(N).

Proof. Let S = SL2(Ẑ) ∩ K1(N) denote the set of determinant 1 elements of

K1(N). Note that S is an open subgroup of SL2(Ẑ). Hence

SL2(Ẑ) = SL2(Z) · S

since SL2(Z) is dense in SL2(Ẑ) (see e.g. Proposition 6.6 of [KL2]). From this
we obtain the following decomposition:

Kfin = SL2(Ẑ)

(
Ẑ∗

1

)
= SL2(Z)

[
S

(
Ẑ∗

1

)]
.

The lemma follows since the expression in the brackets is exactly K1(N).
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Lemma 5.5. For a nonzero vector φ ∈ H(χ1, χ2)
K∞×K1(N), with φ∞ given as

in Lemma 5.1, the finite part φfin is determined by its restriction to SL2(Z).
For γ =

(
a b
c d

)
∈ SL2(Z), φfin(γ) depends only on (c, d) mod N .

Proof. By strong approximation for B(A) ([KL2], Prop. 6.5),

G(A) = B(A)K = B(Q)(B(R)+K∞ ×Kfin).

Hence by B(Q)-invariance, φ is determined by its restriction to G(R)+ ×Kfin.
We assume that φ∞ is the function given in Lemma 5.1. By K1(N)-invariance
and Lemma 5.4, φfin is determined by its values on SL2(Z). Lastly, because
K(N) ⊆ K1(N), φfin determines a function on Kfin/K(N) ∼= G(Z/NZ). There-
fore φfin(γ) depends only on the entries modulo N .

Proposition 5.6. For any φ ∈ H(χ1, χ2)
K∞×K1(N) and all z ∈ H, the Eisen-

stein series Eφ(s, z) is absolutely convergent on Re(s) > 1/2. For any δ > 0
and compact set C ⊆ H, the convergence is uniform on the set Re(s) ≥ 1

2 + δ
and z ∈ C.

Remark: A similar proof applies to the case of arbitrary φ ∈ H(χ1, χ2) (cf. [Bu],
Proposition 3.7.2).

Proof. It follows from Lemma 5.5 that φfin is a bounded function. So up to a
constant multiple, Eφ(s, z) is majorized by the classical series

E(Re(s), z) =
∑

(c,d) 6=(0,0)

yRe(s)+1/2

|cz + d|2Re(s)+1
,

which is easily seen to converge when Re(s) > 1/2.

As indicated in the proof of Lemma 5.5, φfin can be viewed as a function on
G(Z/NZ). Let D(χ1, χ2, N) denote the space of all functions φ on G(Z/NZ)
satisfying

φ(

(
a b

d

)
k

(
a′ b′

1

)
) = χ1(a)χ2(d)φ(k)

for all k ∈ G(Z/NZ) and a, d, a′ ∈ (Z/NZ)∗ and b, b′ ∈ Z/NZ, or equivalently,

φ(

(
a b

d

)
k

(
a′ b′

d′

)
) = χ1(a)χ2(d)ω(d

′)φ(k).

Here d′ ∈ (Z/NZ)∗, and we view χ1 and χ2 as characters of (Z/NZ)∗ as in
(2.8), i.e. χj(a) = χj(aN ). We make D(χ1, χ2, N) into a finite dimensional
Hilbert space by defining

〈φ1, φ2〉 = |G(Z/NZ)|−1
∑

k∈G(Z/NZ)

φ1(k)φ2(k). (5.8)
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Notice that if φ, ψ ∈ H(χ1, χ2)
K∞×K1(N), then with notation as in Lemma

5.1, it is easy to see that

〈φ, ψ〉 =
∫

K∞

φ∞(k)ψ∞(k)dk

∫

KN

φN (k)ψN (k)dk

∫

K′
φ′(k)ψ′(k)dk

=

∫

KN

φN (k)ψN (k)dk, (5.9)

where KN =
∏
p|N Kp. Letting KN (N) = {k ∈ KN | k ≡ 1 mod N}, the

K1(N)-invariance then gives

〈φ, ψ〉 = [KN : KN (N)]−1
∑

k∈KN/KN (N)

φN (k)ψN (k) (5.10)

= |G(Z/NZ)|−1
∑

k∈G(Z/NZ)

φN (k)ψN (k).

(When N = 1, this is just φ(1)ψ(1).) In view of (5.8), this proves the following.

Lemma 5.7. The identification of φfin with a function on G(Z/NZ) induces
an isometry of H(χ1, χ2)

K∞×K1(N) with D(χ1, χ2, N).

The space D(χ1, χ2, N) can be analyzed locally since

G(Z/NZ) ∼=
∏

p|N
G(Zp/NZp).

We let Dp(χ1, χ2, N) denote the space of functions on G(Zp/NZp) satisfying
2

φ(

(
a b

d

)
k

(
a′ b′

d′

)
) = χ1(a)χ2(d)χ1(d

′)χ2(d
′)φ(k) (5.11)

for k ∈ G(Zp/NZp), a, d, a
′, d′ ∈ (Zp/NZp)

∗, and b, b′ ∈ Zp/NZp. This is a
Hilbert space with inner product given by the local analog of (5.8):

〈φ1, φ2〉 = [Kp : Kp(p
Np)]−1

∑

k∈G(Zp/NZp)

φ1(k)φ2(k), (5.12)

and we have isometries

H(χ1, χ2)
K∞×K1(N) ∼= D(χ1, χ2, N) ∼=

⊗

p|N
Dp(χ1, χ2, N). (5.13)

When N = 1, the empty tensor product on the right is to be interpreted as C.

2Here and henceforth, for a ∈ Q∗
p we evaluate χ1(a) by embedding a as an idele which is

1 outside p. This is equivalent to χ1p(a) but we sometimes wish to avoid the extra subscript
when the context is completely local.
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5.4 An orthogonal basis for H(χ1, χ2)
K∞×K1(N)

Most of the material in this section is drawn from pages 305-306 of Casselman’s
article [Cas].

In order to construct an orthogonal basis for H(χ1, χ2)
K∞×K1(N), we see

from (5.13) that it suffices to do so for Dp(χ1, χ2, N). Define

B(Zp/NZp) = {
(
a b
0 d

)
| a, d ∈ (Zp/NZp)

∗, b ∈ Zp/NZp}.

Proposition 5.8. For a prime p|N , we have the following disjoint union:

G(Zp/NZp) =

Np⋃

i=0

B(Zp/NZp)

(
1 0
pi 1

)
B(Zp/NZp).

Proof. Let g =
(
a b
c d

)
∈ G(Zp/NZp). Setting i = min(ordp(c), Np), it is ele-

mentary to show that g belongs only to the double coset of
( 1 0
pi 1

)
. For future

reference, we give the decomposition explicitly. There are three cases. If c = 0,
then pNp ≡ 0 mod NZp and

(
a b
0 d

)
∈ B(Zp/NZp) = B(Zp/NZp)

(
1 0
pNp 1

)
B(Zp/NZp). (5.14)

Second, suppose that 0 < i < Np. Then a is a unit mod p and

(
a b
c d

)
=

(
pia
c

1

)(
1 0
pi 1

)( c
pi

bc
api
ad−bc
a

)
(i = ordp(c)). (5.15)

If i = 0, then c is a unit, and we have

(
a b
c d

)
=

(
1 a

c − 1
1

)(
1 0
1 1

)(
c d− ad−bc

c
ad−bc
c

)
. (5.16)

By equation (5.11) and the above proposition, we see that a function φ ∈
Dp(χ1, χ2, N) is determined by its values on the matrices

( 1 0
pi 1

)
, for i = 0, . . . , Np.

Therefore if Dp(χ1, χ2, N) is nonzero, it is spanned by functions φ
χ1p,χ2p

p,i,Np
satis-

fying

φ
χ1p,χ2p

p,i,Np
(

(
1 0
pj 1

)
) = δij . (5.17)

Often we denote the above by φi when the other parameters are clear from the
context. Because the decomposition of g into the form

(
a b
0 d

)( 1 0
pi 1

)(
a′ b′

0 d′
)
is not

unique, for some values of i it may not be possible to start with (5.17) and
extend to G(Zp/NZp) via (5.11). We give here the conditions on i under which
such a function exists:
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Proposition 5.9. The function φi = φ
χ1p,χ2p

p,i,Np
is well-defined on G(Zp/NZp) if

and only if
ordp(cχ2

) ≤ i ≤ Np − ordp(cχ1
), (5.18)

where Np = ordp(N).

Proof. First, we suppose that (5.18) holds, and we check that φi is well-defined.
It suffices to show that if

(
a b
0 d

)(
1 0
pi 1

)
=

(
1 0
pi 1

)(
r s
0 t

)
, (5.19)

then the two values produced by φi using (5.11) coincide:

χ1(a)χ2(d) = χ1(t)χ2(t). (5.20)

The equality (5.19) gives

(
r s
0 t

)
=

(
a+ bpi b

dpi − api − bp2i d− bpi
)
.

From the lower left corner, we see that (d− bpi)pi ≡ api mod pNp , so

d− bpi ≡ a mod pNp−i. (5.21)

Because ordp(cχ1
) ≤ Np − i, this implies

χ1(a) = χ1(d− bpi) = χ1(t).

Similarly, because ordp(cχ2
) ≤ i, we have

χ2(d) = χ2(d− bpi) = χ2(t).

This proves (5.20), so φi is well-defined.
Conversely, assume φi is well-defined. Thus we suppose that whenever (5.21)

holds, we have the equality

χ1(a)χ2(d) = χ1(d− bpi)χ2(d− bpi).

Using this we must deduce (5.18). Set a = 1, b = 0, and d = 1+upNp−i for any
u ∈ Zp. Then (5.21) holds, so by our hypothesis we get

χ2(1 + upNp−i) = χ1(1 + upNp−i)χ2(1 + upNp−i).

This implies χ1(1 + upNp−i) = 1, so ordp(cχ1
) ≤ Np − i as needed. Now set

a = 1 and d = 1 + bpi for any b ∈ Zp. Then (5.21) holds, so we have

χ2(1 + bpi) = χ1(1)χ2(1) = 1.

Thus ordp(cχ2
) ≤ i as needed.
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Corollary 5.10. Given that (χ1χ2)p = ωp, the space Dp(χ1, χ2, N) is nonzero
if and only if

ordp(cχ1
) + ordp(cχ2

) ≤ Np,
i.e. if and only if NZp ⊆ cχ1

cχ2
Zp. If nonzero, its dimension is equal to

1 + ordp(
N

cχ1
cχ2

), with an orthogonal basis given by

Bp = Bp(χ1, χ2) = {φi| ordp(cχ2
) ≤ i ≤ Np − ordp(cχ1

)}.

Proof. The only point remaining is the orthogonality of {φi}, which follows
immediately from the definition of the inner product (5.12) since these functions
have disjoint support.

Tensoring the local spaces together, we have:

Corollary 5.11. Given that χ1χ2 = ω, the space H(χ1, χ2)
K∞×K1(N) is nonzero

if and only if cχ1
cχ2
|N . If nonzero, its dimension is τ( N

cχ1
cχ2

) for the divisor

function τ , with an orthogonal basis given by

B = B(χ1, χ2) = {φ(ip) =
∏

p|N
φip |φip ∈ Bp}.

Here we implicitly use the natural identification (5.13). The norm of φ(ip) ∈ B
is given by

‖φ(ip)‖2 =
∏

p|N
ip=0

p

(p+ 1)

∏

p|N
0<ip<Np

p− 1

pip(p+ 1)

∏

p|N
ip=Np

1

pNp−1(p+ 1)
. (5.22)

Proof. The claim about the dimension follows from the fact that by (5.18) the
number of tuples (ip) is

∏

p|N
(Np − ordp(cχ1

)− ordp(cχ2
) + 1) = τ(

N

cχ1
cχ2

).

For the norm, by (5.9) we have

‖φ(ip)‖2 =
∏

p|N

∫

Kp

|φip(k)|2dk =
∏

p|N
meas

{(
a b
c d

)
∈ Kp| min(ordp(c), Np) = ip

}
.

When ip = Np, the corresponding set is just K0(N)p, which has measure

1

ψp(N)
=

1

pNp−1(p+ 1)

(cf. [KL2], pp. 206-207). When 0 ≤ ip < Np, the corresponding set is equal to
K0(p

ip)p −K0(p
ip+1)p, which has measure 1

ψp(p
ip )
− 1

ψp(p
ip+1)

. This works out

to p−1
pip (p+1)

if 0 < ip < Np and, using ψp(1) = 1, p
p+1 if ip = 0.
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5.5 Evaluation of the basis elements

Given a basis element φ = φ(ip) of H(χ1, χ2)
K∞×K1(N), we will need to compute

the Fourier expansion of the associated Eisenstein series. From our expression
(5.7) for Eφ(s, z), we see that we need to be able to evaluate φfin(

(
a b
c d

)
) for(

a b
c d

)
∈ SL2(Z).

Proposition 5.12. Let p|N . For a local element φi ∈ Bp, and k =
(
a b
c d

)
∈ Kp,

φi(k) = 0 unless i = min(ordp(c), Np). If this condition is met, then

φi(

(
a b
c d

)
) =





χ2(d) i = Np,

χ1(ad− bc)χ1(
c
pi )χ2(d) 0 < i < Np,

χ1(ad− bc)χ1(c) i = 0.

Proof. This follows from the definition (5.11) of Dp(χ1, χ2, N) and the decom-
positions (5.14)-(5.16). If i = Np, then by (5.18) ordp(cχ1

) ≤ Np − i = 0, so χ1

is unramified at p. Since Np > 0, we see that a must be a unit, and by (5.11),

φi(

(
a b
c d

)
) = χ1(a)χ2(d) = χ2(d).

If 0 < i < Np, then a is a unit and by (5.15) we have

φi(

(
a b
c d

)
) = χ1(

pia

c
)χ1(

ad− bc
a

)χ2(
ad− bc

a
)

= χ1(
c
pi )χ1(ad− bc)χ2(d− bc

a ) = χ1(
c
pi )χ1(ad− bc)χ2(d)

since bc
a ∈ cZp = piZp ⊆ cχ2

Zp. When i = 0, we have ordp(cχ2
) = 0, so χ2 is

unramified at p. Then (5.16) gives

φi(

(
a b
c d

)
) = ω(

ad− bc
c

) = χ1(ad− bc)χ1(c).

Multiplying these local results together, we have, for
(
a b
c d

)
∈ SL2(Ẑ),

φ(ip)(
(
a b
c d

)
fin
) =

∏

p|N,
ip=0

χ1p(c)
∏

p|N,
0<ip<Np

χ1p(
c
pip

)χ2p(d)
∏

p|N,
ip=Np

χ2p(d) (5.23)

under the assumption that min(ordp(c), Np) = ip for all p (otherwise the value
is 0). We can express this as a product of two Dirichlet characters as follows.
Let

N1
def
=

∏

p|N,
ip<Np

pNp .
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Note that cχ1
|N1. Attach to χ1 a Dirichlet character modulo N1 by

χ′
1(x)

def
=
∏

p|N1

χ1p(x) (x,N1) = 1

as in (2.8)-(2.9) with N1 in place of N . We extend χ′
1 to Z in the usual way by

taking it to be 0 if (x,N1) > 1. For convenience later, we also set χ′
1(x) = 0 if

x is not an integer. Let

M
def
=
∏

p|N
pip .

Then assuming φ(ip)(
(
a b
c d

)
) 6= 0, we have M |c since ip ≤ ordp(c) for all p, and

χ′
1(
c

M
) =

∏

p|N1

χ1p(
c

pip M
pip

) =
∏

p|N1

χ1p(
c
pip

)χ1p(
M
pip

).

Therefore defining the constant

C(ip) =
∏

p|N1

χ1p(
M
pip

),

we have ∏

p|N1

χ1p(
c
pip

) = C(ip)χ
′
1(

c
M ).

Similarly, we set

N2
def
=
∏

p|N,
ip>0

pNp

(the lexical ambiguity between the above definition and N2 = ord2(N) should
not cause confusion). Observing that cχ2

|M |N2, we define a Dirichlet character
modulo N2 by

χ′
2(x)

def
=
∏

p|N2

χ2p(x) (x,N2) = 1,

extending to all of Z by χ′
2(x) = 0 if (x,N2) > 1. Note that because M and N2

have the same set of prime divisors and cχ2
|M , we have

χ′
2(d+Mx) = χ′

2(d) (5.24)

for all x ∈ Z. With the above notation, (5.23) becomes

φ(ip)(

(
a b
c d

)

fin

) = C(ip) χ
′
1(

c
M )χ′

2(d). (5.25)

In the preceding discussion, (5.25) was established under the assumption
that min(ordp(c), Np) = ip for all p. However, it actually holds in general:

Proposition 5.13. Equation (5.25) is valid for all
(
a b
c d

)
∈ SL2(Z).
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Proof. When min(ordp(c), Np) 6= ip for some p, the left-hand side of (5.25) is
equal to 0. Thus it suffices to show that the same is true of χ′

1(
c
M ). By definition,

χ′
1(

c
M ) is nonzero if and only if M |c and gcd( cM , N1) = 1. This is equivalent to

ordp(c) ≥ ip for all p and ordp(c) = ip when ip < Np. These conditions occur
precisely when ip = min(ordp(c), Np).

5.6 Fourier expansion of Eisenstein series

For any φ ∈ H(χ1, χ2)
K∞×K1(N), the Eisenstein series Eφ(s, z) has period one

as a function of z ∈ H. Indeed, writing z = g∞(i),

Eφ(s, z + 1) = E(φ, s,
(
1 1
0 1

)
g∞ × 1fin) = E(φ, s, g∞ ×

(
1 −1
0 1

)
fin
) = Eφ(s, z),

the second equality holding by the left G(Q)-invariance of E(φ, s, g), and the
third equality holding by the right K1(N)-invariance of φ. It follows that
Eφ(s, z) has a Fourier expansion

Eφ(s, z) =
∑

m∈Z

am(s, y)e(mx), (5.26)

valid when Re(s) > 1/2 by Proposition 5.6. It turns out that the right-hand
side also converges for other s, to a meromorphic function continuing Eφ(s, z).
This will be described in the next section. Here we will compute the Fourier
coefficients when φ = φ(ip).

Henceforth we fix the tuple (ip)p|N , setting φ = φ(ip) and M =
∏
p|N p

ip as

before. Assuming Re(s) > 1/2, by (5.7) and (5.25) we have

Eφ(s, z) = y1/2+sC(ip)χ
′
1(0) + y1/2+sC(ip)

∑

c>0

∑

d∈Z

(d,c)=1

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
.

Recall that

χ′
1(0) =

{
1 if N1 = 1, i.e. ip = Np for all p|N,
0 if N1 > 1, i.e. ip < Np for some p|N,

and χ′
1(c/M) = 0 unless M |c.

It will be convenient to sum over all d ∈ Z rather than the restricted set
(d, c) = 1. We need the following lemma.

Lemma 5.14. Suppose gcd(c, d) = n. Write c = nc′ and d = nd′ for integers
c′, d′. Then

χ′
1(c/M)χ′

2(d) = χ′
1(n)χ

′
2(n)χ

′
1(c

′/M)χ′
2(d

′). (5.27)

Proof. If gcd(n,N2) > 1, then χ′
2(d) = 0 = χ′

2(n). So equation (5.27) is valid in
this case. On the other hand, suppose (n,N2) = 1. Then (n,M) = 1 because
M |N2. If M ∤ c, then both sides of (5.27) vanish. If M |c, then M |c′, and (5.27)
follows by the multiplicativity of Dirichlet characters.
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Using the above lemma, we have

∑

c>0

∑

d∈Z

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
=
∑

n>0

∑

c∈nZ+

∑

d∈Z

(d,c)=n

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s

=
∑

n>0

χ′
1(n)χ

′
2(n)

n1+2s

∑

c>0

∑

d∈Z

(d,c)=1

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s

= LN (1 + 2s, χ1χ2)
∑

c>0

∑

d∈Z

(d,c)=1

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
.

Here we have applied (2.10), using the fact that χ′
1χ

′
2 has modulus lcm(N1, N2) =

N . The above has period one as a function of z. This can be seen from the
the fact that the Eisenstein series has period one, or it can be seen directly as
follows:

∑

c>0

∑

d∈Z

χ′
1(

c
M )χ′

2(d)

|cz + c+ d|1+2s
=
∑

c>0

∑

d∈Z

χ′
1(

c
M )χ′

2(d− c)
|cz + d|1+2s

.

The summand vanishes unless M |c. Therefore by (5.24), χ′
2(d − c) = χ′

2(d) in
all nonzero terms, as needed. By this periodicity, the double sum has a Fourier
expansion

∑

c>0

∑

d∈Z

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
=
∑

m∈Z

bm(s, y)e(mx).

The coefficient bm(s, y) is related to am(s, y) of (5.26) since

Eφ(s, z) = y1/2+sC(ip)χ
′
1(0) +

y1/2+sC(ip)

LN (1 + 2s, χ1χ2)

∑

c>0

∑

d∈Z

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
. (5.28)

Explicitly, for Re(s) > 1/2 we have

am(s, y) =

{
y1/2+sC(ip)χ

′
1(0) + y1/2+sC(ip)LN (1 + 2s, χ1χ2)

−1b0(s, y) if m = 0,

y1/2+sC(ip)LN (1 + 2s, χ1χ2)
−1bm(s, y) if m 6= 0.

We now compute the coefficients bm(s, y). We have

bm(s, y) =
∑

c>0

∑

d∈Z

∫ 1

0

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
e(−mx)dx

=
∑

c>0

∑

d∈Z/cZ

∫ 1

0

∑

t∈Z

χ′
1(

c
M )χ′

2(d+ ct)

|cz + d+ ct|1+2s
e(−mx)dx.

49



As before, the integrand is nonzero only if M |c, and under this assumption
χ′
2(d+ ct) = χ′

2(d) by (5.24). Therefore the above is

=
∑

c>0

∑

d∈Z/cZ

∫ ∞

−∞

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s
e(−mx)dx

=
∑

c>0

χ′
1(

c
M )
∑
d∈Z/cZ χ

′
2(d)

c1+2s

∫ ∞

−∞

e(−mx)
|z + d

c |1+2s
dx

=
∑

c>0

χ′
1(

c
M )
∑
d∈Z/cZ χ

′
2(d)

c1+2s

∫ ∞

−∞

e(−m(x− d
c ))

(x2 + y2)1/2+s
dx

=
∑

c∈MZ+

χ′
1(

c
M )

c1+2s

( ∑

d∈Z/cZ

χ′
2(d)e(

dm

c
)

)∫ ∞

−∞

e(−mx)
(x2 + y2)1/2+s

dx. (5.29)

Now apply the well-known formula:

∫ ∞

−∞

e(−mx)
(x2 + y2)1/2+s

dx =





2π1/2+s|y|−s|m|s
Γ( 1

2 + s)
Ks(2π|m||y|) m 6= 0,

√
πy−2sΓ(s)
Γ( 1

2 + s)
m = 0

([Bu], p. 67). By (5.24), the character sum S in parentheses in (5.29) satisfies

S =
∑

d∈Z/cZ

χ′
2(d−M)e(

dm

c
) =

∑

d∈Z/cZ

χ′
2(d) e

( (d+M)m

c

)
= e
(mM

c

)
S. (5.30)

Hence if e(mMc ) 6= 1 (or equivalently c ∤ mM), then S = 0. Therefore if
Re(s) > 1/2, the Fourier coefficient is given by

bm(s, y) =





2π1/2+sy−s|m|s
Γ( 12 + s)

σs(χ
′
1, χ

′
2,m)Ks(2π|m|y) m 6= 0,

√
πy−2sΓ(s)

Γ( 12 + s)
σs(χ

′
1, χ

′
2, 0) m = 0,

for the sum (see also §5.8)

σs(χ
′
1, χ

′
2,m) =

∑

c∈MZ+

c|mM

χ′
1(

c
M )

c1+2s

∑

d∈Z/cZ

χ′
2(d) e(

dm

c
) (5.31)

=
∑

c|m

χ′
1(c)

(Mc)1+2s

∑

d∈Z/McZ

χ′
2(d)e(

dm

Mc
).
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In the second sum, each summand is defined for d mod MZ, since M is a

modulus for χ′
2 and e( (d+M)m

Mc ) = e( dmMc ) since c|m. Thus

σs(χ
′
1, χ

′
2,m) =

1

M1+2s

∑

c|m

χ′
1(c)

c2s

∑

d∈Z/MZ

χ′
2(d) e(

dm

Mc
). (5.32)

We emphasize that even though m < 0 is allowed, the sum is extended only over
the positive divisors c of m. When m 6= 0, the sum is finite. However, when
m = 0, the sum is extended over all c ∈ Z+, and only converges absolutely for
Re(s) > 1/2. Indeed we have the following.

Proposition 5.15. When m = 0,

σs(χ
′
1, χ

′
2, 0) =

{
ϕ(M)
M1+2sLN1

(2s, ω) if χ2 is trivial,

0 otherwise,

where ϕ is the Euler ϕ-function.

Proof. By (5.32),

σs(χ
′
1, χ

′
2, 0) =

1

M1+2s

∞∑

c=1

χ′
1(c)

c2s

∑

d∈Z/MZ

χ′
2(d).

The sum over d vanishes unless χ′
2 is the principal character moduloM . Indeed,

M∑

d=1

χ′
2(d) =

∑

d∈(Z/MZ)∗

χ′
2(d) =

{
ϕ(M) if χ′

2 is principal

0 otherwise.

Therefore if χ′
2 is principal (in which case χ2 is trivial by (2.8) with N2 in place

of N), we find

σs(χ
′
1, χ

′
2, 0) =

ϕ(M)

M2s+1
L(2s, χ′

1).

Applying (2.10), the proposition follows since χ1 = ω in this case.

5.7 Meromorphic continuation

To summarize the previous section, for the scaled basis element

φ = 1
C(ip)

φ(ip) ∈ H(χ1, χ2)
K∞×K1(N),

we have, for Re(s) > 1/2,

Eφ(s, z) = y1/2+sχ′
1(0) + y1/2+s

∑

c>0

∑

(d,c)=1

χ′
1(

c
M )χ′

2(d)

|cz + d|1+2s

= y1/2+sχ′
1(0) + y1/2−sδχ2

ϕ(M)
√
π Γ(s)LN1

(2s, ω)

M1+2s Γ( 12 + s)LN (1 + 2s, ω)
(5.33)
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+
2y1/2π1/2+s

Γ( 12 + s)LN (1 + 2s, χ1χ2)

∑

m 6=0

|m|sσs(χ′
1, χ

′
2,m)Ks(2π|m|y)e(mx). (5.34)

Here δχ2
∈ {0, 1} is nonzero if and only if χ2 is the trivial character.

Theorem 5.16. The Fourier expansion (5.33)-(5.34) defines a meromorphic
function on C which continues Eφ(s, z). It is holomorphic in the half-plane
Re(s) ≥ 0, except possibly for a simple pole at s = 1/2 which occurs precisely
when χ1 and χ2 are both trivial. In the event of a pole, its residue is

3ϕ(M)

πM2

∏

p|N
ip=Np

(1− p−2)−1
∏

p|N
ip<Np

(1 + p−1)−1

for the Euler ϕ-function.

Proof. From the meromorphic continuation of Dirichlet L-functions, we see that
the constant term (5.33) is meromorphic. Since ω′(−1) = 1, the completed L-
function of ω has the form

Λ(2s, ω) = π−s Γ(s)L(2s, ω)

and is entire unless ω = triv is the trivial character, in which case it has simple
poles at s = 0, 12 ([Bu] Theorem 1.1.1). Therefore

Γ(s)LN1
(2s, ω) = πsΛ(2s, ω)

∏

p|N1
p∤cω

(1− ωp(p)p−2s)

is entire unless ω = triv, in which case it has a simple pole at s = 1/2 and
possibly (if N1 = 1) a simple pole at s = 0. This possible pole at s = 0
is cancelled by the simple pole of LN (1 + 2s, triv) at s = 0 occurring in the
denominator when ω is trivial. Recall also that in general Γ( 12 +s)LN (1+2s, ω)
is nonzero when Re(s) ≥ 0. This shows that (5.33) has the desired properties,
as does the first factor of (5.34).

It remains to consider the sum in (5.34). From (5.32), for m 6= 0 we have

|σs(χ′
1, χ

′
2,m)| ≤ 1

M1+2Re(s)

∑

c|m

1

c2Re(s)

( ∑

d∈Z/MZ

1
)
=

1

M2Re(s)

∑

c|m

1

c2Re(s)
.

When Re(s) ≥ 0, this is

≤M−2Re(s)τ(m)≪ |m|ε,

while if Re(s) ≤ 0 it is

≤ (|m|M)−2Re(s)τ(m)≪ |m|2|Re(s)|+ε.
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Here as usual τ(d) denotes the number of positive divisors of d, and is well
known to be ≪ |d|ε. Furthermore, the Bessel function decays exponentially. In
fact, for real x > 1 + |s|2,

Ks(x) =

√
π

2x
e−x(1 +O

( |s|2 + 1

x

)
)

for an absolute implied constant ([Wa], p. 219, [Iw2], p. 204). Now suppose s
and y are restricted to fixed compact subsets of C and R+ respectively. Then
by the above, there exists a constant C, depending only on the two compact
sets, such that |Ks(2π|m|y)| ≤ Ce−2π|m|y for all m. It follows that the sum in
(5.34) converges uniformly on compact sets, so the sum is entire.

In the event of a pole at s = 1/2, the singular part of the Eisenstein series
is the term

y1/2−s
ϕ(M)

M1+2s

Λ(2s, triv)
∏
p|N1

(1− p−2s)

Λ(1 + 2s, triv)
∏
p|N (1− p−1−2s)

.

The formula for the residue follows since Λ(2s, triv) has residue 1
2 at s = 1/2,

while in the denominator Λ(2, triv) = π−1ζ(2) = π
6 .

5.8 Character sums

In order to prove Theorem 10.2, we will need good bounds for the Fourier
coefficients of normalized Eisenstein series. For this purpose we now examine
more closely the character sums occurring there.

Let χ be a Dirichlet character mod M of conductor cχ|M . For a prime p|M ,
we define a Dirichlet character χp modulo pMp by

χp(d) =

{
0 if p|d
χ(x) if p ∤ d, where x ≡ d mod pMp , x ≡ 1 mod qMq (q 6= p).

(5.35)

The value χp(d) is independent of both the choice of x and the choice of modulus
M ∈ cχZ

+ ∩ pZ. With the above definition, we have χ =
∏
p|M χp. If we take

χp = 1 to be the constant function 1 on Z when p ∤ M , then the product can
be extended over all primes p.

We review some well-known facts about Gauss sums. For χ as above, define

Gχ(m) =
∑

d∈Z/MZ

χ(d)e(dmM ).

Assuming that either (m,M) = 1 or χ is primitive, we have

Gχ(m) = τ(χ)χ(m), (5.36)

where τ(χ) = Gχ(1) ([IK], §3.4). In general, suppose χ0 is the primitive char-
acter inducing χ, and write M = ℓcχ. Then ([Mi], Lemma 3.1.3)

Gχ(m) = τ(χ0)
∑

a|(ℓ,m)

aµ(ℓ/a)χ0(ℓ/a)χ0(m/a) (5.37)
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for the Möbius function

µ(n) =





1 if n = 1

(−1)r if n = p1 · · · pr for distinct primes p1, . . . , pr,

0 if n has a square factor > 1.

It is well-known that
|τ(χ0)| = c1/2χ . (5.38)

Therefore (5.37) gives
|Gχ(m)| ≤ c1/2χ σ(|m|), (5.39)

where, for k > 0, σ(k) =
∑
d|k,d>0 d.

Proposition 5.17. Let m1,m2 be nonzero integers. Then

‖φ(ip)‖−2
∣∣∣σit(χ′

1, χ
′
2,m1)σit(χ′

1, χ
′
2,m2)

∣∣∣ = O(Nε),

where the implied constant depends only on m1,m2 and ε.

Proof. Write m = m1 or m2. From (5.32),

σs(χ
′
1, χ

′
2,m) =

1

M1+2s

∑

c|m

χ′
1(c)

c2s
Gχ′

2
(m/c),

where M =
∏
pip . Applying (5.39), this gives

|σit(χ′
1, χ

′
2,m)| ≤ c

1/2
χ2

M

∑

c|m
σ(c) ≤ c

1/2
χ2

M
τ(|m|)σ(|m|). (5.40)

By (5.22), we have

‖φ(ip)‖−2 =
∏

p|N
ip=0

(1 +
1

p
)
∏

p|N
0<ip<Np

pip(1 +
2

p− 1
)
∏

p|N
ip=Np

pip(1 +
1

p
).

Therefore

‖φ(ip)‖−2 ≤M
∏

p|N
(1 +

2

p− 1
). (5.41)

Together, these bounds give

|σit(χ′
1, χ

′
2,m)|

‖φ(ip)‖
≤ c

1/2
χ2 M

1/2

M
τ(|m|)σ(|m|)

∏

p|N
(1 +

2

p− 1
)1/2

≪ε τ(|m|)σ(|m|)Nε/2. (5.42)

The proposition follows.
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6 The kernel of R(f)

In this section we give the spectral formula for the kernel function of R(f). We
refer to [Ar1], [GJ] and [Kn] for further discussion and theoretical background.
Our purpose is to show that these spectral terms converge absolutely in a strong
sense (Theorems 6.10 and 6.11). This provides the justification for their use in
the relative trace formula. Our treatment is based on the methods of Arthur
[Ar1], [Ar2], especially Lemma 4.4 of [Ar2]. His result holds for any connected
reductive algebraic group over Q. In the setting of GL(2) it gives e.g. that for
an orthonormal basis {φ} ⊆ H(0) (cf. (6.1)),

∫ ∞

−∞

∣∣∣∣∣
∑

φ

E(πit(f)φit, x)E(φit, y)

∣∣∣∣∣dt <∞.

We give a detailed discussion here partly to avoid referring the reader to a paper
on general groups just for a result about GL(2), but also because we need to
show that the absolute values can be brought inside the sum, at least for the
class of functions f considered in this paper.

6.1 The spectral decomposition

The right regular representation of G(A) on L2(ω) decomposes in terms of
cuspidal representations on GL(m) for m ≤ 2. The continuous part of L2(ω) is
indexed by certain cuspidal representations of GL(1), i.e. Hecke characters, and
the discrete part consists of irreducible cuspidal representations and, in some
situations, one-dimensional representations.

Suppose χ is a Hecke character satisfying χ2 = ω. Then defining

φχ(g) = χ(det(g)) (g ∈ G(A)),

we see that φχ is square integrable modulo Z(A), with

‖φχ‖2 = meas(G(Q)\G(A)) = π/3.

Note that φχ(zg) = ω(z)φχ(g) for all z ∈ Z(A). Therefore φχ spans a one-
dimensional subrepresentation of L2(ω), which we denote by Cχ. Conversely,
any one-dimensional subrepresentation of L2(ω) arises in this way from a char-
acter satisfying χ2 = ω.

Proposition 6.1. The spaces Cχ are mutually orthogonal, and also orthogonal
to L2

0(ω).

Proof. Suppose V is a unitary representation of a group G. Then for any closed
G-stable subspace S, the action of G preserves the decomposition V = S ⊕ S⊥.
If W is any other closed G-stable subspace of V , then it is easy to show that
W = (W ∩ S)⊕ (W ∩ S⊥). In particular if W is one-dimensional, then W ⊆ S
or W ⊆ S⊥. Applying this with S = Cχ1

and W = Cχ2
shows the first claim,
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and taking S = L2
0(ω) gives the second. Note that φχ is not cuspidal because

its constant term is
∫

N(Q)\N(A)

φχ(ng)dn = φχ(g) 6= 0.

We denote by L2
res(ω) the Hilbert direct sum

L2
res(ω) =

⊕

χ2=ω

Cχ.

(These characters arise from the residues of certain Eisenstein series at s = 1/2).
If L2

res(ω) is nonzero, then it is infinite dimensional. To see this, note that if
there exists χ with χ2 = ω, then L2

res(ω) =
⊕

η2=1 Cχη. There are infinitely
many quadratic Hecke characters η.

The direct sum
L2
disc(ω)

def
= L2

0(ω)⊕ L2
res(ω)

is the discrete part of the spectrum of L2(ω). We next describe its orthogonal
complement L2

cont(ω). For s ∈ C define

H(s) =
⊕

χ1χ2=ω

H(χ1, χ2, s), (6.1)

where H(χ1, χ2, s) is defined in §5.1, and this Hilbert space direct sum is taken
over all ordered pairs of finite order Hecke characters whose product is ω.

Remark: Define a character (ω, s) of B′ def
= Z(A)N(A)M(Q)M(R+) by

(ω, s) :
(
z
z

)( y x
0 1

)
7→ ω(z)|y|s+1/2.

The right regular representation πs of G(A) onH(s) is equivalent to the induced

representation Ind
G(A)
B′ (ω, s). This latter viewpoint is the one taken in [GJ]. To

see the equivalence, note by transitivity of induction that

Ind
G(A)
B′ (ω, s) = Ind

G(A)
B(A) Ind

B(A)
B′ (ω, s). (6.2)

By restriction, Ind
B(A)
B′ (ω, s) can be identified with Ind

M(A)
Z(A)M(Q)M(R+)(ω, s).

The quotient (Z(A)M(Q)M(R+))\M(A) is compact, so by the Peter-Weyl

theorem, the functions (χ1, χ2, s) = χ1(a)χ2(d)|ad |s+
1
2 with χ1χ2 = ω form

a basis for the induced space. Thus the right-hand side of (6.2) is equal to

Ind
G(A)
B(A)

⊕
(χ1, χ2, s) = H(s).

Let

H =

∫ ∞

−∞
H(it)dt
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be the direct integral. This Hilbert space consists of all functions

A : iR −→
⋃

t∈R

H(it) (disjoint union)

(identifying functions that are equal a.e.) satisfying:

• A(it) ∈ H(it) for all t,

• the composition iR
A−−→

⋃
H(it) −→ H(0), obtained by identifying H(it)

with H(0) as in §5.1, is measurable,

• ‖A‖2 def
=

1

π

∫ ∞

−∞
‖A(it)‖2dt <∞.

The associated inner product is given by

〈A,B〉 = 1

π

∫ ∞

−∞
〈A(it), B(it)〉 dt. (6.3)

Define an action of G(A) on H by

(gA)(it) = πit(g)A(it).

This representation is unitary since each πit is unitary:

‖gA‖2 =
1

π

∫ ∞

−∞
‖πit(g)A(it)‖2dt = ‖A‖2.

By §4 of [GJ], there is a G(A)-equivariant Hilbert space isomorphism3

M(it) : H(it) −→ H(−it).

Thus the subspace

L = {A ∈ H|A(−it) =M(it)A(it) for all t ∈ R} (6.4)

is stable under the action of G(A). It is this representation which is isomorphic
to L2

cont(ω):

Theorem 6.2. Consider the orthogonal decomposition

L2(ω) = L2
disc(ω)⊕ L2

cont(ω).

There is a G(A)-equivariant isomorphism of Hilbert spaces

S : L2
cont(ω) −→ L,

3By an isomorphism of Hilbert spaces, we mean a bijective linear isometry.
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which we extend to the full space L2(ω) by taking S = 0 on L2
disc(ω), character-

ized by the property that for any ψ ∈ L2(ω) and φ ∈ H(0),

〈Sψ(it), φit〉 =
1

2
〈ψ,E(φ, it, ·)〉 = 1

2

∫

G(Q)\G(A)

ψ(g)E(φ, it, g) dg (6.5)

for almost all t. The following Parseval identity holds for ψ, η ∈ L2(ω):

〈ψ, η〉 =
∑

ϕ

〈ψ,ϕ〉 〈η, ϕ〉+ 3

π

∑

χ2=ω

〈ψ, φχ〉 〈η, φχ〉

+
1

4π

∑

φ

∫ ∞

−∞
〈ψ,E(φ, it, ·)〉 〈η,E(φ, it, ·)〉dt. (6.6)

Here, ϕ (resp. φ) runs through an orthonormal basis for L2
0(ω) (resp. H(0)).

Remarks: The fact that S is an intertwining operator can be seen from (6.5).
Indeed, for any φ ∈ H(0),

〈SR(g)ψ(it), φit〉 =
1

2
〈R(g)ψ,E(φit, ·)〉 =

1

2

〈
ψ,R(g−1)E(φit, ·)

〉

=
1

2

〈
ψ,E(πit(g

−1)φit, ·)
〉
=
〈
Sψ, πit(g

−1)φit
〉
= 〈πit(g)Sψ(it), φit〉

as claimed. Passing to the second line, we used R(g)E(φs, x) = E(πs(g)φs, x),
which is clear when Re(s) > 1/2 and holds for Re(s) = 0 by analytic continua-
tion. In a similar fashion, we can derive the useful identity

〈ψ,E(πit(f)φit, ·)〉 = 〈R(f)∗ψ,E(φit, ·)〉 (6.7)

for ψ ∈ L2(ω) and f ∈ L1(ω).

Proof. See §4 of [GJ] for an explicit construction of S. The identity (6.5) is
their (5.16). We just explain how to derive the Parseval identity from their
discussion. Let Pdisc (resp. Pcont) be the orthogonal projection of L2(ω) onto
L2
disc(ω) (resp. L

2
cont(ω)). Then

〈ψ, η〉 = 〈Pdiscψ, Pdiscη〉+ 〈Pcontψ, Pcontη〉 .

We apply the usual Parseval identity in L2
disc(ω) to obtain the discrete part of

(6.6). For the continuous part, by (6.3) we have

〈Pcontψ, Pcontη〉 = 〈Sψ, Sη〉 =
1

π

∫ ∞

−∞
〈Sψ(it), Sη(it)〉 dt

=
1

π

∫ ∞

−∞

∑

φ

〈Sψ(it), φit〉 〈Sη(it), φit〉 dt.
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Here φ runs through an orthonormal basis for H(0), and we have applied Par-
seval’s identity in H(it). We pull the sum out (justification given below) and
apply (6.5) to get

〈Pcontψ, Pcontη〉 =
1

4π

∑

φ

∫ ∞

−∞
〈ψ,E(φ, it, ·)〉 〈η,E(φ, it, ·)〉 dt, (6.8)

which gives (6.6). To justify pulling out the sum, we need to show convergence
of ∫ ∞

−∞

∑

φ

| 〈Sψ(it), φit〉 〈Sη(it), φit〉| dt.

Applying Cauchy-Schwarz to the sum, the above is

≤
∫ ∞

−∞

(∑

φ

| 〈Sψ(it), φit〉 |2
)1/2(∑

φ

| 〈Sη(it), φit〉 |2
)1/2

dt

=

∫ ∞

−∞
‖Sψ(it)‖ ‖Sη(it)‖ dt (Parseval’s)

≤
[∫ ∞

−∞
‖Sψ(it)‖2dt

]1/2 [∫ ∞

−∞
‖Sη(it)‖2dt

]1/2
<∞ (Cauchy-Schwarz).

6.2 Kernel functions

Suppose X is a Radon measure space, and T is a bounded linear operator on
L2(X). We say that a measurable function K(x, y) on X × X is a kernel

function for T if T = TK , where

TKψ(x)
def
=

∫

X

K(x, y)ψ(y) dy.

If the equality Tψ = TKψ is only known to hold for all ψ which are bounded and
of compact support, then we say that K(x, y) is a weak kernel for T . We shall
repeatedly use the fact that K is a weak kernel for T if and only if 〈TKψ1, ψ2〉 =
〈Tψ1, ψ2〉 for all ψ1, ψ2 which are bounded and compactly supported.

Lemma 6.3. If K(x, y) and K ′(x, y) are weak kernel functions for T , then
K(x, y) = K ′(x, y) for almost all (x, y) ∈ X ×X.

Proof. This is straightforward; see the proof of Proposition 15.1 of [KL2].

Given an operator T on a Hilbert space, its Hilbert-Schmidt norm is
defined by

‖T‖2HS =
∑
‖Tei‖2,

where {ei} is an orthonormal basis for the space. If the norm is finite, then it
is independent of the choice of basis, and we say that T is a Hilbert-Schmidt

operator. It is well-known that an operator T on L2(X) is Hilbert-Schmidt
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if and only if it has a square integrable kernel K(x, y) ∈ L2(X × X) ([RS],
Theorem VI.23). In this situation, if we let {ψ} and {φ} be orthonormal bases
for L2(X), then {ψ ⊗ φ} is an orthonormal basis for L2(X ×X) ([RS], p. 51)
and for almost all (x, y) we have

K(x, y) =
∑

ψ,φ

〈
K,ψ ⊗ φ

〉
ψ(x)φ(y) =

∑

φ

(∑

ψ

〈Tφ, ψ〉ψ(x)
)
φ(y)

=
∑

ϕ

Tφ(x)φ(y). (6.9)

For an integer m ≥ 0, let Cmc (G(A), ω) denote the space of factorizable
functions f = f∞

∏
p fp on G(A) with the following properties:

• f has compact support mod Z(A)

• f transforms under Z(A) by ω

• f∞ is m-times continuously differentiable on G(R)

• Each fp is locally constant, and for almost all p, fp is the function sup-

ported on Z(Qp)Kp defined by fp(zk) = ωp(z).

Theorem 6.4. Suppose m ≥ 3. Then for any f ∈ Cmc (G(A), ω), the opera-
tor R0(f) on L2

0(ω) is Hilbert-Schmidt. When f∞ is bi-K∞-invariant, m ≥ 2
suffices.

Proof. In the case of interest to us here, where f∞ is bi-K∞-invariant, we will
prove that m ≥ 2 suffices in Corollary 8.32 later on, as a consequence of a more
general result where we allow f∞ to have noncompact support. For the general
case of f ∈ Cmc (G(A), ω), see Theorem 2.1 of [GJ] for a sketch over the adeles,
and [Bu] or §3 of [Kn] for proofs over G(R)+. As can be seen from the proof in
[Kn], m = 3 suffices.

Let f ∈ L1(ω). Then for all ψ ∈ L2(ω), we have

R(f)ψ(x) =

∫

G(A)

f(y)ψ(xy)dy =

∫

G(A)

f(x−1y)ψ(y)dy

=

∫

G(Q)\G(A)

K(x, y)ψ(y)dy

for the kernel function

K(x, y) = Kf (x, y) =
∑

γ∈G(Q)

f(x−1γy). (6.10)

If f is continuous and compactly supported modulo the center, then because
G(Q) is a discrete subset of G(A), the sum is locally finite, so K(x, y) is a
continuous function on G(A)×G(A).
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The expression (6.10) is the geometric form of the kernel. When f ∈
Cmc (G(A), ω) form sufficiently large (we will prove in Corollary 6.12 thatm = 8
suffices), the kernel also has a spectral expansion of the following form, valid
almost everywhere in G(A)×G(A):

K(x, y) = Kcont(x, y) +Kcusp(x, y) +Kres(x, y). (6.11)

Here

Kcont(x, y) =
1

4π

∑

φ

∫ ∞

−∞
E(πit(f)φit, x)E(φit, y)dt

for an orthonormal basis {φ} for H(0),

Kcusp(x, y) =
∑

ϕ

R(f)ϕ(x)ϕ(y) (6.12)

as in (6.9) for an orthonormal basis {ϕ} for L2
0(ω), and

Kres(x, y) =
3

π

∑

χ2=ω

R(f)φχ(x)φχ(y)

=
3

π

∑

χ2=ω

χ(detx)χ(det y)

∫

G(A)

f(g)χ(det g)dg

=

{
3
π

∫
G(A)

f(g)dg if ω is trivial,

0 otherwise.
(6.13)

To see (6.13), notice that in the integral on the previous line, if we replace g
by gk for k ∈ K1(N), a factor of χ(det k) comes out. So the integral vanishes

unless χ is trivial on Ẑ∗. Since χ has finite order, this is possible only if χ is
trivial (since Q has class number 1), which means that ω = χ2 is also trivial.

If f = f∞fn is a weight 0 Hecke operator as in (4.23), then using (3.16) and
(4.16), (6.13) becomes

3

π

∫

G(R)

f∞(g)dg

∫

M1(n,N)

fn(m)dm =
3

π
h( i2 )

∏

p|n

np∑

j=0

pj =
3

π
h( i2 )

∑

d|n
d (6.14)

for the Selberg transform h of f∞.
For such a Hecke operator, we will derive (6.11) from the spectral decompo-

sition in Theorem 6.2 using a nice choice of basis, and show that for this choice
it is in fact valid for all (x, y). This is a special case of a result of Arthur ([Ar2]
§4, culminating on p. 935). We need this fact because our principal objective
is to derive a relative trace formula by integrating K(x, y) over

(x, y) ∈ (N(Q)\N(A))2,

a space which has measure zero in (G(Q)\G(A))2, so an almost-everywhere
spectral expression for K(x, y) is not adequate.
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6.3 A spectral lower bound for Kh∗h∗(x, x)

In this section we will take f = h ∗ h∗ for a suitable function h, and give
a spectral lower bound for Kf (x, x) in Proposition 6.6. We begin with the
following lemma.

Lemma 6.5 ([GGK], Lemma 5.2.1). Let X be a Radon measure space, and let
T be an operator on L2(X). Suppose there is a continuous weak kernel function
K(x, y) for T . Suppose further that for all bounded compactly supported ψ,

〈Tψ, ψ〉 ≥ 0.

Then K(x, x) ≥ 0 for all x ∈ X.

Proof. Suppose for some x that ReK(x, x) < 0. By continuity there exists a
compact neighborhood U ⊆ X of x such that ReK(a, b) < 0 for all (a, b) ∈
U × U . Let ψ be the characteristic function of U . Then

0 ≤ 〈Tψ, ψ〉 =
∫

X

Tψ(a)ψ(a)da =

∫

U

∫

U

K(a, b)db da.

The right-hand side has negative real part, which is a contradiction. Therefore
ReK(x, x) ≥ 0. By a similar argument, we find also that ImK(x, x) = 0.

Proposition 6.6. Let h ∈ Cmc (G(A), ω) be a bi-K∞ ×K1(N)-invariant func-
tion for m ≥ 2. Choose orthonormal bases {ϕ} and {φ} for L2

disc(ω) and
H(0)K∞×K1(N) respectively, consisting of continuous functions. Then for all
x ∈ G(A),

∑

ϕ

|R(h)ϕ(x)|2 + 1

4π

∑

φ

∫ ∞

−∞
|E(πit(h)φit, x)|2dt ≤ Kh∗h∗(x, x). (6.15)

Here Kh∗h∗(x, y) is the geometric kernel defined in (6.10).

Remark: The set {φ} can be extended to an orthonormal basis for all of H(0)
in (6.15). Indeed, because h is K∞×K1(N)-invariant, by Lemma 3.10 πit(h)φit
vanishes when φ belongs to the orthogonal complement of the finite dimensional
subspace

H(0)K∞×K1(N) =
⊕

χ1χ2=ω

cχ1
cχ2

|N

H(χ1, χ2)
K∞×K1(N).

We will prove the proposition in stages. It is an application of Lemma 6.5,
but complicated by the fact that we do not know a priori that the left-hand side
of (6.15) is continuous. Thus we will approximate it by a partial sum, defined
as follows. Fix an orthonormal subset Q ⊆ L2

disc(ω), and let J be a symmetric
compact subset of R. To these we attach the following function

K ′(x, y) = K ′
disc(x, y) +K ′

cont(x, y), (6.16)
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where
K ′

disc(x, y) =
∑

ϕ∈Q
R(h)ϕ(x)R(h)ϕ(y)

and

K ′
cont(x, y) =

1

4π

∑

φ

∫

J

E(πit(h)φit, x)E(πit(h)φit, y)dt.

Here φ runs through an orthonormal basis for H(0)K∞×K1(N).

Lemma 6.7. There exists a bounded linear operator T ′
cont on L2(ω) for which

K ′
cont is a weak kernel: for all bounded ψ ∈ L2(ω) with compact support modulo

Z(A)G(Q),

T ′
contψ(x) =

∫

G(Q)\G(A)

K ′
cont(x, y)ψ(y)dy (6.17)

for almost all x. The analogous statement for K ′
disc also holds.

Proof. For any measurable symmetric subset J ⊆ R, define

LJ =

∫

J

H(it)dt ∩ L,

where L was defined in (6.4). Here we regard each element of the direct integral
as a function on all of R, taking the value 0 at points outside J . It is easy to see
that LJ is a closed G(A)-invariant subspace of L, and we have the orthogonal
decomposition

L = LJ ⊕ LR−J .

We denote the analogous decomposition in L2
cont(ω)

∼= L by

L2
cont(ω) = LJ ⊕ LR−J .

Define a G(A)-equivariant map SJ : L2(ω) −→ LJ by

SJψ =

{
Sψ if ψ ∈ LJ
0 if ψ ∈ (LJ )

⊥,
i.e. SJψ(it) =

{
Sψ(it) for a.e. t ∈ J
0 for a.e. t /∈ J.

Its restriction to LJ is an isomorphism of Hilbert spaces. The map

PJ
def
= (SJ)

∗ SJ

is the orthogonal projection of L2(ω) onto LJ , so SJ = S ◦ PJ .
Now let J be the given compact set. Define T ′

cont = PJ R(h ∗ h∗)PJ . It is
a bounded operator because ‖T ′

cont‖ ≤ ‖R(h ∗ h∗)‖ ≤ ‖h ∗ h∗‖L1 (cf. [KL2], p.
140). For bounded compactly supported ψ1, ψ2 ∈ L2(ω),

〈T ′
contψ1, ψ2〉 = 〈PJR(h ∗ h∗)PJψ1, ψ2〉 = 〈R(h∗)PJψ1, R(h

∗)PJψ2〉

= 〈PJR(h∗)ψ1, PJR(h
∗)ψ2〉 = 〈SPJR(h∗)ψ1, SPJR(h

∗)ψ2〉

63



= 〈SJR(h∗)ψ1, SJR(h
∗)ψ2〉 =

1

π

∫

J

〈SR(h∗)ψ1(it), SR(h
∗)ψ2(it)〉 dt

=
1

π

∫

J

〈πit(h∗)Sψ1(it), πit(h
∗)Sψ2(it)〉 dt

=
1

π

∫

J

∑

φ

〈Sψ1(it), πit(h)φit〉 〈Sψ2(it), πit(h)φit〉 dt

=
1

4π

∫

J

∑

φ

〈ψ1, E(πit(h)φit, ·)〉 〈ψ2, E(πit(h)φit, ·)〉 dt (6.18)

=

∫

G(Q)\G(A)




∫

G(Q)\G(A)





1

4π

∑

φ

∫

J

E(πit(h)φit, x)E(πit(h)φit, y)dt



ψ1(y)dy


ψ2(x)dx.

The interchange of the sum and integrals is justified by Fubini’s theorem, since
the Eisenstein series are continuous, J is compact, the sum over φ is finite,
and since ψ1, ψ2 are bounded with compact support modulo Z(A)G(Q). This
proves (6.17).

For K ′
disc, the statement is much easier because K ′

disc(x, y) is square inte-
grable over (G(Q)\G(A))2, so for almost all x the expression

∫
K ′

disc(x, y)ψ(y)dy
is meaningful for all ψ ∈ L2(ω), and serves to define T ′

discψ(x). To see the square
integrability, note that by the Cauchy-Schwarz inequality,

|K ′
disc(x, y)|2 ≤ (

∑

ϕ∈Q
|R(h)ϕ(x)|2)(

∑

ϕ∈Q
|R(h)ϕ(y)|2).

Therefore
∫∫

(G(Q)\G(A))2
|K ′

disc(x, y)|2dx dy ≤ (
∑

ϕ∈Q
‖R(h)ϕ‖2)(

∑

ϕ∈Q
‖R(h)ϕ‖2),

which is finite since R(h) is a Hilbert-Schmidt operator on L2
disc(ω) by Theorem

6.4. (On L2
res(ω) it actually has finite rank as shown in (6.13).)

Proposition 6.8. Let T ′ = T ′
disc + T ′

cont with notation as in the above lemma.
Suppose that the orthonormal set Q ⊆ L2

disc(ω) is finite, and that J ⊆ R is
compact and symmetric. Then

〈T ′ψ,ψ〉 ≤ 〈R(h ∗ h∗)ψ,ψ〉

for all bounded ψ ∈ L2(ω) of compact support modulo Z(A)G(Q).

Proof. Extend Q to an orthonormal basis Q̃ of L2
disc(ω). We have

〈T ′
discψ,ψ〉 =

∫

G(Q)\G(A)

( ∫

G(Q)\G(A)

∑

ϕ∈Q
R(h)ϕ(x)R(h)ϕ(y)ψ(y)dy

)
ψ(x)dx.
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The sum can be pulled out because of the conditions placed on ψ and since Q
is finite. So the above is

=
∑

ϕ∈Q
| 〈R(h)ϕ,ψ〉 |2 ≤

∑

ϕ∈Q̃

| 〈R(h)ϕ,ψ〉 |2 =
∑

ϕ∈Q̃

| 〈ϕ,R(h)∗ψ〉 |2

= 〈PdiscR(h)
∗ψ, PdiscR(h)

∗ψ〉 = 〈PdiscR(h ∗ h∗)ψ,ψ〉 .
Passing to the last line, we applied Parseval’s identity (6.6), while the last
equality follows easily by the fact that R(h) commutes with the orthogonal
projection Pdisc.

Likewise, by (6.18),

〈T ′
contψ,ψ〉 =

1

4π

∑

φ

∫

J

| 〈ψ,E(πit(h)φit, ·)〉 |2dt

≤ 1

4π

∑

φ

∫ ∞

−∞
| 〈ψ,E(πit(h)φit, ·)〉 |2dt =

1

4π

∑

φ

∫ ∞

−∞
| 〈R(h)∗ψ,E(φit, ·)〉 |2dt

= 〈PcontR(h)
∗ψ, PcontR(h)

∗ψ〉 = 〈PcontR(h ∗ h∗)ψ,ψ〉 .
Again we used Parseval’s identity (6.8) in passing to the last line. We have also
used (6.7).

Proof of Proposition 6.6. Let Q be a finite subset of the given orthonormal basis
{ϕ} of L2

disc(ω), and let J be a symmetric compact subset of R. Let K ′(x, y) be
the associated partial kernel function as above, and set f = h∗h∗. ThenK ′(x, y)
is continuous since all ϕ and φ are continuous by hypothesis. On the other hand,
we saw in (6.10) that Kf (x, y) is also continuous. By the above proposition,
〈(R(f)− T ′)ψ,ψ〉 ≥ 0 for all bounded ψ ∈ L2(ω) of compact support modulo
the center. Hence by Lemma 6.5, Kf (x, x)−K ′(x, x) ≥ 0 for all x ∈ G(A). It
follows that

sup
Q,J

K ′(x, x) ≤ Kf (x, x).

The proposition now follows, since the supremum is precisely the left-hand side
of (6.15).

6.4 The spectral form of the kernel of R(f)

The following lemma, which follows from a result of Duflo and Labesse, will
enable us to reduce to the special situation f = h ∗ h∗ discussed above.

Lemma 6.9. Let r ≥ 1, and suppose f ∈ C4r
c (G(A), ω) is bi-invariant under

K∞×K1(N). Then there exist functions h1, h2, k1, k2 ∈ C2r−2
c (G(A), ω) which

are also bi-invariant under K∞ ×K1(N) such that

f = h1 ∗ h2 + k1 ∗ k2.
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Proof. Write K ′ = K∞ × K1(N). In this proof only, we normalize so that
meas(K ′) = 1. A function a(g) on G(A) is said to beK ′-central if a(kg) = a(gk)
for all k ∈ K ′. For any function a(g) we define

ã(g) =

∫

K′
a(kg)dk.

Obviously ã is left K ′-invariant. If a is K ′-central, then ã(g) is also right K ′-
invariant.

Define an action of gR = Lie(G(R)) on the smooth functions by

X ∗ f(g) = d

dt

∣∣∣∣
t=0

f(exp(−tX)g). (6.19)

This extends naturally to an action of the universal enveloping algebra U(gC).
By [DL] (I.1.11), there exist K ′-central functions a ∈ C2r−2

c (G(A), ω), b ∈
C∞
c (G(A), ω), and a differential operator D ∈ U(gC) of order 2, such that

f = a ∗ (Dr+1 ∗ f) + b ∗ f.

Let c = Dr+1 ∗ f . Because f is C4r, c is C4r−(2r+2) = C2r−2. It follows from
(6.19) that c is right K ′-invariant. By the left K ′-invariance of f ,

f(x) =

∫

K′
f(kx)dk =

∫

K′

∫

G

a(g)c(g−1kx)dg dk +

∫

K′

∫

G

b(g)f(g−1kx)dg dk

=

∫

G

∫

K′
a(kg)c(g−1x)dk dg+

∫

G

∫

K′
b(kg)f(g−1x)dk dg = (ã∗c)(x)+(b̃∗f)(x).

Because ã is bi-K ′-invariant, it is easy to verify that ã ∗ c = ã ∗ c̃. Therefore we
can take h1 = ã, h2 = c̃, k1 = b̃ and k2 = f .

Theorem 6.10. Let f = f∞fn, where f∞ ∈ Cmc (G(R)+//K∞) for m ≥ 8. Let
FA be an orthonormal basis for L2

0(ω)
K∞×K1(N), chosen as in Proposition 4.8.

Then both

∑

ϕ∈FA

R(f)ϕ(x)ϕ(y) and
∑

ϕ∈FA

|R(f)ϕ(x)ϕ(y)|

are bounded on any compact subset of G(A)×G(A) and continuous in x and y
separately.

Proof. It suffices to prove the assertion for the expression with the absolute
values. Because m ≥ 8, by Lemma 6.9 there exist h1, h2, k1, k2 ∈ C2

c (G(A), ω)
such that f = h1∗h2+k1∗k2. By linearity and the triangle inequality, it suffices
to prove the theorem for f = h1 ∗ h2.

By Proposition 4.8, for ϕ ∈ FA we can write

R(f)ϕ = λϕ, R(h1)ϕ = λ1ϕ, R(h2)ϕ = λ2ϕ.
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Note that ϕ is also an eigenvector of R(h∗1). The eigenvalue is λ1 since

〈R(h∗1)ϕ,ϕ〉 = 〈ϕ,R(h1)ϕ〉 = λ1 〈ϕ,ϕ〉 .

Furthermore, λ = λ1λ2 since

λ 〈ϕ,ϕ〉 = 〈R(f)ϕ,ϕ〉 = 〈R(h2)ϕ,R(h∗1)ϕ〉 = λ1λ2 〈ϕ,ϕ〉 .

This implies that

R(f)ϕ(x)ϕ(y) = λ1λ2ϕ(x)ϕ(y) = R(h1)ϕ(x)R(h∗2)ϕ(y).

By Cauchy-Schwarz, for any subset S of FA,
∑

ϕ∈S
|R(f)ϕ(x)ϕ(y)| =

∑

ϕ∈S
|R(h1)ϕ(x)R(h∗2)ϕ(y)|

≤
(∑

ϕ∈S
|R(h1)ϕ(x)|2

)1/2(∑

ϕ∈S
|R(h∗2)ϕ(y)|2

)1/2
(6.20)

≤ Kh1∗h∗
1
(x, x)1/2Kh∗

2∗h2
(y, y)1/2.

The last inequality holds by Proposition 6.6. Because the two kernels are con-
tinuous, the above is bounded on any compact set.

Now we show that
∑
ϕ |R(f)ϕ(x)ϕ(y)| is continuous in y for fixed x. Let U

be any compact subset of G(A). Fix x ∈ G(A). It suffices to show that the
series converges uniformly as a function of y ∈ U . Let C be an upper bound for
Kh∗

2∗h2
(y, y)1/2 on U . Fix ε > 0. We know that

∑
ϕ |R(h1)ϕ(x)|2 < ∞. Hence

for any ordering ϕ1, ϕ2, . . . of {ϕ}, there exists N > 0 such that

∑

n≥N
|R(h1)ϕn(x)|2 <

ε2

C2
.

Therefore by (6.20),

∑

n≥N
|R(f)ϕ(x)ϕ(y)| ≤ C

(∑

n≥N
|R(h1)ϕn(x)|2

)1/2
< ε.

Hence the series converges uniformly for y ∈ U , as needed. Similarly for fixed
y, the sum is continuous in x.

Theorem 6.11. Let f = f∞fn be as in the previous theorem. Then both

Kcont(x, y) =
1

4π

∑

φ

∫ ∞

−∞
E(πit(f)φit, x)E(φit, y)dt (6.21)

and
1

4π

∑

φ

∫ ∞

−∞
|E(πit(f)φit, x)E(φit, y)|dt (6.22)

are bounded on any compact subset of G(A)×G(A) and continuous in x and y
separately. Here φ runs through an orthonormal basis for H(0)K∞×K1(N).
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Proof. The proof is similar to that of the previous theorem. We can assume
f = h1 ∗ h2. For j ≥ 1, let Rj = [−j,−j + 1] ∪ [j − 1, j], and define

Gj(x, y) =
∑

φ

1

4π

∫

Rj

∣∣∣E(πit(f)φit, x)E(φit, y)
∣∣∣ dt.

It is a continuous function of x and y. Note that (6.22) is equal to
∑
j Gj(x, y).

It suffices to show that for fixed x this series converges uniformly for y in a
compact set. Write

πit(h1)φit = λφ1 (t)φit, πit(h2)φit = λφ2 (t)φit.

For any set S of natural numbers,
∑
j∈S Gj(x, y) is

≤ 1

4π

∑

j∈S

∑

φ

(∫

Rj

|λφ1 (t)E(φ, it, x)|2dt
)1/2(∫

Rj

|λφ2 (t)E(φ, it, y)|2dt
)1/2

≤
( 1

4π

∑

j∈S

∑

φ

∫

Rj

|λφ1 (t)E(φ, it, x)|2dt
)1/2( 1

4π

∑

j∈S

∑

φ

∫

Rj

|λφ2 (t)E(φ, it, y)|2dt
)1/2

≤ Kh1∗h∗
1
(x, x)1/2Kh∗

2∗h2
(y, y)1/2

by Proposition 6.6. The proof now proceeds as before.

Now we derive the spectral formula for the kernel K(x, y) of R(f). Because

R(f) = R(f)Pdisc +R(f)Pcont,

it suffices to give kernel functions for each of the operators on the right-hand
side. The operator R(f)Pdisc is Hilbert-Schmidt, so its kernel is given by

Kdisc(x, y) =
∑

{ϕ}⊆L2(ω)
o.n.b.

R(f)Pdiscϕ(x)ϕ(y).

Because R(f)Pdisc annihilates all ϕ ∈ L2
cont(ω), the above is equal to the sum

Kcusp(x, y) +Kres(x, y) as in (6.12) and (6.13).
For R(f)Pcont, suppose ψ1, ψ2 ∈ L2(ω) are bounded and compactly sup-

ported modulo Z(A)G(Q). Then

〈R(f)Pcontψ1, ψ2〉 = 〈Pcontψ1, PcontR(f
∗)ψ2〉 (6.23)

=
1

4π

∑

φ

∫ ∞

−∞
〈ψ1, E(φit, ·)〉 〈E(φit, ·), R(f∗)ψ2〉 dt

=

∫

G



∫

G





1

4π

∑

φ

∫ ∞

−∞
E(πit(f)φit, x)E(φit, y)dt



ψ1(y)dy


ψ2(x)dx.
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We used Parseval’s identity (6.8) when passing to the second line, and (6.7)
when passing to the third line. The convergence is absolute by Theorem 6.11
and the conditions on ψ1, ψ2, so the rearrangement of the sum and integrals
is justified. It follows that the expression in the braces, which coincides with
(6.21), is a weak kernel function for R(f)Pcont.

Corollary 6.12. Suppose f∞ ∈ Cmc (G(R)+//K∞) for m ≥ 8, and let f =
f∞fn. Then for all x, y ∈ G(A),

K(x, y) = Kcusp(x, y) +Kres(x, y) +Kcont(x, y),

where we choose bases as in Theorems 6.10 and 6.11. Each function on the
right is separately continuous in each variable.

Proof. Denote the right-hand side by Ψ(x, y). As we have just shown, Ψ is
a weak kernel function for R(f). By Lemma 6.3 we conclude that K(x, y) =
Ψ(x, y) almost everywhere inG(A)×G(A). We know thatK(x, y) is continuous.
By the above theorems, Ψ(x, y) is continuous in x and y separately. By Lemma
6.13 below, it follows that Ψ(x, y) = K(x, y) for all x and y.

Lemma 6.13. Let X and Y be two positive Borel measure spaces. Let D be
a measurable function on X × Y such that D(x, y) = 0 almost everywhere and
D(x, y) is a continuous function of x and y separately. Then D(x, y) = 0 for all
x and y.

Proof. Because
∫
X

∫
Y
|D(x, y)|dydx = 0, the set {x ∈ X|

∫
Y
|D(x, y)|dy > 0}

has measure zero. Let S ⊆ X denote its complement. For fixed x′ ∈ S,
D(x′, y) = 0 for almost all y ∈ Y . By the continuity of y 7→ D(x′, y), D(x′, y) =
0 for all y ∈ Y . Therefore S × Y ⊆ {(x, y)|D(x, y) = 0}. This means that for
any y ∈ Y , D(x, y) = 0 for all x ∈ S, i.e. for almost all x ∈ X. Now by the
continuity of x 7→ D(x, y), it follows that D(x, y) = 0 for all x ∈ X and all
y ∈ Y .
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7 A Fourier trace formula for GL(2)

For integers m1,m2, n > 0, we will compute a variant of the Kuznetsov/Brug-
geman trace formula, involving Fourier coefficients at m1,m2, the eigenvalues
of Tn, and Kloosterman sums.

Let f = f∞ × fn, with f∞ ∈ Cmc (G+//K∞) for m ≥ 8 to allow for use of
Corollary 6.12 (though for the convergence of the cuspidal term in Proposition
7.5 we will take m ≥ 12). For real numbers y1, y2 > 0 and K(x, y) as in (6.10),
consider the expression

I =
1√
y1y2

∫∫

(N(Q)\N(A))2

K(n1
( y1

1

)
, n2
( y2

1

)
) θm1

(n1) θm2
(n2) dn1dn2, (7.1)

where
θm(

(
1 x
0 1

)
) = θm(x) = θ(−mx)

for the standard character θ defined by (2.5), and dnj is the Haar measure
of total volume 1. We will compute the relative trace formula obtained by
evaluating the above in two ways, using the geometric and spectral expressions
for the kernel. The result is a primitive Kuznetsov formula given as Theorem
7.13. The variables y1, y2 give us some extra flexibility. To obtain a more refined
formula, we will set

y1m1 = y2m2 = w (7.2)

in the primitive formula, and then integrate w from 0 to ∞. The result is
Theorem 7.14, which is a generalized Kuznetsov formula.

7.1 Convergence of the spectral side

According to Corollary 6.12,

K(x, y) = Kcusp(x, y) +Kcont(x, y) +Kres(x, y),

where each term on the right is separately continuous in each variable. Each
term is also bounded on the compact set (N(Q)\N(A))2 by Theorems 6.10 and
6.11, and hence integrable there. Furthermore, the sums defining Kcusp and
Kcont can be pulled out of the double integral for the same reason.

The justification for integrating over w will be handled later.

7.2 Cuspidal contribution

Here we will compute the cuspidal term

Icusp =
1√
y1y2

∫∫

(N(Q)\N(A))2

Kcusp(n1

(
y1

1

)
, n2

(
y2

1

)
) θm1

(n1)θm2
(n2)dn1dn2.
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By Lemma 3.10, R0(f) annihilates the orthogonal complement of L2
0(ω)

K∞×K1(N).
Let FA be the eigenbasis of L2

0(ω)
K∞×K1(N) defined in Proposition 4.8, so that

for ϕ ∈ FA we have R(f)ϕ(x) =
√
nh(t)λn(ϕ)φ(x). Then Kcusp(x, y) equals

√
n

∑

ϕj∈FA

h(tj)λn(ϕj)ϕj(x)ϕj(y)

‖ϕj‖2
=
√
n

∑

uj∈F

h(tj)λn(uj)ϕuj
(x)ϕuj

(y)

‖uj‖2

for F as in (4.25). As explained in Section 7.1 above, Icusp is absolutely conver-
gent, and by Fubini’s Theorem

Icusp =

√
n

y1y2

∑

j

h(tj)λn(uj)

‖uj‖2
∫

Q\A

ϕuj

(( y1 x
0 1

))
θm1

(x) dx

∫

Q\A

ϕuj

(( y2 x
0 1

))
θm2

(x)dx.

Lemma 7.1. Let u be a Maass cusp form with Fourier expansion as in (4.8).
Then for r ∈ Q and y ∈ R∗,

∫

Q\A
ϕu(
( y x
0 1

)
)θr(x)dx =

{
ar(u)y

1/2Kit(2π|r|y) if r ∈ Z− {0}
0 otherwise.

Proof. Using the fundamental domain [0, 1]× Ẑ for Q\A and (4.18), we have

∫

Q\A
ϕu(
( y x
0 1

)
)θr(x)dx =

∫ 1

0

u(x+ iy)θ∞(rx)dx

∫

Ẑ

θfin(rx)dx.

The second integral on the right vanishes unless r ∈ Z, in which case it is equal

to 1. Assuming r ∈ Z, this becomes
∫ 1

0
u(x + iy)e−2πirxdx, and the assertion

then follows by substituting the Fourier expansion (4.8) of u.

Lemma 7.2. Let {uj} be an orthogonal basis for L2
0(N,ω

′) consisting of cusp
forms. Let tj be the spectral parameter of uj. Then for any M > 0,

∣∣∣{j : |tj | ≤M}
∣∣∣ <∞. (7.3)

Remark: Much more is known. According to Weyl’s Law (which in this context
follows from the Selberg trace formula),

∣∣∣{j : |tj | ≤M}
∣∣∣ = vol(Γ0(N)\H)

4π
M2 +O(N1/2M log(NM)) (7.4)

([IK] p. 391, [Sel4] p. 668).

Proof. Let h(iz) ∈ PW 4(C)even. By Proposition 3.6, there exists a function
f∞ ∈ C2

c (G
+//K∞) whose Selberg transform is h(t). Let f ′ = f∞ × f1, where

f1 is the Hecke operator onG(Afin) with n = 1. By Proposition 4.8, the operator
R0(f

′) is diagonalizable with eigenvalues h(tj). By Theorem 6.4, this operator
is Hilbert-Schmidt. Therefore

∑

j

|h(tj)|2 <∞.
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On the other hand, if (7.3) fails to hold, the set {tj : |tj | ≤ M} has a limit
point P ∈ C. Choosing h so that h(P ) 6= 0 would then contradict the above
summability. It remains to show that such h exists. If P = 0, we can let h be
the Mellin transform of a nonzero element Φ ∈ C∞

c (R+)w that assumes only
nonnegative real values. Then h(0) =

∫∞
0

Φ(y)dyy > 0, as needed. Now suppose

P 6= 0. Let h1 ∈ PW (C)even be nonzero, with h1(Q) 6= 0, say. By continuity,
we may assume that Q 6= 0. Then we can take h(z) = h1(

Q
P z).

Corollary 7.3. The set of exceptional spectral parameters tj /∈ R is finite.

Proof. If tj is exceptional, then by Proposition 4.7, tj = −is for some real
s ∈ (− 1

2 ,
1
2 ). In particular, |tj | < 1

2 , and the above lemma shows that the set of
such tj is finite.

Lemma 7.4. With tj as in Lemma 7.2, we have

∑

j

|h(tj)| <∞

for any function h(iz) ∈ PWm(C)even with m ≥ 10.

Remark: More is known. Using Weyl’s Law (7.4), it is straightforward to show
that 1 + |tj | ≫ j1/2. Therefore

∑
|h(tj)| ≪

∑
(1 + |tj |)−m ≪

∑
j−m/2 < ∞ if

m > 2.

Proof. Let f ′ = f∞ × f1 be the global function attached to h as in the proof of
Lemma 7.2. Let ϕj =

ϕuj

‖ϕuj
‖ ∈ L2

0(ω) be the unit vector attached to uj . Noting

that f∞ ∈ C8
c (G

+//K∞) by Proposition 3.6, we can write f ′ = a ∗ b + c ∗ d
for bi-K∞-invariant functions a, b, c, d ∈ C2

c (G(A), ω) by Lemma 6.9. Then by
(4.24),

∑

j

|h(tj)| =
∑

j

| 〈R0(f
′)ϕj , ϕj〉 | =

∑

j

| 〈R0(a)R0(b)ϕj , ϕj〉+〈R0(c)R0(d)ϕj , ϕj〉 |

≤
∑

j

| 〈R0(b)ϕj , R0(a
∗)ϕj〉 |+

∑

j

| 〈R0(d)ϕj , R0(c
∗)ϕj〉 |

≤
∑

j

‖R0(b)ϕj‖‖R0(a
∗)ϕj‖+

∑

j

‖R0(d)ϕj‖‖R0(c
∗)ϕj‖

≤
(∑

j

‖R0(b)ϕj‖2
)1/2(∑

j

‖R0(a
∗)ϕj‖2

)1/2

+
(∑

j

‖R0(d)ϕj‖2
)1/2(∑

j

‖R0(c
∗)ϕj‖2

)1/2
.

The above is finite since all four operators are Hilbert-Schmidt by Theorem
6.4.
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Proposition 7.5. Given h(iz) ∈ PWm(C)even with m ≥ 10, let f∞ be its
inverse spherical transform in Cm−2(G+//K∞) as in Proposition 3.6, and let
f = f∞×fn. Then the integral Icusp is absolutely convergent. It vanishes unless
m1,m2 ∈ Z−{0}. Let F be an orthogonal eigenbasis for L2

0(N,ω
′) as in (4.25).

Then for m1,m2 ∈ Z+, we have

Icusp =
√
n

∑

uj∈F

λn(uj) am1
(uj)am2

(uj)

‖uj‖2
h(tj)Kitj (2πm1y1)Kitj (2πm2y2), (7.5)

the sum converging absolutely. Now suppose m ≥ 12. Then letting Icusp(w)
denote the above when w = y1m1 = y2m2, we have

∫ ∞

0

Icusp(w)dw =
π
√
n

8

∑

uj∈F

λn(uj) am1
(uj)am2

(uj)

‖uj‖2
h(tj)

cosh(πtj)
, (7.6)

the sum and integral converging absolutely.

Remark: In fact, (7.6) converges absolutely for any function h (holomorphic or
not) satisfying a bound of the form h(t)≪ 1

(1+|t|)m for m > 3. Indeed, granting

Weyl’s Law, one finds as in the proof below that (7.6) is≪∑ |h(tj)|(1+ |tj |)≪∑
(1 + |tj |)−m+1 ≪ ∑

j(−m+1)/2 < ∞ if m > 3. By the fact that Weyl’s Law
is an exact asymptotic, any improvement allowing smaller m (say m > 2) must
come from a strengthening of the estimate (7.8).

Proof. The absolute convergence of Icusp (with absolute values inside the sum
defining Kcusp) is a consequence of the continuity result of Theorem 6.10 and
the compactness of N(Q)\N(A). The equality (7.5) and fact that m1,m2 must
be integers follow immediately from Lemma 7.1 and the discussion preceding
it. The second Bessel factor does not need the complex conjugate because tj is
purely imaginary or purely real (cf. Proposition 3.8), so that Kitj (x) is real for
real x by (4.9) (if t is real, consider w 7→ w−1 in that equation).

Equation (7.6) follows formally from (7.5) by the identity

∫ ∞

0

Kit(2πw)
2dw =

Γ( 12 + it)Γ( 12 − it)
8

=
π

8 cosh(πt)
(7.7)

([GR], 6.576), which is valid whenever Im(t) = Re(it) < 1
2 , which holds here by

Proposition 3.8. As justification, we have to prove that the integral

∫ ∞

0

√
n

∑

uj∈F

|λn(uj) am1
(uj)am2

(uj)|
‖uj‖2

|h(tj)Kitj (2πw)
2|dw

converges. By (7.7) and the fact that |Kit(2πw)|2 = Kit(2πw)
2, this amounts

to showing that the right-hand side of (7.6) is absolutely convergent.
Recall that |λn(uj)| is bounded by a constant depending only on n. (For an

elementary proof, see [Ro], Proposition 2.9. Currently the best known bound is
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τ(n)n7/64 due to Kim and Sarnak [KS]. According to the Ramanujan conjecture,
|λn(uj)| ≤ τ(n).)

For any Maass cusp form u with spectral parameter t, and m 6= 0, we have
the well-known elementary bound

|an(u)|2
‖u‖2 ≪ ψ(N)(|t|+ |n|

N
) eπ|t|,

where the implied constant is absolute (see Theorem 3.2 of [Iw2]). This gives

|am1
(u)am2

(u)|
‖u‖2 ≪N,m1,m2

(1 + |t|)eπ|t|. (7.8)

When t is real, the exponential factor is negated by cosh(πt) ≫ eπ|t| in the
denominator of (7.6). For the finitely many non-real tj , we have |tj | ≤ 1

2 .
Hence

∑

uj∈F

|λn(uj) am1
(uj)am2

(uj)h(tj)|
‖uj‖2 cosh(πtj)

≪
∑

j

|h(tj)|(1 + |tj |). (7.9)

Let h̃(t) = t2h(t). Assuming h(iz) is Paley-Wiener of order m ≥ 12, it is easy
to show that h̃(iz) ∈ PW 10(C)even. Note that

∑

|tj |≥2

|h(tj)|(1 + |tj |) <
∑

|tj |≥2

|tj |2|h(tj)| =
∑

|tj |≥2

|h̃(tj)|.

By Lemma 7.4 above, the latter expression is finite. In view of (7.3) withM = 2,
this implies that the right-hand side of (7.9) is finite.

7.3 Residual contribution

By (6.13), Kres vanishes when ω is nontrivial. Otherwise by (6.14) we have

Ires(f,m1,m2, w) =
1√
y1y2

∫∫

(Q\A)2

Kres(
( y1 x1

0 1

)
,
( y2 x2

0 1

)
)θm1

(x1) θm2
(x2) dx1 dx2

=
3h( i2 )

π
√
y1y2

(∑

d|n
d
)∫

Q\A
θ(m1x)dx

∫

Q\A
θ(m2x)dx.

Both integrals vanish since m1,m2 6= 0. Thus the residual spectrum makes no
contribution to this trace formula.

7.4 Continuous contribution

We continue to assume that f = f∞×fn satisfies the hypotheses of (7.1). Using
the decomposition H(0) =

⊕
H(χ1, χ2), the continuous kernel is given by

Kcont(g1, g2) =
1

4π

∑

χ1,χ2

∑

φ

∫ ∞

−∞
E(πit(f)φit, g1)E(φit, g2)dt. (7.10)
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Here χ1, χ2 ranges through all (ordered) pairs of finite order Hecke charac-
ters satisfying χ1χ2 = ω, and φ ranges through an orthonormal basis for
H(χ1, χ2)

K∞×K1(N). By Corollary 5.11, the latter space is nonzero if and only
if cχ1

cχ2
|N . In particular, both sums above are finite.

For φ ∈ H(χ1, χ2)
K∞×K1(N) we know that

πit(f)φit =
√
nλn(χ1, χ2, it)h(t)φit

by Proposition 5.2. Hence for the orthogonal basis B(χ1, χ2) given in Corollary
5.11,

Kcont(g1, g2) =
√
n

4π

∑

χ1,χ2

∑

φ∈B(χ1,χ2)

1

‖φ‖2
∫ ∞

−∞
h(t)λn(χ1, χ2, it)E(φ, it, g1)E(φ, it, g2)dt. (7.11)

We need to integrate the above over (N(Q)\N(A))2. For m ∈ Q and real
y > 0, let

aφm(s, y) =

∫

N(Q)\N(A)

E(φ, s, n
( y

1

)
) θm(n)dn

be the adelic Fourier coefficient of E(φ, s, n
( y

1

)
). The above coincides with the

mth Fourier coefficient of Eφ(s, z), which was denoted am(s, y) earlier. Indeed,

using the fundamental domain [0, 1]× Ẑ for Q\A,

aφm(s, y) =

∫ 1

0

∫

Ẑ

E(φ, s,
( y x
0 1

)
×
(
1 u
0 1

)
)e(−mx)θfin(mu) du dx

=

∫ 1

0

E(φ, s,
( y x
0 1

)
× 1fin)e(−mx)dx

∫

Ẑ

θfin(mu) du.

Because Ẑ = ker θfin, this is

=





∫ 1

0

Eφ(s, x+ iy)e(−mx) dx m ∈ Z

0 otherwise

= am(s, y), as claimed.
Therefore by the formula for Fourier coefficients given in §5.6, the continuous

contribution to the trace formula is

Icont =
1√
y1y2

∫∫

(Q\A)2

Kcont(
( y1 x1

1

)
,
( y2 x2

1

)
)θm1

(x1)θm2
(x2)dx1dx2

=

√
n

4π
√
y1y2

∑

χ1,χ2

∑

φ

∫ ∞

−∞

λn(χ1, χ2, it)

‖φ‖2 h(t)aφm1
(it, y1) a

φ
m2(it, y2) dt

=
√
n

∑

χ1,χ2

∑

(ip)

∫

R

λn(χ1,χ2,it)σit(χ
′
1,χ

′
2,m1)σit(χ′

1,χ
′
2,m2)(

m1
m2

)itKit(2πm1y1)Kit(2πm2y2)h(t)

‖φ(ip)‖2|Γ( 1
2+it)|

2|LN (1+2it,χ1χ2)|2
dt.

(7.12)
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The notation is as in §5.6, and is also recalled in Theorem 7.14 below. We have
used the fact that |C(ip)| = 1 and that Kit(x) is real.

We explained in §7.1 why the above expression is absolutely convergent.
This can also be seen directly, using the following lemma.

Lemma 7.6. For y > 0 and s = σ + it with σ ≥ 0,

|Ks(y)|
|Γ( 12 + s)| ≤

(
2

y

)σ
(1 + 2|s|)
y
√
π

.

Proof. By Basset’s formula for Kν(z) (eq. (1) on p. 172 of [Wa]),

Ks(y)

Γ( 12 + s)
=
(2
y

)s 1√
π

∫ ∞

0

cos(yx)

(x2 + 1)
1
2+s

dx,

valid for σ > 0. Integrating by parts, we have

Ks(y)

Γ( 12 + s)
=
(2
y

)s (1 + 2s)

y
√
π

∫ ∞

0

x sin(yx)

(x2 + 1)
3
2+s

dx.

This equality is valid on σ > − 1
2 since the right-hand side is convergent for such

s. Therefore if σ ≥ 0,

|Ks(y)|
|Γ( 12 + s)| ≤

(2
y

)σ (1 + 2|s|)
y
√
π

∫ ∞

0

x

(x2 + 1)
3
2

dx =
(2
y

)σ (1 + 2|s|)
y
√
π

.

By the lemma, the combined contribution of the Bessel and Gamma func-
tions in the integrand of (7.12) is ≪ (1 + 2|t|)2. By Corollary 2.3,

LN (1 + 2it, χ1χ2)
−1 = L(1 + 2it, χ′

1χ
′
2)

−1 ≪ε N
ε(log(3 + 2|t|))7. (7.13)

Thus, the absolute convergence of the integral (7.12) follows from

h(t)≪ (1 + |t|)−4 (7.14)

(which holds since h(iz) is Paley-Wiener of order m ≥ 10 > 4).
In fact we can prove the following asymptotic bound for Icont.

Proposition 7.7. For any ε > 0, the quantity (7.12) is ≪ N
1
2+ε. The implied

constant is ineffective, but depends only on ε, n, m1, m2, f∞, and y1, y2.

Proof. By Proposition 5.17, we have
∣∣∣σit(χ′

1, χ
′
2,m1)σit(χ′

1, χ
′
2,m2)

∣∣∣
‖φ(ip)‖2

≪m1,m2,ε N
ε. (7.15)

It is clear that

|λn(χ1, χ2, it)| =
∣∣∣
∑

d|n
( n

d2 )
itχ1(dN )χ2((

n

d )N )
∣∣∣ ≤ τ(n)≪n 1.
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Therefore by Lemma 7.6 and (7.13)-(7.15), the integral occurring in (7.12) is

≪ N3ε

∫ ∞

−∞
h(t)(1 + 2|t|)2(log(3 + 2|t|))14dt = O(N3ε), (7.16)

with the implied constant depending on f∞, ε, y1, y2,m1,m2, and n. Thus, re-
calling Corollaries 5.10 and 5.11, (7.12) is

≪ N3ε
∑

(ip)

0≤ip≤Np

∑

(ν1p,ν2p)

ν2p≤ip≤Np−ν1p

∑
χ1χ2=ω

cχj
=

∏
p p

νjp

(j=1,2)

1.

The set of tuples (ip) is in 1-1 correspondence with the set of positive divisors
M =

∏
pip of N , and likewise {(ν1p)} ↔ {ν1|NM } and {(ν2p)} ↔ {ν2|M}. Hence

the above triple sum can be rewritten
∑

M |N

∑

ν2|M

∑

ν1| N
M

∑
χ1χ2=ω
cχ1

=ν1
cχ2

=ν2

1.

The number of terms M is ≪ Nε, and the same is true for ν1 and ν2. Thus
for fixed M,ν1, ν2, it remains to count the number of pairs (χ1, χ2). Because
ν1ν2|N , there exists j ∈ {1, 2} such that νj ≤ N1/2. The number of possibilities
for the character χj of conductor νj is |(Z/νjZ)∗| ≤ N1/2. Once χj is chosen,
its counterpart is determined by χ1χ2 = ω. Thus the number of pairs (χ1, χ2)

is ≤ N1/2. This proves that (7.12) is ≪ N
1
2+6ε.

Lastly, let Icont(w) denote the quantity in (7.12) with w = m1y1 = m2y2.

Using (7.7), we see that

∫ ∞

0

Icont(w)dw is equal to

√
n

8

∑

χ1χ2=ω

∑

(ip)

∫ ∞

−∞

λn(χ1, χ2, it)σit(χ
′
1, χ

′
2,m1)σit(χ′

1, χ
′
2,m2)(

m1

m2
)ith(t)

‖φ(ip)‖2|LN (1 + 2it, χ1χ2)|2
dt.

(7.17)
The exchange of the dt and dw integrals is justified by the absolute conver-
gence of (7.17), which is proven in the same way as Proposition 7.7, giving the
following.

Proposition 7.8. For any ε > 0, the quantity (7.17) is ≪ε N
1
2+ε.

7.5 Geometric side

In this section, we take f as in (7.1), although we can relax the requirement on
m. In Proposition 7.9, we will require m ≥ 5, and in Propositions 7.11 and 7.12
we need m > 2.

For positive integers m1,m2, we need to evaluate the integral (7.1)

I = If,m1,m2,y1,y2 =
1√
y1y2

∫

Q\A

∫

Q\A
K(
(
y1 t1
0 1

)
,
(
y2 t2
0 1

)
)θ(m1t1−m2t2)dt1 dt2,
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using K(g1, g2) =
∑
γ∈G(Q) f(g

−1
1 γg2). This was carried out in detail with a

different choice of f∞ in [KL1], and we follow the same procedure here.
Let H = N ×N , and endow it with an action on G by

(n1, n2) · γ = n−1
1 γn2.

We break the sum over γ ∈ G(Q) into H(Q)-orbits to get

I =
∑

δ∈N(Q)\G(Q)/N(Q)

∫

Hδ(Q)\H(A)

f(
(
y1 t1

1

)−1
δ
(
y2 t2

1

)
)
θm1

(t1)θm2
(t2)√

y1y2
d(t1, t2).

Here Hδ denotes the stabilizer of δ, and d(t1, t2) denotes the quotient measure
coming from the Haar measure dt1dt2 on H(A) ∼= A × A, the latter being
normalized as in Section 2.1. The interchange of the sum and the integral is
justified because the function

∑
γ |f(x−1γy)| is continuous and hence integrable

over the compact set H(Q)\H(A).
We let Iδ(f) denote the integral attached to δ as above. The following set

of representatives δ is obtained from the Bruhat decomposition:

{
(
γ 0
0 1

)∣∣ γ ∈ Q∗}
⋃
{
(
0 −µ
1 0

)∣∣ µ ∈ Q∗}.

An orbit δ is relevant if the character θm1
θm2

is trivial on Hδ(A). The orbital
integral Iδ(f) vanishes if δ is not relevant. It is straightforward to show that
the relevant orbits are

{
(
m2/m1 0

0 1

)
}
⋃
{
(
0 −µ
1 0

)∣∣ µ ∈ Q∗}.

See [KL1] for details.

7.5.1 First cell term

Proposition 7.9. Let δ =
(
m2/m1

1

)
for m1,m2 > 0. Then Iδ(f) is nonzero

only if m1m2 = b2n for some positive integer b| gcd(m1,m2). If this condition
is met, then

Iδ(f) =
ψ(N)ω′(m1/b)

b
√
y1y2

∫ ∞

−∞
V

(
t2 +m2

1y
2
1 +m2

2y
2
2

m1y1m2y2
− 2

)
e2πitdt (7.18)

for V as in (3.5). Letting Iδ(w) denote the above quantity for w = y1m1 = y2m2,
we have ∫ ∞

0

Iδ(w)dw =
ψ(N)

√
n

2ω′(
√
m1n/m2)

V (0). (7.19)

Proof. For this choice of δ, we find as in [KL1] that

Hδ(Q) =

{
(

(
1 m2

m1
t

1

)
,

(
1 t

1

)
)| t ∈ Q

}
.
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Now note that
(
y1 t1

1

)−1(m2

m1

1

)(
y2 t2

1

)
=

(m2y2
m1y1

1
y1
(m2

m1
t2 − t1)
1

)

=

(
m1y1

m1y1

)−1(
m2y2 m2t2 −m1t1

m1y1

)
.

Here we view mj ∈ Q∗ ⊆ A∗ and yj ∈ R+. Thus because f is invariant under
Z(R)+Z(Q),

Iδ(f) =

∫∫

{(m2
m1

t2,t2)∈Q2}\A2

f(

(
m2y2 m2t2 −m1t1
0 m1y1

)
)
θ(m1t1 −m2t2)√

y1y2
d(t1, t2).

Here d(t1, t2) is the quotient measure coming from dt1dt2. In A2, let t =
m2t2 − m1t1. Then the map A2 → A2 defined by (t1, t2) 7→ (t, t2) induces a
homeomorphism between the quotient spaces

{(
m2

m1
t2, t2

)
|t2 ∈ Q

}
\A2 −→ {(0, t2)|t2 ∈ Q}\A2 = A× (Q\A).

Noting that dt dt2 = |m1|Adt1dt2 = dt1dt2, we see that the quotient measure is
d(t1, t2) = dt dt2, where we use dt2 now to represent the quotient measure on
Q\A. Thus

Iδ(f) =

∫

A

∫

Q\A
f(
(
m2y2 t

m1y1

)
)
θ(−t)dt2 dt√

y1y2
=

∫

A

f(
(
m2y2 t

m1y1

)
)
θ(−t)√
y1y2

dt.

The integral factors as Iδ(f)finIδ(f)∞. As shown in Proposition 3.3 of [KL1], the
finite part vanishes unless m1m2 = b2n for some positive integer b| gcd(m1,m2),
in which case

Iδ(f)fin =
ψ(N)

bω′(m1/b)
.

The archimedean part is

Iδ(f)∞ =
1√
y1y2

∫ ∞

−∞
f∞(

(
m2y2 t

m1y1

)
)e2πitdt,

and (7.18) follows upon using (3.7).

Set w = y1m1 = y2m2 in (7.18), so 1√
y1y2

=
√
m1m2

w . Then

Iδ(w) =
ψ(N)

√
m1m2

bω′(m1/b)

1

w

∫ ∞

−∞
V (

t2

w2
)e2πitdt.

Replacing t by wt and dt by dt
w , and using

√
m1m2

b =
√
n, we have

∫ ∞

0

Iδ(w)dw =
ψ(N)

√
n

ω′(
√
m1n/m2)

∫ ∞

0

∫ ∞

−∞
V (t2)e2πiwtdt dw.
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Let r(t) = V (t2), a compactly supported continuous even function. Note that

r̂(w) =

∫ ∞

−∞
V (t2)e−2πiwtdt =

∫ ∞

−∞
V (t2)e2πiwtdt

is also an even function. By Fourier inversion,

1

2
V (0) =

1

2
r(0) =

1

2

∫ ∞

−∞
r̂(w)dw =

∫ ∞

0

r̂(w)dw,

which proves (7.19). We recall that Fourier inversion is valid so long as r and
r̂ are both integrable. Because f∞ ∈ Cmc (G+//K∞) for m ≥ 5, V and r are
compactly supported and twice continuously differentiable by Proposition 3.2.
It follows by a standard argument (see Proposition 8.8 below) that r̂(w) ≪
(1 + w2)−1 and hence is integrable.

7.5.2 Second cell terms

We will need a few facts and definitions. For the function k(z1, z2) attached to
f∞ in (3.8), define its Zagier transform by

Zk(s, t) =
∫∫

H

k(z + t,
−1
z

)ysdz,

where dz = dx dy
y2 . Using Proposition 3.3, we see that

Zk(s, t) =
∫∫

H

V
( |z2 + tz + 1|2

y2

)
ysdz =

∫∫

H

V
( |z2 + 1− t2

4 |2
y2

)
ysdz,

where the second expression comes from completing the square and replacing z
by z− t

2 . We refer to Proposition 4 of [Za] (where the above is denoted V (s, t))
for the absolute convergence and other information. In Section 5 of [Za], it is
computed in terms of the Selberg transform h(t).

We will only be interested in the case s = 1, so we set

Z(t) = Zk(1, t) =
∫∫

H

V

(
|z2 + 1− t2

4 |2
y2

)
dy

y
dx. (7.20)

This is expressed in terms of the Selberg transform h(t) in (4.12) of [Za]. Since
V is compactly supported, Z(t) is also compactly supported as a function of

t ∈ R. Indeed, writing u = x2, v = y2 and w = −(1− t2

4 ), we have

|z2 + 1− t2

4 |2
y2

=
(u− v − w)2 + 4uv

v
=

(−u− v + w)2 + 4vw

v
≥ 4w = t2 − 4.

Thus, if |t| is sufficiently large, t2 − 4 exceeds the supremum of Supp(V ), and
the integrand of (7.20) is 0.

The orbital integral attached to δ =
(
0 −µ
1 0

)
involves the Fourier transform

Ẑ(a) =

∫ ∞

−∞
Z(t)e−2πiatdt =

∫ ∞

−∞
Z(t)e2πiatdt.
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Proposition 7.10. For a 6= 0, we have

Ẑ(a) =
i

4a

∫ ∞

−∞
J2it(4πa)

h(t) t

cosh(πt)
dt

for the J-Bessel function, and the Selberg transform h(t) of f∞.

Proof. This is due to Zagier. The proof is explained in §2.1 of [Joy]. Another
account is given in [LiX], Lemma 3.4. The absolute convergence of the integral
holds by the fact that h ∈ PWm(C)even for m > 2 (see the proof of Proposition
7.12 below).

Also, for any c ∈ cω′Z+, we will need the following generalized Kloosterman
sum:

Sω′(a, b; n; c) =
∑

d,d′∈Z/cZ,
dd′=n

ω′(d)e(
ad+ bd′

c
). (7.21)

We will describe some basic properties of these sums in Section 9.

Proposition 7.11. Let δ =
(
0 −µ
1 0

)
for µ ∈ Q∗. Then Iδ(f) is nonzero only if

µ = n

c2 for some positive integer c ∈ NZ. Under this condition,

Iδ(f) = ψ(N)
Sω′(m2,m1; n; c)√

y1y2

∫∫

R×R

k(z1,
−n
c2z2

)e2πi(m2x2−m1x1)dx1dx2, (7.22)

where k(z1, z2) = f∞(g−1
1 g2) as in (3.8). Taking Iδ(w) to be the above quantity

when w = m1y1 = m2y2, the integral
∫∞
0
Iδ(w)dw equals

i
√
nψ(N)

4

Sω′(m2,m1; n; c)

c

∫ ∞

−∞
J2it

(
4π
√
nm1m2

c

)
h(t) t

cosh(πt)
dt. (7.23)

Proof. For δ =
( −µ
1

)
, we find that Hδ(A) = {(1, 1)}. Given y1, y2 > 0, we

need to integrate

f(
( y1 x1

1

)−1( −µ
1

)( y2 x2

1

)
)θ(m1x1 −m2x2). (7.24)

Again the integral factors as Iδ(f)finIδ(f)∞. Because f∞ is supported on
G(R)+, the archimedean integral vanishes unless µ > 0. Under this assumption,
the finite part was shown in Proposition 3.7 of [KL1] to vanish unless µ = n

c2

for some c ∈ NZ+, in which case

Iδ(f)fin =
ψ(N)

ω′(−1)Sω′(m2,m1; n; c) = ψ(N)Sω′(m2,m1; n, c). (7.25)

From (3.8), f∞(
( y1 x1

1

)−1( −µ
1

)( y2 x2

1

)
) = k(z1,

−µ
z2

), so the archimedean part
can be written as

Iδ(f)∞ =
1√
y1y2

∫∫

R×R

k(z1,
−µ
z2

)e(m2x2 −m1x1)dx1dx2.

81



Setting µ = n

c2 , (7.22) follows immediately.

Now write x1 =
√
µm2/m1 t1 and x2 =

√
µm1/m2 t2, so that dx1dx2 =

µdt1dt2 = n

c2 dt1dt2. Then

(
x1 + iy1,

−µ
x2 + iy2

)
=

√
µm2

m1

(
t1 +

iy1m1√
µm1m2

,
−1

t2 +
im2y2√
µm1m2

)
.

The scalar in front does not affect the value of k by (3.9). Set w = m1y1 = m2y2,

so that 1√
y1y2

=
√
m1m2

w . The archimedean part of the integral of Iδ(w) is the

product of
n
√
m1m2

c2 with

∫ ∞

0

∫∫

R×R

k
(
t1 +

iwc

√
nm1m2

,
−1

t2 +
iwc√
nm1m2

)
e2πi

√
nm1m2
c (t2−t1)dt1dt2

dw

w
.

Arguing formally for the moment, we exchange the order of integration. Sub-
stitute t = t1 − t2 for t1, x for t2, and y for wc√

nm1m2
. Then because dw

w is a

multiplicative Haar measure, the above integral is

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

k

(
x+ iy + t,

−1
x+ iy

)
1

y
dy dx e−2πit

√
nm1m2
c dt (7.26)

= Ẑ(

√
nm1m2

c
) =

ic

4
√
nm1m2

∫ ∞

−∞
J2it(

4π
√
nm1m2

c
)
h(t) t

cosh(πt)
dt

by Proposition 7.10. Formula (7.23) now follows upon multiplying by
n
√
m1m2

c2

and the finite part (7.25). The exchange of the order of integration is justified
by Fubini’s Theorem. Indeed, as explained after (7.20), Z|k|(1, t) is compactly
supported as a function of t. Therefore the triple integral (7.26) is absolutely
convergent.

The geometric side is equal to the main term from Proposition 7.9 plus the
sum over c ∈ NZ+ of the term in Proposition 7.11.

Proposition 7.12. We have the following bound for the sum of the Kloosterman
terms on the refined geometric side:

∑

c∈NZ+

i
√
nψ(N)

4

Sω′(m2,m1; n; c)

c

∫ ∞

−∞
J2it

(
4π
√
nm1m2

c

)
h(t) t

cosh(πt)
dt (7.27)

= O(Nε),

where the implied constant depends on n, h, m1, m2, and 0 < ε < 1.

Proof. (See also Theorem 16.8 on page 414 of [IK] for the case n = 1, ω = 1.)
We will show below that

∫ ∞

−∞
J2it

(
4π
√
nm1m2

c

)
h(t) t

cosh(πt)
dt≪

(
2π
√
nm1m2

c

)1−ε
. (7.28)
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In Theorem 9.1 we will prove the Weil-type bound

|Sω′(m2,m1; n; c)| ≤ τ(n)τ(c)(m2n,m1n, c)
1/2c1/2c

1/2
ω′ .

Together these statements imply that (7.27) is

≪ ψ(N)c
1/2
ω′

∑

c∈NZ+

τ(c)

c3/2−ε
≤ ψ(N)N1/2τ(N)

N3/2−ε

∑

c∈Z+

τ(c)

c3/2−ε
. (7.29)

Using τ(N)≪ Nε and ψ(N) = N
∏
p|N (1 + 1

p )≪ N1+ε, this gives

(7.27)≪ N1+εNε

N1−ε = N3ε,

as needed.
It remains to establish (7.28). We let s = σ + it be a complex variable.

Let σ0 <
1
2 be a fixed positive number. The restriction on σ0 is to ensure that

cosh(−iπs) is nonzero on the strip 0 ≤ σ ≤ σ0. From the integral representation

Js(x) =
(x/2)s

Γ(s+ 1/2)
√
π

∫ π

0

cos(x cos θ) sin2s θ dθ (Re s > − 1
2 )

([AAR], Corollary 4.11.2), we see that for σ ≥ 0,

Js(x)≪
(x
2

)σ 1

|Γ(s+ 1
2 )|

for an absolute implied constant. By the hypotheses on h(t), there exists a
positive constant C such that

h(−is)≪ Cσ

(1 + |t|)M ,

for any m ≥M ≥ 2. By these asymptotics, the integrand of (7.28) is

J2s

(
4π
√
nm1m2

c

)
h(−is)(−is)
cosh(−isπ) (7.30)

≪
(
2π
√
nm1m2

c

)2σ |s|Cσ
(1 + |t|)M

1

|Γ(2s+ 1
2 ) cosh(−isπ)|

.

By [AAR], Corollary 1.4.4, for 0 ≤ σ ≤ 1
2 and |t| ≥ 1,

|Γ(s)| =
√
2π|t|σ−1/2e−π|t|/2(1 +O(1/|t|))

for an absolute implied constant. Thus for 0 ≤ σ ≤ σ0 < 1
2 and |t| ≥ 1,

1

|Γ(2s+ 1
2 ) cosh(−isπ)|

≪ |t|−2σ eπ|t|

|e(t−iσ)π + e(−t+iσ)π| = Oσ0
(1).
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The left hand side is continuous and hence bounded on the compact set 0 ≤
σ ≤ σ0, |t| ≤ 1. Thus the expression is bounded on the whole strip 0 ≤ σ ≤ σ0.
(We have imposed σ0 <

1
2 in order to avoid the zero of cosh(−isπ) = cos(sπ)

at s = 1
2 .) Hence for such σ,

J2s

(
4π
√
nm1m2

c

)
h(−is)(−is)
cosh(−isπ) ≪σ0

(
2π
√
nm1m2

c

)2σ |s|Cσ
(1 + |t|)M . (7.31)

Let T be an arbitrary large real number, and let RT be the contour defined
by the rectangle with vertices A = −iT , B = σ0− iT , C = σ0+ iT and D = iT ,
with counter-clockwise orientation. By the Cauchy residue theorem,

∫

RT

J2s

(
4π
√
nm1m2

c

)
h(−is)(−is)
cosh(−isπ) dt = 0.

By the estimate (7.31) with M ≥ 2, we see that

lim
T→∞

∫

AB

(7.30)ds = lim
T→∞

∫

CD

(7.30)ds = 0,

and that (7.30) is absolutely integrable over iR and σ0 + iR. Taking T →∞,

∫ ∞

−∞
J2it

(
4π
√
nm1m2

c

)
h(t) t

cosh(πt)
dt =

∫

Re s=σ0

J2s

(
4π
√
nm1m2

c

)
h(−is)(−is)
cosh(−isπ) dt

≪σ0

(
2π
√
nm1m2

c

)2σ0

by (7.31) with M > 2. Taking σ0 = 1
2 − ε

2 , we obtain (7.28).

7.6 Final formulas

The formulas given below follow upon equating the geometric side with the
spectral side in the two cases (primitive and refined) computed above.

Theorem 7.13 (Pre-KTF). Let F be an orthogonal eigenbasis of Tn for the
space L2

0(N,ω
′) of cusp forms of weight 0, chosen as in (4.25). Let h(iz) ∈

PW 12(C)even, and let f∞ ∈ C10
c (G+//K∞), V , and k be the associated func-

tions as in (3.15), (3.5) and (3.8). Then for any positive integers m1,m2, and
real y1, y2 > 0, we have

√
n

∑

uj∈F

λn(uj) am1
(uj)am2

(uj)

‖uj‖2
h(tj)Kitj (2πm1y1)Kitj (2πm2y2)

+
√
n

∑

χ1,χ2

∑

(ip)

∫ ∞

−∞

λn(χ1, χ2, it)h(t)(
m1

m2
)itKit(2πm1y1)Kit(2πm2y2)

‖φ(ip)‖2 |Γ( 12 + it)LN (1 + 2it, χ1χ2)|2

×σit(χ′
1, χ

′
2,m1)σit(χ′

1, χ
′
2,m2) dt
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= T (m1,m2, n)

√
nψ(N)ω′(

√
nm1

m2
)

√
m1m2y1y2

∫ ∞

−∞
V

(
t2 +m2

1y
2
1 +m2

2y
2
2

m1y1m2y2
− 2

)
e2πitdt

+ψ(N)
∑

c∈NZ+

Sω′(m2,m1; n; c)√
y1y2

∫∫

R×R

k(z1,
−n
c2z2

)e2πi(m2x2−m1x1)dx1dx2,

where:

• χ1, χ2 range through all ordered pairs of finite order Hecke characters with
χ1χ2 = ω and whose conductors satisfy cχ1

cχ2
|N .

• LN (s, χ1χ2) is the partial L-function defined in (2.11).

• λn(χ1, χ2, it) =
∑

d|n

(
n

d2

)it
χ1(dN )χ2((

n

d )N ), where dN is the idele which

agrees with d at all places p|N and is 1 at all other places.

• (ip) runs through all sequences (ip)p|N with

ordp(cχ2
) ≤ ip ≤ Np − ordp(cχ1

).

• χ′
1 is the Dirichlet character of modulus N1 =

∏
p|N

ip<Np

pNp attached to χ1 as

in (2.8).

• χ′
2 is the Dirichlet character of modulus N2 =

∏
p|N
ip>0

pNp attached to χ2 as

in (2.8).

• z1 = x1 + iy1, z2 = x2 + iy2.

• All other notation is given in Theorem 7.14 below.

Remark: The hypothesis that h be Paley-Wiener of order 12 arises from the
following places. We need the inverse Selberg transform f∞ to be in C8

c in
order to apply Corollary 6.12, whose hypothesis stems from the restrictions in
Lemma 6.9. By Proposition 3.6, we are only able to guarantee this if h ∈ PW 10.
Furthermore, we needed z2h(iz) ∈ PW 10 to prove the convergence of the cus-
pidal term. As remarked there, assuming Weyl’s Law would render this step
unnecessary. In computing the main geometric term, we required V to be twice
differentiable to justify using Fourier inversion. For this it would be enough
for f∞ to be in C5

c (see Proposition 3.2), or for h to be Paley-Wiener of order
m > 4 (see Proposition 8.16 below). We will discuss weakening the hypotheses
in Section 8.

For the refined version of the KTF given below, we have multiplied each
term by 8

π
√
n
, and we have used formula (3.17) for V (0). We have also expressed
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everything in purely classical (non-adelic) terms, replacing the sum over pairs
χ1, χ2 of Hecke characters of conductor dividing N by a sum over pairs χ̃1, χ̃2

of Dirichlet characters of modulus N . Indeed, the two correspond bijectively by
(2.8). Furthermore, LN (s, χ1χ2) = L(s, χ̃−1

1 χ̃2) by (2.10). Lastly, we point out
that by that fact that χ1p is unramified when ip = Np, χ̃1 is induced (in the
sense of (2.7)) from the Dirichlet character χ′

1 of modulus N1 attached to χ1 in
the above theorem, and likewise χ̃2 is induced from χ′

2.

Theorem 7.14 (KTF). Let h(iz) ∈ PW 12(C)even (see the remark above). Let
F be an orthogonal eigenbasis of Tn for the space L2

0(N,ω
′) of cusp forms of

weight 0, chosen as in (4.25). Then for any positive integers m1,m2, we have

∑

uj∈F

λn(uj) am1
(uj)am2

(uj)

‖uj‖2
h(tj)

cosh(πtj)

+
1

π

∑

χ̃1,χ̃2

∑

(ip)

∫ ∞

−∞

λn(χ
′
1, χ

′
2, it)σit(χ

′
1, χ

′
2,m1)σit(χ′

1, χ
′
2,m2)(

m1

m2
)ith(t)

‖φ(ip)‖2 |L(1 + 2it, χ̃−1
1 χ̃2)|2

dt

= T (m1,m2, n)ψ(N)ω′(
√

m1n

m2

) 1

π2

∫ ∞

−∞
h(t) tanh(πt) t dt

+
2iψ(N)

π

∑

c∈NZ+

Sω′(m2,m1; n; c)

c

∫ ∞

−∞
J2it

(
4π
√
nm1m2

c

)
h(t) t

cosh(πt)
dt,

where:

• ψ(N) = [SL2(Z) : Γ0(N)] = N
∏
p|N (1 + 1

p ).

• The Petersson norm is given by ‖uj‖2 =
1

ψ(N)

∫

Γ0(N)\H
|uj(x+iy)|2

dx dy

y2
.

• For uj ∈ F , ∆uj = ( 14 + t2j )uj and Tnuj = λn(uj)uj.

• T (m1,m2, n) =

{
1 if m1m2 = b2n for some integer b| gcd(m1,m2)
0 otherwise.

Equivalently, T (a1, a2, a3) ∈ {0, 1} is nonzero if and only if aiaj/ak is a
perfect square for all distinct i, j, k ∈ {1, 2, 3}.

• χ̃1, χ̃2 range through all ordered pairs of Dirichlet characters modulo N
for which χ̃1χ̃2 = ω′ and whose conductors satisfy cχ̃1

cχ̃2
|N .

• (ip) runs through all sequences (ip)p|N with

ordp(cχ̃2
) ≤ ip ≤ ordp(N)− ordp(cχ̃1

).

• ‖φ(ip)‖2 =
∏

p|N
ip=0

p

(p+ 1)

∏

p|N
0<ip<Np

p− 1

pip(p+ 1)

∏

p|N
ip=Np

1

pNp−1(p+ 1)
.

86



• χ′
1 is the Dirichlet character mod N1 =

∏
p|N

ip<Np

pNp inducing χ̃1 as in (2.7).

• χ′
2 is the Dirichlet character mod N2 =

∏
p|N
ip>0

pNp inducing χ̃2 as in (2.7).

• λn(χ′
1, χ

′
2, it) =

∑

d|n

(
n

d2

)it
χ′
1(d)χ

′
2(

n

d ). (This is the same as λn(χ̃1, χ̃2, it)

since χ̃1, χ̃2 are induced from χ′
1, χ

′
2 and (n, N) = 1. It is also the same

as λn(χ1, χ2, it) from the previous theorem, by (2.9).)

• M =
∏
p|N p

ip is also a modulus for χ′
2.

• σit(χ′
1, χ

′
2,m) =

1

M1+2it

∑

c|m

χ′
1(c)

c2it

∑

d∈Z/MZ

χ′
2(d)e(

dm

Mc
). The sum over d is

also expressed in terms of the primitive character inducing χ′
2 in (5.37).

• Sω′(m2,m1; n; c) =
∑

d,d′∈Z/cZ

dd′=n

ω′(d)e(
m2d+m1d

′

c
).

7.7 Classical derivation

When we take n = 1 in the above theorem, we obtain the “classical” Kuznetsov
formula

∑

uj∈F

am1
(uj)am2

(uj)

‖uj‖2
h(tj)

cosh(πtj)

+
1

π

∑

χ̃1,χ̃2

∑

(ip)

∫ ∞

−∞

σit(χ
′
1, χ

′
2,m1)σit(χ′

1, χ
′
2,m2)(

m1

m2
)ith(t)

‖φ(ip)‖2 |L(1 + 2it, χ̃−1
1 χ̃2)|2

dt

= δ(m1,m2)ψ(N)ω′(√m1/m2

) 1

π2

∫ ∞

−∞
h(t) tanh(πt) t dt (7.32)

+
2iψ(N)

π

∑

c∈NZ+

Sω′(m2,m1; c)

c

∫ ∞

−∞
J2it

(
4π
√
m1m2

c

)
h(t) t

cosh(πt)
dt.

Conversely, Theorem 7.14 can also be derived from (7.32). To see this, start by
choosing the orthogonal basis F to consist of Hecke eigenvectors with a1(uj) = 1.
(Such a basis is easily constructed by a Gram-Schmidt procedure; cf. [KL1],
Lemma 3.10.) With this normalization, by (4.10), for all uj ∈ F we have

λn(uj)am1
(uj) =

∑

ℓ| gcd(n,m1)

ω′(ℓ) a nm1

ℓ2
(uj). (7.33)

If we denote the classical formula (7.32) by CK(m1,m2), then the sum
∑

ℓ| gcd(n,m1)

ω′(ℓ) CK( nm1

ℓ2 ,m2) (7.34)
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is precisely Theorem 7.14. The proof of this assertion involves proving four iden-
tities, one for each of the four terms (cuspidal, Eisenstein, main, Kloosterman)
of (7.32). Indeed each term can be summed individually over ℓ as in (7.34) to
recover the corresponding term in Theorem 7.14. For the cuspidal term, this
is immediate from (7.33). For the Kloosterman term, after summing over ℓ,
one applies a generalization of Selberg’s identity for Kloosterman sums, given
in (9.4) below, to obtain the corresponding term in Theorem 7.14. For the main
term, the desired identity follows from

∑

ℓ|(n,m1)

ω′(ℓ) δ( nm1

ℓ2 ,m2)ω′(
√

nm1

ℓ2m2
) = ω′(

√
nm1

m2
)
∑

ℓ|(n,m1)

δ( nm1

ℓ2 ,m2)

= T (m1,m2, n)ω′(
√

nm1

m2
).

The manipulations required for the Eisenstein term are a bit more involved.
The goal is to prove that for any integers n,m prime to N ,

λn(χ
′
1, χ

′
2, it)σit(χ

′
1, χ

′
2,m)mit =

∑

ℓ|(n,m)

ω′(ℓ)σit(χ
′
1, χ

′
2,
mn
ℓ2 )(nmℓ2 )it. (7.35)

Dividing both sides by (nm)it

M1+2it , using ω′(ℓ) = χ′
1(ℓ)χ

′
2(ℓ), and simplifying what

remains, one reduces the problem to showing that

∑

d|n

∑

c|m

χ′
1(dc)χ

′
2(
n
d )

(dc)2it

∑

b mod M

χ′
2(b)e(

bm

Mc
)

=
∑

ℓ|(n,m)

∑

r|nmℓ2

χ′
1(ℓr)χ

′
2(ℓ)

(ℓr)2it

∑

b mod M

χ′
2(b)e(

bmn

Mℓ2r
).

Setting dc = ℓr = a, it then suffices to show that for each divisor a|nm,

∑

d|n,d|a,
a
d
|m

χ′
2(
n
d )

∑

b mod M

χ′
2(b)e(

bmd

Ma
) =

∑

ℓ|(m,n),ℓ|a,

a|nm
ℓ

χ′
2(ℓ)

∑

b mod M

χ′
2(b)e(

bmn

Mℓa
). (7.36)

Proposition 7.15. Given a|mn as above, define

D(a) = {(d, c)| dc = a, d|n, c|m}

and
D′(a) = {(ℓ, r)| ℓr = a, ℓ|(n,m), r|nmℓ2 }.

Then the map

(d, c) 7→
(

(n,a)c
a , a2

(n,a)c

)
=
(

(n,a)
d , ad

(n,a)

)

defines a bijection from D(a) to D′(a), with inverse

(ℓ, r) 7→
(

(n,a)r
a , a2

(n,a)r

)
=
(

(n,a)
ℓ , aℓ

(n,a)

)
.
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The proof of the proposition is left to the reader. Using it, we see that the
left-hand side of (7.36) is equal to

∑

ℓ|(m,n),ℓ|a,

a|nm
ℓ

χ′
2(

ℓn

(n, a)
)
∑

b mod M

χ′
2(b)e(

bm(n, a)

Mℓa
).

Replacing b by b n
(n,a) (which is valid since n

(n,a) is prime to M), we obtain the

right-hand side of (7.36), as needed.
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8 Validity of the KTF for a broader class of h

We have shown that the Kuznetsov trace formula is valid for the restricted class
of functions h with h(iz) ∈ PW 12(C)even. For certain applications it is useful

to allow for a wider class of functions. For example, the Gaussian h(t) = e−t
2/T 2

has rapid decay for real t, but h(iz) is not Paley-Wiener of any order, due to
faster than exponential growth when z is real. Here we consider functions h
satisfying: 




h is even,

h(t) is holomorphic in the region | Im t| < A,

h(t)≪ (1 + |t|)−B in the region | Im t| < A,

(8.1)

for positive real constants A and B.

Theorem 8.1. If A,B are sufficiently large, then the KTF (Theorem 7.14) is
valid for all functions h satisfying (8.1).

Remarks: (1) We will not obtain the optimum values for A,B. Kuznetsov’s
original paper established the formula in the case N = 1 for any A > 1

2 and
B > 2, [Ku]. According to [IK] Theorem 16.3, these parameters work for any
level N . This is the range used by Selberg in his original work on the trace
formula [Sel2]. Since, as proven by Selberg, we have | Im(t)| < 1

4 for the cuspidal
spectral parameters t, it is plausible that A > 1

4 would suffice. This has been
proven to be the case when N = 1 by Yoshida, [Y]. However, allowing A < 1

2
results in poorer control over the size of the Kloosterman term. See Proposition
8.24 below and the remarks following it.

(2) Given the above theorem, one can use the following idea of Kuznetsov to
show that in fact B > 2 suffices. Briefly, suppose h satisfies (8.1) for some A
sufficiently large as in the theorem, and some B > 2. Choose α > 0 very small,
but still large enough that 1

2α < A. Define, for r ∈ R,

hr(t) = −
1

2

(
h
(r + i

2

α

)
+ h
(r − i

2

α

)) cosh(πr) cosh(παt)

cosh(π(r − αt)) cosh(π(r + αt))
.

Then hr(t) satisfies (8.1) for any B (it has exponential decay as |Re(t)| → ∞),
and for A = 1

2α . Therefore if α is chosen suitably, the KTF is valid for hr(t)
by the theorem. In each term of this KTF, we integrate r over R and use the
identity ∫ ∞

−∞
hr(t)dr = h(t),

which is valid for h analytic on | Im t| ≤ 1
2α ([IK] Lemma 16.4, [Ku] (6.1)), to

conclude that the KTF is valid for h. It is not too hard to justify this process
by showing that everything is absolutely convergent, using the fact that B > 2.

We prove Theorem 8.1 at the end of §8.3. We will make use of the KTF
already established for Paley-Wiener functions of sufficiently high order, and
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a limiting procedure. Given h as in Theorem 8.1, let f be the corresponding
function on G(R)+, i.e. the inverse Selberg transform of h. It might not be
smooth or compactly supported modulo Z(R). In §8.2, we will define a family
of compactly supported Cm functions fT on G(R)+ for T > 1 and some m > 0,
such that fT → f pointwise as T → ∞. We let hT ∈ PWm(C)even be the
Selberg transform of fT . The KTF holds for hT if m is sufficiently large, and
we show that

lim
T→∞

(Spec. side of KTF for hT ) = Spec. side of KTF for h

and
lim
T→∞

(Geo. side of KTF for hT ) = Geo. side of KTF for h,

thus establishing the KTF for h.
We note that Finis, Lapid and Müller have used a different limiting method

for GL(2), and (in large part) beyond, to extend Arthur’s trace formula to
a space of smooth functions allowing non-compact support even at nonarchi-
medean places ([FL], [FLM]).

In §8.1, we extend the basic integral transforms of §3 to allow for non-
compactly supported functions. We then discuss the relationships between the
various functions f, V,Q, h, and establish bounds for certain of their derivatives.
In §8.2 - §8.3, we define hT as in the above discussion, and apply a limiting pro-
cess to the KTF for hT . In the final two sections, we prove a needed auxiliary
result, namely that for a test function f = f∞ × ffin with ffin Schwartz-Bruhat
and f∞ bi-K∞-invariant, twice differentiable, and of mild polynomial decay, the
operator R0(f) is Hilbert-Schmidt.

Notation. Throughout this section, all the constants implicit in≪may depend
on A, B and h (and hence V , f , Q etc.) unless otherwise stated. The notation
Cℓ will denote a constant depending on ℓ, A, B and h, and may have different
values in different places.

8.1 Preliminaries

We start by setting out some necessary trivialities.

Proposition 8.2. Let I be an interval on the real line. Suppose f is a mea-
surable function on R× I with f(t, y) continuous in y for a.e. t ∈ R. Suppose
|f(t, y)| ≤ F (t) for some function F ∈ L1(R). Then

∫
R
f(t, y)dt is a continuous

function of y ∈ I.
Proof. For any ε 6= 0 with y + ε ∈ I,

∫

R

f(t, y + ε)dt−
∫

R

f(t, y)dt =

∫

R

(f(t, y + ε)− f(t, y))dt.

The integrand is bounded by 2F (t). By the dominated convergence theorem,
the integral goes to 0 as ε → 0. Thus

∫
R
f(t, y)dt is a continuous function of

y ∈ I.
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Proposition 8.3. Let I be an interval. Suppose f(t, y) is a measurable function
on R × I such that for a.e. t ∈ R the partial derivative fy(t, y) exists and is
continuous in y. Suppose further that |f(t, y)| ≤ F0(t) a.e. and |fy(t, y)| ≤
F1(t) a.e. for some F0, F1 ∈ L1(R). Then

∫
R
f(t, y)dy and

∫
R
fy(t, y)dt are

continuous functions of y ∈ I and

d

dy

∫

R

f(t, y)dt =

∫

R

fy(t, y)dt.

(Here, we may view fy(t, y) as a function on R by prescribing arbitrary values
on the measure 0 set of t for which the derivative is undefined.)

Proof. The continuity of the integrals follows from the previous proposition. Let
y0 ∈ I be fixed. Because the following double integral is absolutely convergent,
we can apply Fubini’s theorem:

∫ y

y0

∫

R

fy(t, x)dt dx =

∫

R

∫ y

y0

fy(t, x)dx dt

=

∫

R

(f(t, y)− f(t, y0))dt =
∫

R

f(t, y)dt−
∫

R

f(t, y0)dt.

Differentiating with respect to y, the assertion follows by the fundamental the-
orem of calculus.

By induction, we have the following.

Corollary 8.4. Let I be an interval. Suppose f(t, y) is a measurable function
on R× I such that for k = 0, 1, . . . , ℓ:

(i) ∂kf(t,y)
∂ky

exists and is continuous in y for a.e. t ∈ R,

(ii) there exists Fk ∈ L1(R) such that |∂
kf(t,y)
∂yk

| ≤ Fk(t) a.e.
Then dℓ

dyℓ

∫
R
f(t, y)dt is a continuous function of y ∈ I, and

dℓ

dyℓ

∫

R

f(t, y)dt =

∫

R

∂ℓf(t, y)

∂yℓ
dt.

(We may view the integrand ∂ℓf(t,y)
∂yℓ

as a function on R by assigning artibarary

values on the measure 0 set for which the derivative is undefined.)

Proposition 8.5. Let a, b and c be positive real numbers. Suppose f is a con-
tinuous function on R satisfying f(x)≪a,b |x|−a for |x| > b. Then f(x)≪a,b,c

(c+ |x|)−a for all x.

Proof. It is easy to show that |x|−a ≪ (c+ |x|)−a for |x| > b. By the continuity
of f , f(x)≪ 1 ≤ (b+ c)a(c+ |x|)−a for |x| ≤ b. The proposition follows.

Proposition 8.6. Suppose f is a continuous function on an interval [a, b) with
a continuous derivative on (a, b). Suppose limx→a+ f

′(x) = A. Then f has a
continuous derivative on [a, b) with f ′(a) = A.

92



Proof. By definition, f ′(a) = lim
x→a+

f(x)−f(a)
x−a . Since f is continuous at a, we can

apply L’Hospital’s rule, giving f ′(a) = lim
x→a+

f ′(x), as needed.

Proposition 8.7. Let ℓ ≥ 1 be an integer, let I be an interval, and let g ∈ Cℓ(I)
be real-valued. Let J be an interval containing the image of g. Let f ∈ Cℓ(J).
Then

dℓ

dtℓ
f(g(t)) =

ℓ∑

r=1

∑

a1+a2+···+ar=ℓ
ℓ≥a1≥···≥ar≥1

Aa1,...,arf
(r)(g(t))g(a1)(t) · · · g(ar)(t),

where Aa1,...,ar are nonnegative integers independent of f, g.

Proof. Induction.

Proposition 8.8. Suppose φ is a function on R which is ℓ-times continuously
differentiable, with φ(k)(±∞) = 0 and φ(k) ∈ L1(R) for k = 1, . . . , ℓ. Then for
such k and real t 6= 0,

|φ̂(t)| ≤ 1

|2πt|k
∫

R

|φ(k)(x)|dx,

where φ̂(t) =
∫
R
φ(y)e−2πitydy is the Fourier transform of φ.

Proof. See Lemma 19.11 and Proposition 8.15 of [KL2].

V revisited

We now re-examine the integral transforms of Section 3, without the hypothe-
sis of compact support. Let Cm(G+//K∞) denote the set of bi-K∞-invariant
complex-valued functions with continuous m-th derivative. Let Cm(R+)w be
the set of a : R+ −→ C with continuous m-th derivative, satisfying a(y) =
a(y−1).

For f ∈ Cm(G+//K∞) and u ≥ 0, we define

V (u) = V (y + y−1 − 2) = f(

(
y1/2

y−1/2

)
). (8.2)

In the other direction,

f(

(
a b
c d

)
) = V (

a2 + b2 + c2 + d2

ad− bc − 2). (8.3)

Proposition 8.9. For y ∈ R+, the substitution

u = y + y−1 − 2

defines a linear injection: Cm(R+)w −→ Cm
′
([0,∞)) when 3m′ ≤ m+ 1. Any

function in the image of the map is Cm on (0,∞).

Proof. See Proposition 3.1. The proof given there does not actually use the
hypothesis of compact support.
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The Harish-Chandra transform revisited

Given f ∈ Cm(G+//K∞), its Harish-Chandra transform is the function on R+

defined by

(Hf)(y) = y−1/2

∫

R

f(

(
1 x

1

)(
y1/2

y−1/2

)
)dx,

provided the integral is absolutely convergent. If V ∈ Cm′
([0,∞)) is the function

associated to f as above, then

Hf(y) =
∫

R

V (y + y−1 − 2 + x2)dx.

The Mellin transform revisited

Let Φ be a measurable complex-valued function on R+. Its Mellin transform is
the function of C defined by

(MΦ)(s) =MsΦ =

∫ ∞

0

Φ(y)ys dyy ,

provided the integral is absolutely convergent. For example, starting with f ∈
Cm(G+//K∞) with compact support or just sufficient decay, one can define
Φ = Hf and h(t) = MitΦ. However, our interest here is to go in the other
direction, starting from h. Thus we shall need to consider conditions under
which the inverse Mellin transform exists. Throughout this section, η denotes
a complex-valued function satisfying:

{
η(s) is a holomorphic function in A1 < Re s < A2,

η(s)≪ (1 + |s|)−B in the same strip,
(8.4)

for some real numbers A1 < A2 and B > 0.

Proposition 8.10. Suppose B > 1 and σ is a real number satisfying A1 < σ <
A2. For y > 0, define

Φσ(y) =
1

2πi

∫

Re s=σ

η(s)y−sds. (8.5)

The integral is absolutely convergent and independent of σ. Therefore we can
define

Φ(y) =
1

2πi

∫

Re s=σ

η(s)y−sds. (8.6)

Furthermore if A1 = −A2 and η is an even function, then Φ(y) = Φ(y−1).

Proof. The absolute convergence of (8.5) follows from B > 1 and (8.4). Let
σ0 < σ1 be two real numbers in the open interval (A1, A2). For α > 0, let Γα be
the rectangle with vertices σ0±αi, σ1±αi, and counterclockwise orientation. By
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Cauchy’s theorem,
∫
Γα
η(s)y−sds = 0. By (8.4),

∫ σ1

σ0
η(σ ± iα)y−(σ±iα)dσ → 0

as α→∞. It follows that Φσ is independent of σ.
Finally, suppose η is an even function. Letting σ = 0 in (8.6),

Φ(y−1) =
1

2πi

∫

iR

η(s)ysds =
1

2πi

∫

iR

η(−s)y−sds = 1

2πi

∫

iR

η(s)y−sds = Φ(y).

Proposition 8.11. Suppose B > 1 and fix s = σ + iτ with A1 < σ < A2. Let
Φ be the function defined by (8.6). Then MΦ(s) is absolutely convergent and
equal to η(s).

Proof. Write y = e2πv. Then by (8.6),

Φ(y) =
1

2π

∫

R

η(σ + it)e−2πvσe−2πivtdt =
1

2πe2πvσ
η̂σ(v), (8.7)

where ησ(t) = η(σ + it). Because B > 1, (8.4) shows that ησ ∈ L1(R). Let
0 < r < min(A2 − σ, σ −A1). Then by Cauchy’s integral formula,

η(k)(s) =
k!

2πi

∫

|z−s|=r

η(z)dz

(z − s)k+1
≪
∫

|z−s|=r

|dz|
rk+1(1 + |z|)B ≪r

1

(1 + |s|)B .

In order to remove the dependence on r in the estimates that follow, we take
r = 1

2 min(A2 − σ, σ −A1).

From the above, we see that η
(k)
σ (t) = η(k)(σ+ it) ∈ L1(R) and η

(k)
σ (±∞) =

0. By Proposition 8.8,

η̂σ(v)≪ |v|−2

∫

R

|η′′σ(t)|dt≪σ v
−2 (v 6= 0). (8.8)

Thus η̂σ ∈ L1(R), so given s = σ + iτ with σ ∈ (A1, A2), (8.7) gives

∫ ∞

0

|Φ(y)ys|dy
y

=

∫

R

|η̂σ(v)|dv <∞.

This shows thatMΦ(s) is absolutely convergent.
Because ησ is continuous and integrable, and η̂σ ∈ L1(R), we may apply

Fourier inversion, giving:

η(s) = ησ(τ) =

∫

R

η̂σ(v)e
2πivτdv = 2π

∫

R

Φ(e2πv)e2πvσe2πivτdv

= 2π

∫

R

Φ(e2πv)e2πv(σ+iτ)dv =

∫ ∞

0

Φ(y)ys dyy .
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Relationship between h and V

Throughout this section we assume that h satisfies (8.1). We take

η(s) = h(−is),

which satisfies (8.4) with A1 = −A and A2 = A.

Proposition 8.12. Suppose B > 1, and σ is a real number with |σ| < A. For
y > 0, define

Φ(y) =
1

2πi

∫

Re s=σ

h(−is)y−sds. (8.9)

Then Φ belongs to C(R+)w, is independent of σ, and

MitΦ = h(t)

for all complex numbers t with | Im(t)| < A. If we also define Φ(0) = 0, then Φ
is continuous on [0,∞).

Proof. In view of Proposition 8.11, it only remains to verify the continuity of Φ
at y = 0. This will be done in greater generality in the next proposition.

Proposition 8.13. Suppose 0 ≤ ℓ < min(B−1, A) is an integer, and σ is a real
number with |σ| < A. Then the function Φ defined in (8.9) has a continuous
ℓ-th derivative on [0,∞). In fact, for y > 0,

Φ(ℓ)(y) =
1

2πi

∫

Re s=σ

(
ℓ−1∏

k=0

(−s− k)
)
h(−is)y−s−ℓds. (8.10)

The above integral is absolutely convergent and independent of σ. For y = 0,
Φ(ℓ)(0) = 0. Lastly,

Φ(ℓ)(y)≪ℓ (1 + y)−A−ℓ. (8.11)

Proof. Suppose 0 ≤ j ≤ ℓ < B − 1, and write s = σ + it. We have
∣∣∣∣∣

(
j−1∏

k=0

(−s− k)
)
h(−is)

∣∣∣∣∣ ≤ Cj
∏j−1
k=0(|s|+ k)

(1 + |s|)B ≤ Cj
∏j−1
k=0(A+ |t|+ k)

(1 + |t|)B . (8.12)

Letting ξj(s) =
(∏j−1

k=0(−s− k)
)
h(−is), we see from the first inequality in

(8.12) that ξj(s)≪j
1

(1+|s|)B−j , so it satisfies (8.1) with B replaced by B−j > 1.

By Proposition 8.10, the right-hand side of (8.10) is absolutely convergent and
independent of σ.

Given y > 0, let y0 = y/2, y1 = 2y. Then y ∈ I = [y0, y1]. Define Y = y0
if σ + j > 0, Y = y1 if σ + j ≤ 0. Then by (8.12), |ξj(s)ys−j | ≤ Fj(t), where

Fj(t) = Cj
∏j−1

k=0(A+t+k)

(1+|t|)B Y −σ−j ≪ (1 + |t|)−(B−j) is integrable since B − j > 1.

Thus by Corollary 8.4,

dℓ

dyℓ
Φ(y) =

1

2πi

∫

Re s=σ

h(−is)d
ℓy−s

dyℓ
ds,
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where the integral is continuous in y > 0. This proves (8.10). Furthermore,
taking y = e2πv,

1

2πi

∫

Re s=σ

ξℓ(s)y
−s−ℓds =

e−2π(σ+ℓ)v

2π

∫

R

ξℓ(σ + it)e−2πitvdt.

Choose σ such that −A < σ < −ℓ. Then

lim
y→0+

dℓ

dyℓ
Φ(y) = lim

v→−∞
e−2π(σ+ℓ)v

2π

∫

R

ξℓ(σ + it)e−2πitvdt = 0.

The ℓ-differentiability of Φ(y) and the continuity of the ℓ-th derivative at y = 0
now follow by Proposition 8.6.

To obtain the bound (8.11), first suppose y > 0. Then

∫

Re s=σ

∣∣∣∣∣

(
ℓ−1∏

k=0

(−s− k)
)
h(−is)y−s−ℓ

∣∣∣∣∣ |ds| ≪ℓ y
−σ−ℓ

∫

R

dt

(1 + |t|)B−ℓ ≪ℓ y
−σ−ℓ,

since B−ℓ > 1. The implied constant is independent of σ, so we can let σ → A−

to obtain Φ(ℓ)(y) ≪ y−A−ℓ. The desired bound then follows by Proposition
8.5.

For u ≥ 0, define
Q(u) = Φ(y), (8.13)

where y = y(u) = 2+u+
√
4u+u2

2 > 0. Note that in the other direction, u =
y + y−1 − 2.

Proposition 8.14. For y(u) as above, and any nonnegative integer ℓ,

y(ℓ)(u)≪ u−ℓ+1 for u > 1.

Proof. We have

y′(u) =
1

2

(
1 +

2 + u√
u(4 + u)

)
≪ 1,

y′′(u) = − 2

(u(4 + u))3/2
≪ u−3 ≪ u−1.

For ℓ ≥ 3,

y(ℓ)(u) = −2
ℓ−2∑

i=0

(
ℓ− 2

i

)
diu−3/2

dui
dℓ−2−i(u+ 4)−3/2

duℓ−2−i ≪ u−ℓ−1 ≪ u−ℓ+1,

where
(
n
i

)
is the binomial coefficient.

Proposition 8.15. The function Q(u) is continuous on [0,∞). Suppose 0 ≤
ℓ < min(B−1, A). Then Q(u) is ℓ-times continuously differentiable on the open
interval (0,∞), where it satisfies

Q(ℓ)(u)≪ℓ (1 + u)−A−ℓ. (8.14)
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Remark: In Corollary 8.18 below, we will show that if ℓ < min(B − 2, A − 1),
then the above assertions also hold at the endpoint u = 0.

Proof. The continuity of Q(u) = Φ(y) is immediate from that of Φ and y(u).
Because ℓ < min(B − 1, A), Φ has a continuous ℓ-th derivative by Proposition
8.13. By Proposition 8.9, Q has a continuous ℓ-th derivative on (0,∞).

When ℓ = 0, the bound (8.14) is immediate from (8.11) and the fact that
y(u) ∼ u. Suppose ℓ > 0. By Proposition 8.7, (8.11), and Proposition 8.14, for
u > 1 we have

dℓ

duℓ
Q(u) =

dℓ

duℓ
Φ(y(u))≪ℓ

ℓ∑

r=1

∑

a1+a2+···+ar=ℓ
ℓ≥a1≥···≥ar≥1

Φ(r)(y(u))y(a1)(u) · · · y(ar)(u)

≪ℓ

ℓ∑

r=1

∑

a1+a2+···+ar=ℓ
ℓ≥a1≥···≥ar≥1

(1 + y(u))−A−ru−a1+1 · · ·u−ar+1 ≪ℓ u
−A−ℓ

since y(u) ∼ u. The bound (8.14) follows for all u > 0 by Proposition 8.5.

Proposition 8.16. Suppose B > 2 and A > 1. Then the function

V (u) = − 1

π

∫

R

Q′(u+ w2)dw (8.15)

is absolutely convergent and continuous for u ≥ 0. In fact, for any nonnegative
integer ℓ < min(B − 2, A− 1), V (u) has a continuous ℓ-th derivative given by

V (ℓ)(u) = − 1

π

∫

R

Q(ℓ+1)(u+ w2)dw, (8.16)

the integral converging absolutely. Furthermore, for all u ≥ 0,

V (ℓ)(u)≪ℓ (1 + u)−A−ℓ− 1
2 . (8.17)

Remark: When u = 0, the integrands of (8.15) and (8.16) may be undefined at
w = 0, but the integrals still make sense.

Proof. Suppose 0 ≤ k < min(B − 2, A− 1). Then k + 1 < min(B − 1, A), so by
Proposition 8.15, Q is (k + 1)-times continuously differentiable on (0,∞), and

|Q(k+1)(u+ w2)| ≤ Ck(1 + u+ w2)−A−k−1 ≤ Ck(1 + w2)−A−k−1 (8.18)

for u > 0, where Ck is a positive constant. Now apply Corollary 8.4 with y = u,
t = w, f(t, y) = Q′(u + w2), and Fk(w) equal to the right-hand side of (8.18).
The equality (8.16) and its continuity and absolute convergence follow.

To obtain the bound (8.17), we observe that

|V (ℓ)(u)| ≤ 1

π

∫

R

|Q(ℓ+1)(u+ w2)|dw ≪ℓ

∫

R

(1 + u+ w2)−A−ℓ−1dw
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= (1 + u)−A−ℓ−1

∫

R

(1 + ((1 + u)−
1
2w)2)−A−ℓ−1dw

= (1 + u)−A−ℓ− 1
2

∫

R

(1 + w2)−A−ℓ−1dw ≪ (1 + u)−A−ℓ− 1
2 .

Proposition 8.17. Suppose B > 2 and A > 1. Then for all u ≥ 0,
∫

R

V (u+ x2)dx = Q(u), (8.19)

the integral converging absolutely.

Proof. Under the given hypothesis, we can take ℓ = 1 in (8.14) to give
∫

R

∫

R

|Q′(u+ x2 + w2)|dwdx≪ℓ

∫

R

∫

R

(1 + u+ x2 + w2)−A−1dwdx

=

∫ ∞

0

∫ 2π

0

(1 + u+ r2)−A−1r dθdr = 2π

∫ ∞

0

(1 + u+ r2)−A−1rdr <∞.

(The bound for the integrand we applied is valid whenever u+x2 +w2 > 0, i.e.
for almost all x,w.) Therefore the integral in (8.19) is absolutely convergent.
It defines a continuous function of u ≥ 0 by Proposition 8.2, since V (u+ x2) ≤
(1 + x2)−A− 1

2 by (8.17), the latter function being integrable. Furthermore,
assuming u > 0,

∫

R

V (u+ x2)dx = − 1

π

∫

R

∫

R

Q′(u+ x2 + w2)dwdx

= −2
∫ ∞

0

Q′(u+ r2)rdr = −Q(u+ r2)
∣∣r=∞
r=0

= Q(u). (8.20)

In the last step we used (8.14) with ℓ = 0. This proves (8.19) for u > 0. Our use
of the fundamental theorem of calculus in (8.20) may not be valid when u = 0,
due to a possible discontinuity of the integrand at r = 0 in that case. However,
because both sides of the proposed equality (8.19) are continuous functions of
u ≥ 0 which agree for all u > 0, they are equal when u = 0 as well.

Corollary 8.18. If ℓ < min(B − 2, A − 1), then Q ∈ Cℓ([0,∞)), and (8.14)
holds for all u ≥ 0.

Proof. By (8.17), V (ℓ)(1 + u+ x2) ≪ (1 + x2)−A−ℓ− 1
2 . Since the latter is inte-

grable over R, we can differentiate (8.19) under the integral sign (cf. Corollary
8.4) to obtain the result.

Proposition 8.19. Suppose B > 2 and A > 1. Let f be the function on G(R+)
corresponding to V as in (8.3). Then for | Im t| < A, the Selberg transform of
f is absolutely convergent and equal to h:

(Sf)(it) =MitHf = h(t).

Proof. By Proposition 8.17, (3.10), and (8.13), (Hf)(y) = Q(u) = Φ(y). By
Proposition 8.12,MitΦ = h(t).

99



8.2 Smooth truncation

In this section, we suppose h(t) satisfies (8.1) for some B > 2 and A > 1, and
continue with the same notation from the previous section. We will need to
truncate V in a way that preserves its differentiability. This requires a smooth
bump function.

Let ρ : R −→ [0, 1] be a smooth function such that:

(i) ρ(x) = 0 for x ≤ 0,

(ii) ρ(x) = 1 for x ≥ 1.

For T > 0, define

ρT (x) =





1 if |x| < T,

ρ(T + 1− |x|) if T ≤ |x| ≤ T + 1,

0 if |x| > T + 1.

Then ρT is a smooth bump function with support in [−(T + 1), T + 1]. Letting
ρ̃T = 1− ρT , the graphs of ρT and ρ̃T are given below:

y = ρ̃T (x)

T−TT + 1−(T + 1)

y = ρT (x)

For j ≥ 1, ρ
(j)
T (x) = 0 unless T ≤ |x| ≤ T + 1. Thus ρ

(j)
T ≪j χ[T,T+1] on R≥0,

where χI denotes the characteristic function of the set I, and by construction
the implied constant is independent of T .

For u ≥ 0, define
VT (u) = V (u)ρT (log(1 + u)).

Define
ṼT (u) = V (u)− VT (u) = V (u)ρ̃T (log(1 + u)).

Let fT (resp. f̃T ) be the bi-K∞-invariant function on G(R)+ corresponding to

VT (resp. ṼT ) as in (8.3). Because VT is compactly supported, the support of
fT is compact modulo the center.

Given the functions Φ(y) = Q(u) attached to h as in the previous section,

we let ΦT (y), (resp. Φ̃T (y)) be the Harish-Chandra transform of fT (resp. f̃T ),

and set QT (u) = ΦT (y) and Q̃T (u) = Φ̃T (y), where u = y + y−1 − 2. Lastly,

we define hT (t) (resp. h̃T (t)) to be the Selberg transform of fT (resp. f̃T ) as
in Proposition 8.19. By the linearity of the various integral transforms, in each
case we have the relation �̃T = �−�T .

Suppose ℓ < min(B−2, A−1), so that by Proposition 8.16, V ∈ Cℓ([0,∞)).
Then VT ∈ Cℓc([0,∞)), so by Proposition 3.2, fT ∈ Cℓc(G

+//K∞), and by
Proposition 3.6, hT ∈ PW ℓ(C)even.
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Proposition 8.20. Suppose B > 2, A > 1, and 0 ≤ ℓ < min(B − 2, A − 1).
Then for u ≥ 0,

Ṽ
(ℓ)
T (u)≪ℓ (1 + u)−A−ℓ− 1

2χ[T,∞)(log(1 + u)). (8.21)

Proof. For j ≥ 1, Proposition 8.7 gives

dj

duj
ρ̃T (log(1 + u))≪j

j∑

r=1

∑

a1+a2+···+ar=j
r≥a1≥a2···≥ar≥1

ρ
(r)
T (log(1 + u))(1 + u)−a1−a2−···−ar

≪ (1 + u)−jχ[T,T+1](log(1 + u)).

By the bound (8.17), for u ≥ 0 we have

dℓ

duℓ
ṼT (u) =

dℓ

duℓ
V (u)ρ̃T (log(1 + u)) =

ℓ∑

j=0

(
ℓ

j

)
V (ℓ−j)(u)ρ̃(j)T (log(1 + u))

≪ℓ (1+u)
−A−ℓ− 1

2χ[T,∞)(log(1+u))+

ℓ∑

j=1

(1+u)−A−ℓ+j− 1
2 (1+u)−jχ[T,T+1](log(1+u))

≪ℓ (1 + u)−A−ℓ− 1
2χ[T,∞)(log(1 + u)).

Proposition 8.21. Suppose B > 2, A > 1. Then for u ≥ 0,

Q̃T (u) =

∫

R

ṼT (u+ w2)dw.

In fact, if 0 ≤ ℓ < min(B − 2, A− 1), then Q̃T has a continuous ℓ-th derivative
on [0,∞) given by

Q̃
(ℓ)
T (u) =

∫

R

Ṽ
(ℓ)
T (u+ w2)dw, (8.22)

the integral being absolutely convergent and continuous. Further,

|Q̃(ℓ)
T (u)| ≤ Eℓ,T (u)

(1 + u)A+ℓ
, (8.23)

where Eℓ,T (u)≪ℓ 1 is a nonzero measurable function with lim
T→0

Eℓ,T (u) = 0.

Proof. Let Cℓ > 0 be the implied constant in (8.21). Then for 0 ≤ k ≤ ℓ,

Ṽ
(k)
T (u+ w2) ≤ Ck(1 + u+ w2)−A−k− 1

2 ≤ Ck(1 + w2)−A−k− 1
2 .

Letting Fk(w) denote the latter expression, we apply Corollary 8.4 to conclude
that (8.22) holds and is absolutely convergent and continuous.

It remains to establish the bound (8.23). By the previous proposition,
∣∣∣∣
∫

R

Ṽ
(ℓ)
T (u+ w2)dw

∣∣∣∣ ≤
∫

R

Cℓχ[T,∞)(log(1 + u+ w2))(1 + u+ w2)−A−ℓ− 1
2 dw
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= (1 + u)−A−ℓ− 1
2Cℓ

∫

R

χ[T,∞)(log(1 + u+ w2))(1 + ((1 + u)−
1
2w)2)−A−ℓ− 1

2 dw

= (1 + u)−A−ℓCℓ

∫

R

χ[T,∞)(log(1 + u+ (1 + u)w2))(1 + w2)−A−ℓ− 1
2 dw.

Let

Eℓ,T (u) = Cℓ

∫

R

χ[T,∞)(log(1 + u+ (1 + u)w2))(1 + w2)−A−ℓ− 1
2 dw.

Note that

|Eℓ,T (u)| ≤ Cℓ
∫

R

(1 + w2)−A−ℓ− 1
2 dw <∞.

By the dominated convergence theorem, lim
T→∞

Eℓ,T (u) = 0. This completes the

proof.

Corollary 8.22. Suppose B > 2, A > 1, and 0 ≤ ℓ < min(B− 2, A− 1). Then
for v ∈ R we have

∣∣∣∣
dℓ

dvℓ
Q̃T (e

2πv + e−2πv − 2)

∣∣∣∣ ≤
Êℓ,T (|v|)

(e2πv + e−2πv)A
,

where Êℓ,T (|v|)≪ℓ 1 is a nonzero measurable function with lim
T→∞

Êℓ,T (|v|) = 0.

Proof. When ℓ = 0, the assertion is immediate from (8.23), taking Ê0,T (|v|) =
C0E0,T (e

2πv + e−2πv − 2) for a sufficiently large constant C0. Suppose now

that ℓ > 0. Using Proposition 8.7 and the fact that di

dvi (e
2πv + e−2πv − 2) ≪i

e2πv + e−2πv, we have

dℓ

dvℓ
Q̃T (e

2πv+e−2πv−2)≪ℓ

ℓ∑

r=1

Q̃
(r)
T (e2πv+e−2πv−2)

∑

a1+a2+···+ar=ℓ
ℓ≥a1≥···≥ar≥1

(e2πv+e−2πv)r.

By the bound (8.23), this is

≪ℓ

ℓ∑

r=1

Er,T (e
2πv + e−2πv − 2)(e2πv + e−2πv)r

(e2πv + e−2πv − 1)A+r
≪
∑ℓ
r=1Er,T (e

2πv + e−2πv − 2)

(e2πv + e−2πv)A
.

Thus we can take Êℓ,T (|v|) = Cℓ
∑ℓ
r=1Er,T (e

2πv + e−2πv − 2) for a sufficiently
large constant Cℓ.

Proposition 8.23. Suppose B > 2, A > 1, and 0 ≤ ℓ < min(B − 2, A − 1).
Let 0 < A′ < A. Then there exists a positive real number Eℓ,T such that for
| Im t| ≤ A′,

|h̃T (t)| ≤
Eℓ,T

(1 + |t|)ℓ and lim
T→∞

Eℓ,T = 0.
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Proof. Write t = x+ iβ with |β| ≤ A′. Then

h̃T (t) =MitΦ̃T = 2π

∫

R

Q̃T (e
2πv + e−2πv − 2)e2πitvdv

= 2π

∫

R

Q̃T (e
2πv + e−2πv − 2)e−2πvβe2πivxdv.

Since this is a Fourier transform, we can bound it using Proposition 8.8. First,
by the above Corollary,

dℓ

dvℓ
(Q̃T (e

2πv + e−2πv − 2)e−2πvβ)

=
ℓ∑

i=0

(
ℓ

i

)
(−2πβ)ℓ−ie−2πvβ d

i

dvi
Q̃T (e

2πv + e−2πv − 2)

≪ℓ e
2πA′v

ℓ∑

i=0

Êi,T (|v|)dv
(e2πv + e−2πv)A

.

Let Cℓ be the implied constant in the above inequality.
By Proposition 8.8, for |x| = |Re(t)| ≥ 1,

|h̃T (t)| ≤
1

|2πx|ℓ
∫

R

∣∣∣∣
dℓ

dvℓ
(Q̃T (e

2πv + e−2πv − 2)e−2πvβ)

∣∣∣∣ dv.

Since 1+|t|
|x| ≤

1+|x|+|β|
|x| = |x|−1 + 1 + |x|−1|β| ≤ 2 +A, the above is

≤ (2 +A)ℓ

(1 + |t|)ℓ
Cℓ

(2π)ℓ

ℓ∑

i=0

∫

R

e2πA
′vÊi,T (|v|)dv

(e2πv + e−2πv)A
,

which converges since A′ < A. On the other hand, if |x| = |Re(t)| ≤ 1, then

1 + |t| ≤ 1 + |x|+ |β| ≤ 2 +A, so 1 ≤ (2+A)ℓ

(1+|t|)ℓ , and

|h̃T (t)| ≤ 2π

∫

R

|Q̃T (e2πv + e−2πv − 2)|e−2πvβdv

≤ 2π(2 +A)ℓ

(1 + |t|)ℓ
∫

R

e2πA
′vÊ0,T (|v|)dv

(e2πv + e−2πv)A
.

Hence if we define

Eℓ,T = 2π(2+A)ℓ
∫

R

e2πA
′vÊ0,T (|v|)dv

(e2πv + e−2πv)A
+
Cℓ(2 +A)ℓ

(2π)ℓ

ℓ∑

i=0

∫

R

e2πA
′vÊi,T (|v|)dv

(e2πv + e−2πv)A
,

then |h̃T (t)| ≤ Eℓ,T

(1+|t|)ℓ for all t in the strip | Im(t)| ≤ A′, as needed.
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Using Êi,T (|v|)≪ℓ 1, by the dominated convergence theorem we have

lim
T→∞

Eℓ,T = 2π(2 +A)ℓ
∫

R

e2πA
′v limT→∞ Ê0,T (|v|)dv
(e2πv + e−2πv)A

+
Cℓ(2 +A)ℓ

(2π)ℓ

ℓ∑

i=0

∫

R

e2πA
′v limT→∞ Êi,T (|v|)
(e2πv + e−2πv)A

dv = 0.

8.3 Comparing the KTF for h and hT

We set the following notation for the various terms in the KTF, together with
their absolute value counterparts (see Theorem 7.14 for notation):

Spec1(h) =
∑

uj∈F

λn(uj) am1
(uj)am2

(uj)

‖uj‖2
h(tj)

cosh(πtj)

Speca1(h) =
∑

uj∈F

∣∣∣∣∣
λn(uj) am1

(uj)am2
(uj)

‖uj‖2
h(tj)

cosh(πtj)

∣∣∣∣∣

Spec2(h) =
1

π

∑

χ̃1,χ̃2

∑

(ip)

∫ ∞

−∞

λn(χ
′
1,χ

′
2,it)σit(χ

′
1,χ

′
2,m1)σit(χ′

1,χ
′
2,m2)(

m1
m2

)ith(t)

‖φ(ip)‖2 |L(1+2it,χ̃1χ̃
−1
2 )|2 dt,

Speca2(h) =
1

π

∑

χ̃1,χ̃2

∑

(ip)

∫ ∞

−∞

|λn(χ
′
1,χ

′
2,it)σit(χ

′
1,χ

′
2,m1)σit(χ′

1,χ
′
2,m2)(

m1
m2

)ith(t)|
‖φ(ip)‖2 |L(1+2it,χ̃1χ̃

−1
2 )|2 dt,

Geo1(h) = T (m1,m2, n)ψ(N)ω′(
√

m1n

m2

) 1

π2

∫ ∞

−∞
h(t) tanh(πt) t dt,

Geoa1(h) = T (m1,m2, n)ψ(N)
∣∣∣ω′(√m1n

m2

)∣∣∣ 1

π2

∫ ∞

−∞
|h(t) tanh(πt) t| dt,

Geo2(h) =
2iψ(N)

π

∑

c∈NZ+

Sω′(m2,m1; n; c)

c

∫ ∞

−∞
J2it

(
4π

√
nm1m2

c

) h(t) t

cosh(πt)
dt,

Geoa2(h) =
2ψ(N)

π

∑

c∈NZ+

|Sω′(m2,m1; n; c)|
c

∫ ∞

−∞

∣∣∣∣J2it
(

4π
√
nm1m2

c

) h(t) t

cosh(πt)

∣∣∣∣ dt.

Proposition 8.24. Suppose h satisfies (8.1) for some A > 1
4 and B > 2. Then:

(i) Speca2(h) <∞, (ii) Geoa1(h) <∞, and (iii) Geoa2(h) <∞.

Remarks: (1) Allowing 1
4 < A < 1

2 rather than A ≥ 1
2 comes at a price, namely,

the Kloosterman term may no longer be O(Nε) (which holds when A ≥ 1
2 ), but

instead only O(N
1
2−δ) for any 0 < δ < 2(A− 1

4 ).

(2) It is known that Speca1(h) <∞ under the above conditions as well. See the
remark after Proposition 7.5, where we explain why B > 3 suffices.
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Proof. The proof of assertion (i) follows the same outline as that of Prop 7.6,
although Lemma 7.5 is not needed since Speca2(h) does not involve Bessel func-
tions. One obtains an estimate like (7.16), but without the factor of (1 + 2|t|)2,
so that B > 1 suffices. The holomorphy of h is not needed here, so any value of
A is allowable. Assertion (ii) is trivial since h(t) is integrable and | tanh(πt)| ≤ 1.
Assertion (iii) follows from the proof of Prop 7.11. It requires A > 1

4 and B > 2.
At the end of the proof, one can take σ0 = 1

4 + ε < min(A, 12 ) to obtain an ex-
ponent of 1

2 + 2ε in place of 1 − ε in (7.28). Then in place of (7.29), for any
ε′ > 0 we can obtain the bound

≪ ψ(N)c
1
2

ω′

∑

c∈NZ+

τ(c)

c1+2ε
≪ N1+ ε′

2 N
1
2N

ε′
2

N1+2ε

∑

c∈Z+

τ(c)

c1+2ε
= O(N

1
2+ε

′−2ε).

This proves the proposition. The bound asserted in the remark follows upon
observing that δ = 2ε− ε′ can assume any positive number less than 2(A− 1

4 )
when A < 1

2 .

Proposition 8.25. Suppose ℓ ≥ 12 is an integer for which

Speca1(rℓ) <∞, (8.24)

where rℓ(t) =
1

(1+|t|)ℓ . Let B > ℓ+ 2 and A > ℓ+ 1 be real constants. Then for

any function h satisfying (8.1) with these values, the KTF is valid:

Spec1(h) + Spec2(h) = Geo1(h) + Geo2(h).

Proof. Using the fact (Proposition 4.7) that all of the spectral parameters of
L2
0(N,ω

′) satisfy | Im(tj)| < 1
2 , we apply Proposition 8.23 with 1

2 ≤ A′ < A,
giving

Speca1(h− hT ) = Speca1(h̃T ) ≤ Eℓ,T Speca1(rℓ) (8.25)

for rℓ as in (8.24). Noting that hT (iz) ∈ PW ℓ(C)even with ℓ ≥ 12 (see the
discussion just before Proposition 8.20), Proposition 7.5 gives Speca1(hT ) <∞.
Thus by (8.25),

Speca1(h) = Speca1(hT + h̃T ) ≤ Speca1(hT ) + Speca1(h̃T ) <∞.

Hence Spec1(h) exists. Because lim
T→∞

Eℓ,T → 0, using (8.25) we have

lim
T→∞

| Spec1(h)− Spec1(hT )| = lim
T→∞

| Spec1(h̃T )| ≤ lim
T→∞

Speca1(h̃T ) = 0.

Hence
lim
T→∞

Spec1(hT ) = Spec1(h).

Now let X denote Speca2 , Geoa1 , or Geoa2 . Then by Proposition 8.23,

X(h̃T ) ≤ Eℓ,TX(rℓ).
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Noting that rℓ ≪ hℓ, where the function hℓ =
1

(1+t2)ℓ/2
satisfies (8.1) with A = 1

and B = ℓ > 2, we conclude from Proposition 8.24 that the above expression
is finite. By the same reasoning as for Spec1, we see that X(h) exists, and is
equal to lim

T→∞
X(hT ). Because the KTF is valid for hT , it follows that

Geo1(h) + Geo2(h) = lim
T→∞

(Geo1(hT ) + Geo2(hT ))

= lim
T→∞

(Spec1(hT ) + Spec2(hT )) = Spec1(h) + Spec2(h).

This completes the proof.

Proof of Theorem 8.1. The theorem follows immediately by the fact that one
can take ℓ = 12 in Proposition 8.25. See the remark after Proposition 7.5, or
for a self-contained proof of this fact, see Proposition 8.34 below.

8.4 R0(f) for f not smooth or compactly supported

In this section and the next, f will denote a function on G(A), rather than
on G(R)+. The purpose of these sections is to prove that R0(f) is a Hilbert-
Schmidt operator under certain mild assumptions on f . See Proposition 8.31.
The discussion that follows is independent of the material in the previous sec-
tions. In particular, we do not assume (8.1) or equivalent bounds unless explic-
itly stated.

Throughout this section let f = f∞ × ffin be a complex-valued function on
G(A), with f∞ bi-K∞-invariant, supported on G(R)+, and satisfying

f∞(

(
a b
c d

)
)≪ (ad− bc)α/2

(a2 + b2 + c2 + d2 + 2(ad− bc))α/2 (8.26)

for some α > 2. Here α plays the role of the weight k in §18-19 of [KL2]. The
above is equivalent to

V (u)≪ 1

(u+ 4)α/2
, (8.27)

where V is the function attached to f∞ in (8.2). We do not assume that f∞
is smooth, although eventually we will require it to be twice differentiable. We
assume that ffin is locally constant and compactly supported modulo Z(Afin),
and that f(zg) = ω(z)f(g) for all z ∈ Z(A) and g ∈ G(A). In fact, we shall
assume that

Supp(ffin) = Z(Afin)K
′δK ′ (8.28)

for some δ ∈ M2(Ẑ) and some open compact subgroup K ′ ⊆ Kfin under which
ffin is bi-invariant. This entails no loss of generality, since any function ffin as
described above (8.28) is a finite linear combination of functions as in (8.28).

Proposition 8.26. For f as above, f ∈ Lq(G(A), ω) for all q ≥ 1.
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Proof. Let fα(
(
a b
c d

)
) denote the right-hand side of (8.26). As a function of

G(R), it is bi-K∞-invariant. Indeed, the right or left action of K∞ on the space
of matrices M2(R) ∼= R4 is unitary, so it preserves the norm a2 + b2 + c2 + d2.
Therefore it is convenient to integrate using the Cartan decomposition (3.2).
For p = q

2 ≥ 1
2 , we have

∫

G(A)

|f(g)|2pdg ≪
∫

G(R)

|f∞(g)|2pdg ≪
∫ ∞

1

fα(
(
t1/2

t−1/2

)
)2p(1− t−2)dt

(see e.g. the integration formulas (7.27) and (7.23) of [KL2]). The latter integral
is

=

∫ ∞

1

(1− t−2)

(t+ t−1 + 2)pα
dt =

∫ ∞

4

1

upα
du <∞,

since p ≥ 1
2 and α > 2.

By the above proposition, f ∈ L1(G(A), ω). Therefore it defines an operator
R(f) on L2(ω), given by the kernel

K(g1, g2) =
∑

γ∈G(Q)

f(g−1
1 γg2).

We will work with Arthur’s truncated kernel KT (g1, g2), defined as follows. For
T > 0, let τT : G(A) −→ {0, 1} be the characteristic function of the set of
g ∈ G(A) with height H(g) > T . Then

KT (g1, g2) = K(g1, g2)−
∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

(∫

N(A)

f(g−1
1 µnδg2)dn

)
τT (δg2)

(8.29)

=
∑

γ∈G(Q)

f(g−1
1 γg2)−

∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

(∫

N(A)

f(g−1
1 µnδg2)dn

)
τT (δg2).

This is a function on G(A)×G(A), but it is not hard to see that it is well-defined
on (B(Q)\G(A))× (G(Q)\G(A)).

Proposition 8.27. For all g1, g2 ∈ G(A), KT (g1, g2) is absolutely convergent,
i.e.

∑

γ∈G(Q)

|f(g−1
1 γg2)|+

∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

∫

N(A)

|f(g−1
1 µnδg2)|dnτT (δg2) <∞.

Furthermore, the above is bounded on compact subsets of G(A)×G(A).

Proof. By Proposition 18.4 of [KL2] and the discussion following its proof, the
sum over γ is convergent, and in fact continuous as a function of (g1, g2), so
the assertions hold for this piece of the function. For the same reason, the
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sum
∑
µ

∑
n′∈N(Q) |f(g−1

1 µn′nδg2)| converges to a continuous function of n ∈
N(Q)\N(A). Therefore it is integrable over the compact set N(Q)\N(A), i.e.

∫

N(Q)\N(A)

∑

µ

∑

n′∈N(Q)

|f(g−1
1 µn′nδg2)|dn =

∑

µ

∫

N(A)

|f(g−1
1 µnδg2)|dn <∞.

By Lemma 17.1 of [KL2], τT (δg2) 6= 0 for at most one δ ∈ B(Q)\G(Q). In fact,
since KT is left G(Q)-invariant as a function of g2, we can assume that g2 lies
in a fixed fundamental domain for G(Q)\G(A), so the set of δ that contribute
to the sum is finite and independent of g2 ([KL2], Proposition 17.2). The first
assertion of the proposition now follows immediately. From the fact that the
expression is a finite sum of functions of (g1, g2) ∈ G(Q)×G(A), each of which
is a product of a continuous function with a characteristic function, we see that
it is bounded on compact subsets.

Let K[0,π) denote the set of matrices
(

cos θ sin θ
− sin θ cos θ

)
with θ ∈ [0, π). Then

F
def
=

{(
1 x
0 1

)(
y1/2

y−1/2

)
k|x ∈ [− 1

2 ,
1
2 ], y > 0, x2 + y2 ≥ 1, k ∈ K[0,π)

}

is a fundamental domain in SL2(R) for the quotient SL2(Z)\SL2(R). This
means that the projection F → SL2(Z)\SL2(R) is surjective, and injective
except on a set of measure zero. The set Z(R)+F is then a fundamental domain
for SL2(Z)\G(R)+, and it follows (from strong approximation for G(A) and the
“divorce theorem” on page 101 of [KL2]) that the set

F = Z(R)+F ×Kfin

is a fundamental domain in G(A) for G(Q)\G(A). The subset

F = F ×Kfin

contains a fundamental domain for Z(A)G(Q)\G(A), and can be used as a do-
main of integration for the latter quotient ([KL2], Corollary 7.44). Let L2(F, ω)
be the Hilbert space of measurable functions φ : F −→ C such that

• φ(zg) = ω(z)φ(g) for all g ∈ F and z ∈ Z(A) ∩ F = Z(R)+ × Ẑ∗,

• ‖φ‖2F =

∫

F

|φ(g)|2dg <∞.

Lemma 8.28. Let δ ∈ M2(Ẑ) be as in (8.28), and define D ∈ Z+ by DẐ =

(det δ)Ẑ. Suppose
f(g−1

1 µ
(
1 t
0 1

)
g2) 6= 0

for some g1, g2 ∈ F, µ ∈M(Q), and t ∈ A. Then tfin ∈ 1
D Ẑ and µ ∈ Z(Q)

(
a
d

)

for integers a, d > 0 with ad = D.
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Proof. Consider the finite part ffin(k
−1
1 µ

(
1 tfin
0 1

)
k2) 6= 0. By (8.28), there exists

β ∈ A∗
fin such that

detµ ∈ β2DẐ∗.

By strong approximation for the ideles ([KL2], Prop. 5.10), A∗
fin = Q∗Ẑ∗, so

β = rβ′ for some r ∈ Q∗ and β′ ∈ Ẑ∗. Therefore

r−2 detµ ∈ DẐ∗ ∩Q∗ = {D,−D}.

Writing r−1µ =
(
a
d

)
∈ M(Q), we have ad = ±D. Replacing r by −r if

necessary, we can assume that a > 0. Now k−1
1

(
a
d

)(
1 tfin
0 1

)
k2 ∈ Supp(ffin), and

since its determinant belongs to DẐ∗, we see that its Z(Afin) component as in

(8.28) must belong to Ẑ∗. It follows that k−1
1

(
a atfin
0 d

)
k2 ∈ M2(Ẑ), and hence(

a atfin
0 d

)
∈ M2(Ẑ). This means that a, d ∈ Z and tfin ∈ 1

a Ẑ ⊆ 1
D Ẑ. Finally, the

fact that f∞ is supported in G(R)+ implies ad > 0, so ad = D.

Proposition 8.29. Let f be as described at the beginning of this section, and
suppose in addition that f∞ is twice continuously differentiable. Let V be the
function on [0,∞) attached to f∞ as in (8.2). Suppose there exists ε > 0 such
that for all u > 0, {

V (u), V ′(u)≪ (1 + u)−1−ε

V ′′(u)≪ (1 + u)−3/2−ε.
(8.30)

(The bound on V (u) is already a consequence of (8.27).) Then

‖KT ‖2
F×G(Q)\G(A) =

∫

F

∫

G(Q)\G(A)

|KT (g1, g2)|2dg2dg1 <∞, (8.31)

or equivalently,

‖KT ‖2
F×F

=

∫

F

∫

F

|KT (g1, g2)|2dg2dg1 <∞.

Remark: We do not assume that V is differentiable at the endpoint u = 0.

Proof. The proof is somewhat involved and will be given in the next subsection.
It basically follows §19 of [KL2].

Under the hypotheses of the above proposition, we can define a map TKT :
L2(ω)→ L2(F, ω) by

TKT φ(g1) =

∫

G(Q)\G(A)

KT (g1, g2)φ(g2)dg2.

Let r : L2(F, ω) → L2(ω) be the map defined by rφ(G(Q)g) = φ(g) for a.e.
g ∈ F. (The set of points g ∈ F for which φ(g) is not uniquely determined by
G(Q)g has measure 0.) Because F is a fundamental domain for G(Q)\G(A),
the map r is an isomorphism. By identifying the two spaces in this way, we
can abuse terminology and refer to TKT as an operator on L2(ω). For future
reference, we let L2

0(F, ω) be the preimage of L2
0(ω) under r.
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Corollary 8.30. The map TKT : L2(ω) −→ L2(F, ω) ∼= L2(ω) is a Hilbert-
Schmidt operator. The Hilbert-Schmidt norm ‖TKT ‖2HS is equal to (8.31).

Proof. This is a consequence of (8.31). (See [RS] Theorem VI.23).

The next proposition shows that TKT coincides with R(f) on the cuspidal
subspace, and it then follows from Corollary 8.30 that R0(f) is Hilbert-Schmidt.

Proposition 8.31. Suppose the hypotheses of Proposition 8.29 are satisfied.
Then TKT |L2

0(ω)
= R(f)|L2

0(ω)
= R0(f). As a result, the operator R0(f) is

Hilbert-Schmidt.

Proof. Let φ ∈ L2
0(ω) and g1 ∈ F. Then

R(f)φ(g1) =

∫

G(Q)\G(A)

K(g1, g2)φ(g2)dg2,

where the integral converges absolutely since f ∈ L1(ω) (cf. (10.7) of [KL2]).
Thus by the linearity of integration, TKT φ(g1) is equal to

R(f)φ(g1)−
∫

G(Q)\G(A)

∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

(∫

N(A)

f(g−1
1 µnδg2)φ(g2)dn

)
τT (δg2)dg2.

It suffices to show that the second term vanishes. At the end of the proof, we
will verify that it is absolutely convergent, so we can rearrange the sums and
integrals. Granting this for the moment, by the left G(Q)-invariance of φ, the
second term is

∫

G(Q)\G(A)

∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

∫

N(A)

f(g−1
1 µnδg2)dnφ(δg2)τT (δg2)dg2 (8.32)

=

∫

B(Q)\G(A)

∑

µ∈M(Q)

∫

N(A)

f(g−1
1 µng2)dnφ(g2)τT (g2)dg2

=

∫

B(Q)N(A)\G(A)

∫

N(Q)\N(A)

∑

µ∈M(Q)

∫

N(A)

f(g−1
1 µnn′g2)dnφ(n

′g2)τT (n
′g2)dn

′dg2

=

∫

B(Q)N(A)\G(A)

∫

N(Q)\N(A)

∑

µ∈M(Q)

∫

N(A)

f(g−1
1 µng2)dnφ(n

′g2)τT (g2)dn
′dg2

=

∫

B(Q)N(A)\G(A)

∑

µ∈M(Q)

∫

N(A)

f(g−1
1 µng2)dn

(∫

N(Q)\N(A)

φ(n′g2)dn
′
)
τT (g2)dg2.

This vanishes because φ is cuspidal, and hence TKT φ = R(f)φ as needed.
It remains to prove the absolute convergence. By Proposition 8.27,

Φg1(g2)
def
=

∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

∫

N(A)

|f(g−1
1 µnδg2)|dnτT (δg2)
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is convergent, and bounded on compact sets. We will show that it is square-
integrable (and in fact bounded) as a function of g2 ∈ G(Q)\G(A). Partition
the fundamental domain F as

F = FT ∪ F̃T , (8.33)

where FT = {g ∈ F |H(g) > T}, and F̃T is its complement. Correspondingly, we

set F = FT ∪ F̃T . Clearly F̃T is compact. In particular, Φg1 is square integrable

over F̃T .
For g2 ∈ FT , τT (δg2) 6= 0 only for δ = 1 (see e.g. [KL2], Lemma 17.1), so

Φg1(g2) =
∑

µ∈M(Q)

∫

N(A)

|f(g−1
1 µng2)|dn (g2 ∈ FT ).

For i = 1, 2, write gi =
(
1 xi

1

)( y1/2i

y
−1/2
i

)
ri × ki for xi ∈ R, yi > 0, ri ∈ K∞,

and ki ∈ Kfin. By Lemma 8.28,

Φg1(g2) =
∑

a|D,a>0,
ad=D

∫

N(R)

|f∞(g−1
1∞
(
a
d

)
ng2∞)|dn

∫

N( 1
D

Ẑ)

|ffin(k−1
1

(
a
d

)
nk2)|dn,

where N( 1
D Ẑ) = {

(
1 t
0 1

)
| t ∈ 1

D Ẑ}. The finite part is obviously bounded by

meas( 1
D Ẑ) = D. For the infinite part, we refer ahead to the bound (8.38) in the

next section (the proof there for f works just as well for |f |), by which for any
given ε > 0,

Φg1(g2)≪ε

∑

ad=D

(dy1y2a )
1
2

(ay2dy1
+ dy1

ay2
− 1)

1
2+ε
≪ (y1y2)

1
2

(y2y1 + y1
y2
− 1)

1
2+ε
≪g1 1 (y2 > T ).

It follows that Φg1 is square-integrable on the finite measure space FT , and
hence

Φg1 ∈ L2(F), or equivalently, Φg1 ∈ L2(G(Q)\G(A)).

Therefore by Cauchy-Schwarz, for any φ ∈ L2(ω),

∫

G(Q)\G(A)

Φg1(g)|φ(g)|dg ≤
( ∫

G(Q)\G(A)

Φg1(g)
2dg
)1/2( ∫

G(Q)\G(A)

|φ(g)|2dg
)1/2

<∞.

This proves that (8.32) is absolutely convergent.

Corollary 8.32 (Theorem 6.4). Suppose f = f∞ × ffin ∈ Cmc (G(A), ω) for
m ≥ 2 and f∞ bi-K∞-invariant. Then R0(f) is a Hilbert-Schmidt operator.

Proof. Because m ≥ 2, V is twice differentiable on the open interval (0,∞)
(Proposition 8.9). Since it also has compact support, it trivially satisfies (8.30).
Hence the result follows from Proposition 8.31.
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Corollary 8.33. Suppose h satisfies (8.1) with A > 3 and B > 4. Let f =
f∞ × ffin for f∞ corresponding to h, and ffin as described below (8.27). Then
R0(f) is a Hilbert-Schmidt operator.

Proof. By Proposition 8.16, V satisfies (8.30). Therefore the result follows by
Proposition 8.31.

Proposition 8.34. Let rℓ =
1

(1+|t|)ℓ . Then in the notation of Proposition 8.25,

Speca1(rℓ) <∞ if ℓ > 9.

Proof. (See also the remark after Proposition 7.5.) Given ℓ > 9, fix any
A > 3, and let h(t) = 1

(4A2+t2)ℓ/2
. (The purpose of 4A2 is to ensure that h

is holomorphic on | Im(t)| < A.) Let f = f∞ × f1 for f∞ corresponding to
h0(t) = (4A2 + t2)−(ℓ−1)/4 and f1 the identity Hecke operator on G(Afin) (cor-
responding to n = 1). Then R0(f)ϕuj

= h0(tj)ϕuj
for all Maass cusp forms uj .

It is not hard to show that h0 satisfies (8.1) with B = ℓ−1
2 > 4. By equation

(7.9),

Speca1(rℓ)≪ Speca1(h)≪
∑

uj∈F

(1 + |tj |)
|4A2 + t2j |ℓ/2

≪
∑

uj

1

|4A2 + t2j |(ℓ−1)/2

=
∑

uj

|h0(tj)|2 = ‖R0(f)‖2HS <∞.

The last step follows from Corollary 8.33.

8.5 Proof of Proposition 8.29

Here we assume that (8.30) holds. Set

K1(g1, g2) =
∑

γ 6∈B(Q)

f(g−1
1 γg2), (8.34)

and

KT
2 (g1, g2) =

∑

γ∈B(Q)

f(g−1
1 γg2)−

∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

(∫

N(A)

f(g−1
1 µnδg2)dn

)
τT (δg2).

(8.35)
Then

KT (g1, g2) = K1(g1, g2) +KT
2 (g1, g2).

We will show that each of these terms is square integrable over F× F.
For gi ∈ SL2(R)×Kfin ⊆ G(A), we write

gi =

(
1 xi

1

)(
y
1/2
i

y
−1/2
i

)
ri × ki, (8.36)

where xi ∈ R, yi > 0, ri ∈ K∞, ki ∈ Kfin. Note that if gi ∈ F, then xi ∈ [− 1
2 ,

1
2 ]

and yi ≥
√
3
2 .
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Lemma 8.35. Given α > 2 as in (8.26), then with notation as above, for
g1, g2 ∈ F we have

∑

γ 6∈B(Q)

|f(g−1
1 γg2)| ≪α

1

y
α/2−1
1 y

α/2−1
2

+
1

y
α/2
1 y

α/2−1
2

.

Proof. In view of (18.7) of [KL2], the result holds by (18.3) and (18.4) of [KL2]
Lemma 18.3 with C1 = {g1}, C2 = {g2}, L1 = (y2/y1)

1/2, L2 = (y1/y2)
1/2, and

L3 = (y1y2)
1/2.

Proposition 8.36.

‖K1‖F×F <∞.

Proof. The square ‖K1‖2F×F
of the L2-norm is

∫

F

∫

F

∣∣∣∣∣
∑

γ 6∈B(Q)

f(g−1
1 γg2)

∣∣∣∣∣

2

dg1dg2 ≤
∫

F

∫

F

( ∑

γ 6∈B(Q)

|f(g−1
1 γg2)|

)2

dg1dg2.

By the above lemma, the latter expression is

≪
∫ ∞

√
3

2

∫ 1/2

−1/2

∫ ∞

√
3

2

∫ 1/2

−1/2

(
1

y
α/2−1
1 y

α/2−1
2

+
1

y
α/2
1 y

α/2−1
2

)2
dx1dy1dx2dy2

y21 y
2
2

≪
∫ ∞

√
3

2

∫ ∞

√
3

2

dy1dy2
yα1 y

α
2

<∞.

It remains to treat KT
2 (g1, g2), for which γ ∈ B(Q). When g1, g2 ∈ F, we

can assume that det γ > 0, since otherwise f∞ vanishes. Thus, for µ ∈M(Q)+

we define

Fµ,g1,g2(t) = f(g−1
1 µ

(
1 t

1

)
g2) (t ∈ A).

Given g1, g2 ∈ F, we will require bounds for the Fourier transform

F̂µ,g1,g2(r) =

∫

A

Fµ,g1,g2(t)θ(rt)dt ≤ DF̂µ,g1,g2,∞(r∞). (8.37)

Here we have bounded the finite part by D as in the proof of Proposition 8.31,
and F̂µ,g1,g2,∞(r∞) =

∫
R
f∞(g−1

1∞µ
(
1 t
0 1

)
g2∞)e(−r∞t)dt is the archimedean part.

Lemma 8.37. Let g1, g2 ∈ SL2(R) be of the form of (8.36) (but of course
with no G(Afin) component), and let µ =

(
a
d

)
∈M(Q)+. Suppose V satisfies

(8.30) for u > 0. Then

F̂µ,g1,g2,∞(0)≪
√
dy1y2
a

(
ay2
dy1

+
dy1
ay2
− 1

)− 1
2−ε

. (8.38)
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If, in addition, ay2 6= dy1, then for real r 6= 0 we have

F̂µ,g1,g2,∞(r)≪ r−2

√
a

dy1y2
. (8.39)

If V satisfies (8.30) also at the endpoint u = 0, then (8.39) holds even when
ay2 = dy1.

Proof. We have

f∞(g−1
1∞µ

(
1 t

1

)
g2∞) = f∞(

(
y
−1/2
1 y

1/2
2 a y

−1/2
1 y

−1/2
2 (−dx1 + ax2 + at)

0 y
1/2
1 y

−1/2
2 d

)
)

= V (
ay2
dy1

+
dy1
ay2

+
(−dx1 + ax2 + at)2

ady1y2
− 2). (8.40)

The Fourier transform is thus given by

F̂µ,g1,g2,∞(r) =

∫

R

V (
ay2
dy1

+
dy1
ay2

+
(−dx1 + ax2 + at)2

ady1y2
− 2)e(−rt)dt

=

∫

R

V (
ay2
dy1

+
dy1
ay2

+
at2

dy1y2
− 2)e(−r(t− x2 +

dx1
a

))dt

= e(r(x2 −
dx1
a

))

∫

R

V (
ay2
dy1

+
dy1
ay2

+
at2

dy1y2
− 2)e(−rt)dt

= e(r(x2 −
dx1
a

))

√
dy1y2
a

∫

R

V (Ay1,y2 + t2)e(−r
√

dy1y2
a t)dt, (8.41)

where Ay1,y2 = ay2
dy1

+ dy1
ay2
− 2 ≥ 0.

If r = 0, the estimate V (u)≪ (1+u)−1−ε (of (8.30)) implies that F̂µ,g1,g2,∞(0)
is

≪
√
dy1y2
a

∫

R

dt

(1 +Ay1,y2 + t2)1+ε
=

√
dy1y2
a

(1 +Ay1,y2)
1+ε

∫

R

dt

(1 + t2

1+Ay1,y2
)1+ε

=

√
dy1y2
a

(1 +Ay1,y2)
1/2

(1 +Ay1,y2)
1+ε

∫

R

dt

(1 + t2)1+ε
.

The estimate (8.38) follows. If r 6= 0, then by Proposition 8.8, (8.41) is

≪
√
dy1y2
a

(
r

√
dy1y2
a

)−2 ∫

R

∣∣∣∣
d2

dt2
V (Ay1,y2 + t2)

∣∣∣∣ dt.

In order to prove (8.39), it suffices to show that the above integral is bounded
independently of a, d, y1, y2. Using the bounds (8.30), we have

∫

R

∣∣∣∣
d2

dt2
V (Ay1,y2 + t2)

∣∣∣∣ dt =
∫

R

|2V ′(Ay1,y2 + t2) + 4t2V ′′(Ay1,y2 + t2)|dt
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≪
∫

R

2(1 +Ay1,y2 + t2)−1−εdt+

∫

R

4t2(1 +Ay1,y2 + t2)−3/2−εdt

≤
∫

R

2(1 + t2)−1−εdt+

∫

R

4t2(1 + t2)−3/2−εdt <∞,

as needed. Notice that when ay2 6= dy1, Ay1,y2 > 0 and the above involves only
derivatives of V on the open interval (0,∞).

Recall the partition F = FT ∪ F̃T from (8.33). It will be convenient to
decompose the norm of KT

2 accordingly as

‖KT
2 ‖F×F = (‖KT

2 ‖2F×FT
+ ‖KT

2 ‖2F×F̃T
)1/2,

and consider each piece separately.

Proposition 8.38. Under the hypotheses of Proposition 8.29,

‖KT
2 ‖F×FT

<∞.

Proof. Suppose g2 ∈ FT . Then τT (δg2) 6= 0 only if δ = 1 (cf. Lemma 17.1 of
[KL2]). Hence

KT
2 (g1, g2) =

∑

γ∈B(Q)

f(g−1
1 γg2)−

∑

µ∈M(Q)

∫

N(A)

f(g−1
1 µng2)dn

=
∑

µ∈M(Q)

( ∑

η∈N(Q)

f(g−1
1 µηg2)−

∫

N(A)

f(g−1
1 µng2)dn

)
.

The rearrangement is justified by Proposition 8.27.
We would like to apply the Poisson summation formula to the sum over

η. To justify this, note that by (8.40) and (8.30), Fµ,g1,g2,∞(t) ≪ t−2, while
Fµ,g1,g2,fin is a Schwartz-Bruhat function on Afin (see the proof of Proposition
19.10 of [KL2]). On the other hand, write µ =

(
a
d

)
, take g1, g2 in the form of

(8.36), and suppose ay2 6= dy1. Then by the above lemma, F̂µ,g1,g2,∞(t)≪ t−2

for t 6= 0. Hence by [KL2] Theorem 8.17, the adelic Poisson summation formula
can be applied to the global function Fµ,g1,g2 .

Therefore for fixed g1, using Lemma 8.28 we see that for almost all g2 ∈ FT ,

KT
2 (g1, g2) =

∑

µ=diag(a,d)
ad=D,a>0

∑

t∈Q∗

F̂µ,g1,g2(t).

(Poisson sumation may fail to hold on the set of g2 with y2 ∈ {dy1a |ad = D},
but this is of measure 0.) Because Fµ,g1,g2,fin is a Schwartz-Bruhat function,

F̂µ,g1,g2,fin is as well (cf. [KL2], Proposition 8.13). Therefore its support is

contained in 1
M Ẑ for some integer M > 0. By (8.37) and (8.39),

∑

µ=diag(a,d)
ad=D,a>0

∑

t∈Q∗

F̂µ,g1,g2(t)≪
∑

µ=diag(a,d)
ad=D,a>0

∑

t∈ 1
M Z−{0}

t−2

√
a

dy1y2
≪ 1√

y1y2
(8.42)
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for a.e. g2 ∈ FT . Therefore

‖KT
2 ‖2F×FT

=

∫

F

∫

FT

|KT
2 (g1, g2)|2dg2dg1 ≪

∫ ∞

√
3

2

∫ 1
2

− 1
2

∫ ∞

T

∫ 1
2

− 1
2

dx2dy2dx1dy1
y31y

3
2

,

which is clearly finite.

Lemma 8.39. Let C = C∞ ×Cfin be a compact subset of G(A). Then for any
µ ∈M(Q), ∫

C

∫

F

|F̂µ,g1,g2(0)|2dg1dg2 <∞.

Proof. The above integral factorizes as

∫

C∞

∫

F

|F̂µ,g1,g2,∞(0)|2dg1∞dg2∞
∫

Cfin

∫

Kfin

|F̂µ,k,g2,fin(0)|2dk dg2fin, (8.43)

where F is the archimedean part of F, defined on page 108. Observe that by
(8.28), ffin(k

−1
1 µ

(
1 t
0 1

)
g2fin) 6= 0 only if

(
1 t
0 1

)
∈ Z(Afin)µ

−1KfinδKfinC
−1
fin .

Since µ−1KfinδKfinC
−1
fin is compact, taking the determinant of both sides we see

that the Z(Afin)-part of
(
1 t
0 1

)
is also restricted to a compact set, i.e.

(
1 t
0 1

)
∈ Z0 µ

−1KfinδKfinC
−1
fin .

for some compact subset Z0 ⊆ Z(Afin). The above set is compact, so it follows
that t is restricted to some compact subset B ⊆ Afin, and hence

|F̂µ,k1,g2,fin(0)| ≤
∫

B

|ffin(k−1
1 µ

(
1 t
0 1

)
g2)|dt ≤ meas(B).

Therefore, the non-archimedean double integral in (8.43) is finite.
For the infinite part, without loss of generality we can assume that C∞ ⊆

SL2(R), so it consists of elements
(
1 x
0 1

)(√y
√
y−1

)
k∞ with −L ≤ x ≤ L and

0 < T1 ≤ y ≤ T2 for some constants L, T1, T2. By (8.38),

|F̂µ,g1,g2,∞(0)|2 ≪ε
dy1y2

a( dy1ay2
+ ay2

dy1
− 1)1+ε

≪ y1y2

( dy1ay2
+ ay2

dy1
)1+ε

,

where the latter bound holds by the fact that dy1
ay2

+ ay2
dy1
≥ 2. Hence

∫

C∞

∫

F

|F̂g1,g2,µ,∞(0)|2dg1∞dg2∞
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≪
∫ L

−L

∫ 1/2

−1/2

∫ T2

T1

∫ ∞

√
3

2

y1y2

( dy1ay2
+ ay2

dy1
)1+ε

dy1dy2
y21y

2
2

dx1dx2

≪
∫ T2

T1

(∫ ∞

√
3

2

1

( dy1ay2
+ ay2

dy1
)1+ε

dy1
y1

)
dy2
y2

=

∫ T2

T1

(∫ ∞

d
√

3
2ay2

1

(y + y−1)1+ε
dy

y

)
dy2
y2

.

The inner integral is absolutely convergent, and defines a continuous function
of y2. Therefore the outer integral converges as well.

Lemma 8.40. Given δ ∈ B(Q)\G(Q), there exists a finite subset Aδ ⊆M(Q)

such that F̂µ,g1,δg2(0) is identically 0 as a function of (g1, g2) ∈ F × F for all
µ ∈M(Q) which are not in Aδ.

Proof. Write gi fin = ki ∈ Kfin. The lemma follows by looking at the finite part

F̂µ,g1,δg2,fin(0) =

∫

Afin

ffin(k
−1
1

(
a
d

)(
1 t
0 1

)
δk2)dt.

By the Bruhat decomposition G(Q) = B(Q) ∪B(Q)
(

1
1

)
N(Q), we can take

δ ∈ {1} ∪ {
(
0 1
1 r

)
|r ∈ Q}.

When δ = 1, the assertion follows from Lemma 8.28. Hence, we may suppose
that δ =

(
0 1
1 r

)
. Suppose

ffin(k
−1
1

(
a
d

)(
1 t
0 1

)(
0 1
1 r

)
k2) 6= 0.

Taking the determinant and arguing as in the proof of Proposition 8.28, we can
assume that a > 0, ad = ±D, and

(
a

d

)(
1 t
0 1

)(
0 1
1 r

)
=

(
at a+ (at)r
d dr

)
∈M2(Ẑ).

In particular, d ∈ Z and at ∈ Ẑ. From the fact that the upper right-hand entry
also belongs to Ẑ, it then follows that

D

d
= ±a ∈ (rẐ+ Ẑ) ∩Q =

1

β
Z

if r = α
β for α, β ∈ Z relatively prime. It follows that d|βD. In particular, the

set of such d is finite.

Proposition 8.41.

‖KT
2 ‖F×F̃T

<∞.
Proof. By definition, for g1, g2 ∈ F, we have

KT
2 (g1, g2) =

∑

µ∈M(Q)

∑

t∈Q

Fµ,g1,g2(t)−
∑

δ∈B(Q)\G(Q)

∑

µ∈M(Q)

F̂µ,g1,δg2(0)τT (δg2).

As in the proof of Proposition 8.38, for fixed g1, we can apply Poisson summation
to the sum over t for a.e. g2, so K

T
2 (g1, g2) is equal almost everywhere to the

sum of the following three functions:
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1.
∑

µ=diag(a,d),
ad=D,a>0

∑

t∈ 1
M Z−{0}

F̂µ,g1,g2(t)

2.
∑

µ=diag(a,d),
ad=D,a>0

F̂µ,g1,g2(0)

3. −
∑

δ∈B(Q)\G(Q)

∑

µ∈Aδ

F̂µ,g1,δg2(0)τT (δg2),

where Aδ is the finite subset ofM(Q) given by Lemma 8.40. By Minkowski’s in-
equality, it suffices to show that each of these three functions is square integrable

over (g1, g2) ∈ F× F̃T .

By (8.42), the integral of the square of first function over F× F̃T is

≪
∫ T

√
3

2

∫ ∞

√
3

2

dy1
y31

dy2
y32

<∞.

The square integrability of each summand of the second function was proven
in Lemma 8.39 above, and it follows by Minkowski’s inequality that the sec-
ond function itself is square integrable over the given set. For the third func-
tion, by [KL2] Proposition 17.2, there are only finitely many δ ∈ B(Q)\G(Q)

such that τT (δg) 6= 0 for some g ∈ F̃T . Therefore it suffices to show that

‖F̂µ,g1,δg2(0)τT (δg2)‖F×F̃T
is finite for fixed δ and µ. We have

∥∥∥F̂µ,g1,δg2(0)τT (δg2)
∥∥∥
2

F×F̃T

≤
∫

F

∫

F̃T

|F̂µ,g1,δg2(0)|2dg2dg1

=

∫

F

∫

δF̃T

|F̂µ,g1,g2(0)|2dg2dg1,

which is finite by Lemma 8.39, since δF̃T is compact and factorizable.

Proof of Proposition 8.29. Since KT = K1 + KT
2 , it suffices by Minkowski’s

inequality to show that the latter two functions are square integrable over F×F.
By Proposition 8.36, ‖K1‖F×F <∞. By Proposition 8.38 and Proposition 8.41,

‖KT
2 ‖2F×F

= ‖KT
2 ‖2F×FT

+ ‖KT
2 ‖2F×F̃T

<∞.

This completes the proof. �
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9 Kloosterman sums

Fix a modulus N ∈ Z+, and let χ be a Dirichlet character modulo N of con-
ductor cχ. We have defined the following generalized Kloosterman sum for any
c ∈ NZ+ and nonzero n ∈ Z:

Sχ(a, b; n; c) =
∑

x,x′∈Z/cZ,
xx′=n

χ(x)e(
ax+ bx′

c
). (9.1)

Although gcd(n, N) = 1 elsewhere in this paper, we make no such restriction
in this section. Note that when n > 1, x need not be invertible in Z/cZ.
Furthermore, χ is not generally a Dirichlet character modulo c, and should be
viewed simply as a multiplicative function on Z/cZ. In particular it can happen
that χ(x) 6= 0 when (x, c) > 1.

In the special case where n = 1, we obtain the usual twisted Kloosterman
sum with character χ defined by

Sχ(a, b; c) =
∑

x∈(Z/cZ)∗

χ(x)e(
ax+ bx

c
), (9.2)

where xx ≡ 1 mod c. If χ is the principal character modulo N , then we simply
write S(a, b; c), which is the classical Kloosterman sum.

Suppose n = n1n2 where (n1, c) = 1. Then replacing x′ by n1x
′, we have

Sχ(a, b; n; c) = Sχ(a, bn1; n2; c). (9.3)

In particular, if (n, c) = 1 we have

Sχ(a, b; n; c) = Sχ(a, bn; c).

This holds in other situations as well; see (9.24) below. In his Ph.D. thesis,
J. Andersson discusses the generalized Kloosterman sums (9.1), which were
apparently first defined by Bykovsky, Kuznetsov and Vinogradov ([A], [BKV]).
He gives elementary proofs of the following identities, special cases of which
were given by [BKV] and Selberg [Sel1].

Proposition 9.1. If either (N, n) = 1 or (N, b) = 1, then

Sχ(a, b; n; c) =
∑

d|(n,b,c)
χ(d) dSχ(a,

bn
d2 ;

c
d ). (9.4)

The identity also holds if χ is taken to be the principal character modulo c (resp.
c/d) on the left (resp. right). In the case where χ is principal, we have

S(a1, a2; a3; c) = S(aσ(1), aσ(2); aσ(3); c) (9.5)

for any permutation σ ∈ S3.
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See [A] for the proofs. In his proof of (9.4) (Theorem 1 on page 109 of [A]),
some hypothesis on N (such as (N, n) = 1 or (N, b) = 1) is used implicitly in
order for χ to be well-defined modulo c/d in Sχ(a,

bn
d2 ,

c
d ).

The purpose of this section is to prove the following Weil bound for the sum
(9.1).

Theorem 9.2. For integers c ∈ NZ and a, b, n ∈ Z with c, n nonzero, we have
the bounds

|Sχ(a, b; n; c)| ≤ τ(n) τ(c) (an, bn, c)1/2 c1/2 c1/2χ

and
|Sχ(a, b; n; c)| ≤ τ(n) τ(c) (an, bn, c)1/2 c1/2 c1/4χ

∏

p|cχ

p1/4

for the divisor function τ .

Remark: Bruggeman and Miatello produce a bound when n = 1, which is valid
over any totally real field (cf. Section 2.4 of [BM]). They use the trivial bound
at primes p|N , which results in the estimate

|Sχ(a, b; c)| = O(c
1
2+ε

∏

p|N
pcp/2).

This is somewhat weaker than the estimates in Theorem 9.2, whose full strength
was required in the proof of Proposition 7.12.

9.1 A bound for twisted Kloosterman sums

The proof of Theorem 9.2 follows three steps: express (9.1) as a product of local
factors, relate the local factors to twisted Kloosterman sums (9.2), and apply a
Weil bound to the latter. The present section establishes the Weil bound needed
for the last step. The classical Kloosterman sums satisfy the Weil/Salié bound

|S(a, b; c)| ≤ τ(c)(a, b, c)1/2c1/2 (9.6)

(cf. [IK], Corollary 11.12). It should be noted that the above bound does not
hold for Sχ(a, b; c). See Example 9.9 below. In general, one must account for
the conductor of χ as well.

Theorem 9.3. Let p be any prime. Suppose c = pℓ and χ is a Dirichlet
character of conductor cχ = pγ for γ ≤ ℓ. Then for any integers a, b,

|Sχ(a, b; c)| ≤ τ(c) (a, b, c)1/2 c1/2 c1/2χ (9.7)

and
|Sχ(a, b; c)| ≤ τ(c) (a, b, c)1/2 c1/2 c1/4χ p1/4. (9.8)
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Remarks: The proof will occupy the remainder of this section. The methods
are standard and in large part elementary, but because there seems to be no
proof in the literature, we will include the details. The general case (for c not
necessarily a prime power) is contained in Theorem 9.2, whose proof will follow
later.

The case ℓ = 1 is the most difficult, but it is well-known.

Proposition 9.4. Suppose c = p is prime. Then |Sχ(a, b; p)| ≤ 2(a, b, p)1/2p1/2.

Proof. When p = 2, the proposition is trivial. If p is odd and p ∤ ab, this was
proven by Weil for principal χ, and extended to non-principal χ by Chowla
([We], [Ch]; see also [Co]). These sources deal only with the case b = 1, but the
general case follows easily by a change of variables.

If p|a and p ∤ b (or vice versa), then Sχ(a, b; p) is a character sum precisely
of the kind discussed in Section 5.8. In this case, if χ is the principal character
modulo p, the value of the sum is −1. If χ is non-principal, then |Sχ(a, b; p)| =
p1/2 ([Hua], Theorem 7.4.4).

Lastly, if p|a and p|b, then by the triangle inequality, |Sχ(a, b; p)| ≤ p =
(a, b, p)1/2p1/2.

The case p = cℓ with ℓ ≥ 2 is elementary, as first shown for the case of
principal χ by Salié [Sal], whose work was later refined by Estermann [Es]. We
will follow the presentation in Section 12.3 of [IK]. It requires a knowledge of
the number of solutions to certain quadratic congruences, given as Lemma 9.6
below. Although this is standard, we include the proof because of its central
importance in what follows.

Lemma 9.5. Let n,D > 0, with p ∤ D. Let M be the number of solutions of

x2 ≡ D mod pn. (9.9)

Then

M =





1 if p = 2, n = 1

0 if p = 2, n = 2, D ≡ 3 mod 4

2 if p = 2, n = 2, D ≡ 1 mod 4

0 if p = 2, n > 2, D 6≡ 1 mod 8

4 if p = 2, n > 2, D ≡ 1 mod 8

1 + (Dp ) if p > 2.

Proof. See e.g. [Land], Theorem 87.

Lemma 9.6. Let a be an integer and p ∤ a a prime. Consider the congruence

ax2 +Bx+ c ≡ 0 mod pn (9.10)
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for n > 0. Write ∆ = B2−4ac = pδ∆′, where p ∤ ∆′. Let M denote the number
of solutions to (9.10). Then if p 6= 2,

M =





p⌊
n
2 ⌋ if δ ≥ n,

2pδ
′

if δ = 2δ′ < n and (∆
′

p ) = 1,

0 otherwise, i.e. δ < n and (δ is odd or (∆
′

p ) = −1).

When δ > 0, all solutions are prime to p if p ∤ B, and divisible by p otherwise.
Suppose δ = 0 and (∆p ) = 1. Then both solutions are prime to p if p ∤ c (in

particular if p|B), but if p|c then exactly one of the two solutions is divisible by
p.

If p = 2 and B is even, then δ ≥ 2 and

M =





2⌊
n
2 ⌋ if δ ≥ n+ 2,

2min(n−δ+1,2)2δ
′−1 if 2 ≤ δ = 2δ′ < n+ 2 and ∆′ ≡ 1 mod 2min(n−δ+2,3)

0 otherwise.

By (9.10), all solutions have the same parity as c. Furthermore, when δ > 2,
all solutions are odd if 4 ∤ B, and even otherwise. When δ = 2, all solutions are
even if 4 ∤ B, and odd otherwise.

If p = 2 and B is odd, then M =

{
2 if ∆ ≡ 1 mod 8

0 otherwise.

Note that ∆ ≡ 1 mod 8 if and only if c is even. In this case, exactly one of the
two solutions is even.

Proof. First, suppose p 6= 2. Then (9.10) is equivalent to

(2ax+B)2 ≡ ∆ mod pn. (9.11)

If δ ≥ n, the solutions of (9.11) are given by 2ax + B ≡ 0 mod p⌈
n
2 ⌉. There is

a unique solution x modulo p⌈
n
2 ⌉, so there are pn−⌈n

2 ⌉ = p⌊
n
2 ⌋ solutions modulo

pn. The solutions x are coprime to p if and only if p ∤ B.
Suppose δ < n. If δ is odd, it is easy to see that (9.11) has no solution.

Suppose δ is even and write δ = 2δ′. Then the solutions of the congruence are
given by 2ax+B ≡ pδ′X mod pn, where

X2 ≡ ∆′ mod pn−δ.

By Lemma 9.5, this congruence has solutions (necessarily two) if and only if

∆′ is a quadratic residue modulo p. So if (∆
′

p ) = −1, (9.11) has no solution.

Otherwise, the solutions of (9.11) are given by

2ax+B ≡ pδ′(X + pn−δα) mod pn,

where α ranges through (Z/pδ
′
Z). Therefore, in this case the number of so-

lutions is 2pδ
′
(two choices for X, and pδ

′
choices for α). If δ > 0, then a
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solution x is divisible by p if and only if p|B. Now suppose δ = 0. Then
x ≡ (2a)−1(X − B) mod pn, where X2 ≡ ∆ mod pn. If p ∤ c (which is the case
if p|B), then (X −B), and hence x, is prime to p since

(X −B)(X +B) ≡ X2 −B2 ≡ −4ac mod p.

When p|c (so that p ∤ B), then exactly one of the solutions is divisible by p, as
can be seen by considering ax2 +Bx+ c ≡ x(ax+B) ≡ 0 mod p.

Now consider p = 2. The congruence (9.10) is equivalent to

(2ax+B)2 ≡ ∆ mod 2n+2. (9.12)

Suppose B = 2B′ is even. Then (9.12) has a solution only if δ ≥ 2. In that
case, the congruence is equivalent to

(ax+B′)2 ≡ 2δ−2∆′ mod 2n. (9.13)

If δ − 2 ≥ n, then ax + B′ ≡ 0 mod 2⌈
n
2 ⌉. So as before, the congruence (9.13)

has 2⌊
n
2 ⌋ solutions. These solutions x are prime to 2 if and only if 2 ∤ B′, or

equivalently, 4 ∤ B. Now suppose δ − 2 < n. Then (9.13) is possible only
if δ = 2δ′ is even, in which case we can write ax + B′ ≡ 2δ

′−1X mod 2n,
where X2 ≡ ∆′ mod 2n−δ+2. By Lemma 9.5, such X exists if and only if
∆′ ≡ 1 mod 2min(n−δ+2,3), and the number of solutions X modulo 2n−δ+2 is
2min(n−δ+1,2). In this case we can take

ax+B′ ≡ 2δ
′−1(X + 2n−δ+2α) mod 2n

for any α ∈ Z/2δ
′−1Z. Therefore (9.13) has 2min(n−δ+1,2)2δ

′−1 solutions. If
δ > 2, then we see that 2|x ⇐⇒ 2|B′ ⇐⇒ 4|B. If δ = 2, then ∆′ = (B′)2−ac
is odd, and we see that

B′ even =⇒ c odd =⇒ x odd,

B′ odd =⇒ c even =⇒ x even.

(The fact that x and c have the same parity when 2|B is immediate from (9.10)).
Lastly, suppose p = 2 and B is odd. Then (9.12) is solvable only if δ =

0. In that case, the congruence X2 ≡ ∆ mod 2n+2 is solvable if and only if
∆ ≡ 1 mod 8. The solutions to the latter congruence can be denoted X, X +
2n+1, −X, −X + 2n+1. Therefore 2ax + B ≡ ±X mod 2n+1. This means x ≡
(±X−B

2 )a−1 mod 2n has exactly two solutions. Because x2 + x ≡ 0 mod 2, we
see that one solution is odd and one is even.

Proposition 9.7. Let c = p2α with α ≥ 1. Let χ be a Dirichlet character
modulo c, of conductor pγ (γ ≤ 2α). Suppose (a, c) = 1 and c ∤ b. Then:

1. If p is odd, then |Sχ(a, b; c)| ≤ 2p3α/2.

2. If p = 2, then |Sχ(a, b; c)| ≤ 4p3α/2.
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3. If p is odd and γ ≤ 2α − 1, then |Sχ(a, b; c)| ≤ 2pα. If further (i) p|b or
(ii) p ∤ b and ab is not a quadratic residue mod p, then Sχ(a, b; c) = 0.

4. If p = 2 and γ ≤ 2α− 2, then |Sχ(a, b; c)| ≤ 2min(α−1,2)pα ≤ 4pα.

Proof. We apply Lemma 12.2 of [IK] with f(y) = y and g(y) = ay2+b
y , which

gives

Sχ(a, b; c) = pα
∑

y∈(Z/pαZ)∗
h(y)≡0 mod pα

χ(y)e(
ay + by

c
), (9.14)

the summand being independent of the choice of representative for y, where

h(y) = a− by−2 +By−1 (9.15)

for B determined by

χ(1 + zpα) = e(
Bz

pα
). (9.16)

This immediately gives |Sχ(a, b; c)| ≤ pαM , whereM is the number of solutions
to

ay2 +By − b ≡ 0 mod pα, (y, p) = 1. (9.17)

By Lemma 9.6, M ≤ 2 gcd(2, p)pα/2. This proves 1 and 2.
Now suppose p is odd and γ ≤ 2α − 1. If γ ≤ α, then B = 0 by (9.16). If

α < γ ≤ 2α − 1, then taking z = pγ−α in (9.16) we have e( B
p2α−γ ) = 1. Hence

B
p2α−γ ∈ Z. So we see that p|B whenever γ ≤ 2α− 1. Therefore by Lemma 9.6,

(9.17) has no solutions y which are prime to p, unless p ∤ b and 4ab (and hence
ab) is a quadratic residue modulo p. In the latter case, there are exactly two
such solutions, so that |Sχ(a, b; c)| ≤ 2pα. This proves 3.

Next, assume p = 2 and γ ≤ 2α − 2. If γ ≤ α, then B = 0 by (9.16). If
α < γ ≤ 2α − 2, then taking z = pγ−α in (9.16) gives e( B

p2α−γ ) = 1. Hence
B

p2α−γ ∈ Z, so that 4|B whenever γ ≤ 2α−2. By Lemma 9.6, (9.17) has solutions

y only if b is odd (and so δ = 2 in the notation of the lemma). The number of
solutions is at most 2min(α−1,2). Assertion 4 follows.

Proposition 9.8. Let c = p2α+1 with α ≥ 1. Let χ be a Dirichlet character
modulo c, of conductor pγ (γ ≤ 2α+ 1). Suppose (a, c) = 1 and c ∤ b. Then:

1. If p is odd, then |Sχ(a, b; c)| ≤ 2p3α/2+1.

2. If p = 2, then |Sχ(a, b; c)| ≤ 4p3α/2+1.

3. If p is odd and γ ≤ 2α, then |Sχ(a, b; c)| ≤ 2pα+1/2. Furthermore, if (i) p|b
or (ii) p ∤ b and ab is a quadratic residue modulo p, then Sχ(a, b; c) = 0.

4. If p = 2 and γ ≤ 2α− 1, then |Sχ(a, b; c)| ≤ 2min(3,α)pα ≤ 8pα.
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Proof. We apply Lemma 12.3 of [IK] with f(y) = y and g(y) = ay2+b
y , which

gives

Sχ(a, b; c) = pα
∑

y∈(Z/pαZ)∗,
h(y)≡0 mod pα

χ(y)e(
ay + by

c
)Gp(y). (9.18)

Here h(y) is given by (9.15) as before, but this time B is defined by

χ(1 + zpα) = e

(
Bz

pα+1
+ (p− 1)

Bz2

2p

)
, (9.19)

and Gp(y) is the Gauss sum

Gp(y) =
∑

z mod p

e(
d(y)z2 + h(y)p−αz

p
) (9.20)

for

d(y) = by−3 + (p− 1)
B

2
y−2. (9.21)

Because |Gp(y)| ≤ p, we have

|Sχ(a, b; c)| ≤ pα+1M, (9.22)

where M is the number of solutions to (9.17). As before, M ≤ 2 gcd(2, p)pα/2,
so 1 and 2 follow.

Suppose p is odd and γ ≤ 2α. If γ ≤ α, then B = 0 by (9.19). If α < γ ≤ 2α,
then setting z = pγ−α in (9.19) gives

1 = e

(
B

p2α+1−γ +
(p− 1)

2
Bp2(γ−α)−1

)
= e

(
B

p2α+1−γ

)
.

Thus p|B whenever γ ≤ 2α. As in the previous proof, the congruence (9.17)
has solutions (necessarily two in number) only if p ∤ b and ab is a quadratic
residue modulo p. Because p|B, d(y) ≡ by−3 6≡ 0 mod p. Hence by (12.37) of
[IK], |Gp(y)| = p1/2. It now follows that |Sχ(a, b; c)| ≤ 2pαp1/2, which proves 3.

Now suppose p = 2 and γ ≤ 2α− 1. If γ ≤ α, then then B = 0 by (9.19). If
α < γ ≤ 2α− 1, then setting z = pγ−α in (9.19) gives

1 = e

(
B

p2α+1−γ +
Bp2(γ−α)

p2

)
= e

(
B

p2α+1−γ

)
.

Because 2α+1−γ ≥ 2, we see that 4|B. As in the previous proof, the number of
solutions to (9.17) isM ≤ 2min(α−1,2) ≤ 4. Assertion 4 now follows immediately
by (9.22).

Example 9.9. Let p be an odd prime, and let χ be a primitive Dirichlet char-
acter of modulus p3. Then there exist a, b ∈ (Z/p3Z)∗ such that

Sχ(a, b; p
3) = p2.

In particular, if c = p3 for p ≥ 17,

|Sχ(a, b; c)| > τ(c)(a, b, c)1/2c1/2.
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Proof. We apply the above proposition with α = 1. If, in (9.19), p|B, then

χ(1 + zp) = e(
Bz

p2
),

which implies that χ(1 + zp2) = 1, and hence cχ|p2. Thus assuming χ is prim-
itive, p ∤ B. Take a = p−1

2 B and b = −p−1
2 B, and consider Sχ(a, b; p

3) for χ
primitive. In the notation of the previous proof,

h(y) = p−1
2 B + p−1

2 By−2 +By−1 ≡ 0 mod p

⇐⇒ y2 − 2y + 1 ≡ 0 mod p ⇐⇒ y ≡ 1 mod p.

Therefore since a+ b = 0, (9.18) gives

Sχ(a, b; p
3) = pGp(1).

In the notation of (9.21), we have

d(1) = −p−1
2 B + p−1

2 B = 0.

Since h(1) = 0 as well, we have Gp(1) = p. Thus Sχ(a, b; p
3) = p2.

Proposition 9.10. Suppose c = pℓ and cχ = pγ for γ ≤ ℓ. If (a, c) = 1 and

c|b, then |Sχ(a, b; c)| =
{
pℓ/2 if γ = ℓ,

0 otherwise.

Proof. When c|b, Sχ(a, b; c) =
∑
d∈(Z/cZ)∗ χ(d)e(

ad
c ) is a Gauss sum. If γ < ℓ,

then the Gauss sum vanishes ([Hua], Theorem 7.4.2). If γ = ℓ, then the absolute
value of the Gauss sum is pℓ/2.

Corollary 9.11. Suppose c = pℓ for ℓ ≥ 1, cχ = pγ for γ ≤ ℓ, and (a, c) = 1.
Then:

• |Sχ(a, b; c)| ≤ 2 gcd(2, p)2 c1/2p1/4c
1/4
χ ,

• |Sχ(a, b; c)| ≤ τ(c)c1/2p1/4c1/4χ ,

• |Sχ(a, b; c)| ≤ 2 gcd(2, p)2 c1/2c
1/2
χ ,

• |Sχ(a, b; c)| ≤ τ(c)c1/2c1/2χ .

Proof. This follows directly from what we have proven above. We just need to
examine each case. In view of Proposition 9.10, we can assume that c ∤ b. First,
suppose p is odd and ℓ = 2α is even. If γ = 2α, then by Proposition 9.7 (1),

|Sχ(a, b; c)| ≤ 2pαpα/2 = 2c1/2c1/4χ .
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If γ ≤ 2α − 1, then by Proposition 9.7 (3), we have |Sχ(a, b; c)| ≤ 2c1/2. Now
consider ℓ odd. If ℓ = 1, then the bounds hold by Proposition 9.4. Suppose
ℓ = 2α+ 1 for α ≥ 1. If γ = 2α+ 1, then by Proposition 9.8 (1),

|Sχ(a, b; c)| ≤ 2pα+
1
2 p

α
2 + 1

2 = 2p1/4c1/2c1/4χ ≤ 2c1/2c1/2χ .

The last step holds since γ ≥ 1. If γ ≤ 2α, then |Sχ(a, b; c)| ≤ 2pα+
1
2 = 2c1/2

by Proposition 9.8 (3). This establishes the bounds when p is odd.
Now consider the case p = 2, and suppose ℓ = 2α is even. When α = 1,

the bounds are trivial because Sχ(a, b; c) is a sum over (Z/4Z)∗ and is hence
bounded by 2. So we can assume that α > 1. If γ = 2α, then by Proposition
9.7 (2),

|Sχ(a, b; c)| ≤ 4pαpα/2 = 4c1/2c1/4χ ≤ (2α+ 1)c1/2c1/4χ = τ(c)c1/2c1/4χ .

If γ = 2α− 1, then

|Sχ(a, b; c)| ≤ 4pαpα/2 = 4c1/2p(γ+1)/4 ≤ τ(c)p1/4c1/2c1/4χ ≤ τ(c)c1/2c1/2χ .

The last step holds because γ ≥ 1. If γ ≤ 2α− 2, then by Proposition 9.7 (4),

|Sχ(a, b; c)| ≤ 4pα = 4c1/2 ≤ (2α+ 1)c1/2 = τ(c)c1/2,

since α > 1. Now consider ℓ odd. If ℓ = 1, then the bounds are obvious since the
summation only has one term. Suppose ℓ = 2α + 1 with α ≥ 1. If γ = 2α + 1,
then by Proposition 9.8 (2),

|Sχ(a, b; c)| ≤ 4pα+
1
2 p

α
2 + 1

2 = 4p1/4c1/2c1/4χ ≤ 4c1/2c1/2χ ≤ τ(c)c1/2c1/2χ ,

since γ ≥ 1 and τ(c) = 2α+ 2 ≥ 4. If γ = 2α, then by Proposition 9.8 (2),

|Sχ(a, b; c)| ≤ 4pα+
1
2 p

α
2 + 1

2 = 4p1/4c1/2p1/4c1/4χ .

If α ≥ 2, then 4p1/4 ≤ 2α+2 = τ(c), and the first two inequalities follow. That

the remaining ones also hold follows from p
1
2+

α
2 ≤ pα = c

1/2
χ . If α = 1, then

Sχ(a, b; c) is a sum over (Z/8Z)∗, so it is bounded by 4, and the inequalities
clearly hold in this case as well. Finally, if γ ≤ 2α− 1, then by Proposition 9.8
(4),

|Sχ(a, b; c)| ≤ 2min(3,α)pα ≤ (2α+ 2)pα+
1
2 = τ(c)c1/2.

Proposition 9.12. The results of Propositions 9.7, 9.8 and Corollary 9.11 hold
if we exchange the roles of a and b.

Proof. This follows from the fact that Sχ(a, b; c) = Sχ(b, a; c).

We now have all of the pieces in place to prove Theorem 9.3.
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Proof of Theorem 9.3. Suppose c = pℓ, and cχ = pγ for γ ≤ ℓ. We need to show
first that for any a, b,

|Sχ(a, b; c)| ≤ τ(c) (a, b, c)1/2c1/2c1/2χ .

If c|a and c|b, this is trivial. Suppose (a, b, c) = pap for ap = ordp(a), and write
a′ = p−apa and b′ = p−apb. Then by Corollary 9.11,

|Sχ(a, b, c)| = pap |Sχ(a′, b′, pℓ−ap)| ≤ τ(c)papp(ℓ−ap)/2c1/2χ

= τ(c)(a, b, c)1/2c1/2c1/2χ .

If (a, b, c) = pordp(b), the inequality can be proven in the same way after applying
Proposition 9.12.

The second assertion, that

|Sχ(a, b; c)| ≤ τ(c) (a, b, c)1/2c1/2c1/4χ p1/4,

follows in the same manner.

9.2 Factorization

Now we turn our attention back to the generalized Kloosterman sum Sχ(a, b; n; c)
(9.1), expressing it as a product of local factors. These factors will in turn be
expressed in terms of the sums Sχ(a, b; c) studied in the previous section.

Let χ be any multiplicative function Z/cZ −→ C. Suppose c = qr with
(q, r) = 1. Then using

Z/cZ = (Z/qZ)× (Z/rZ),

we see that χ has a canonical factorization χ(x) = χq(x)χr(x), where χq and χr
are multiplicative functions on Z/qZ and Z/rZ respectively. If χ is a Dirichlet
character modulo N , viewed as a function on Z/cZ, and if (r,N) = 1, then
χr = 1 is the constant function 1 on Z/rZ (not to be confused with the principal
character modulo r).

Proposition 9.13. Suppose χ is a multiplicative function modulo N , and q, r ∈
Z+ with (q, r) = 1 and qr ∈ NZ. Write χ(x) = χq(x)χr(x) as above. Then

Sχ(a, b; n; qr) = Sχq
(ar, br; n; q)Sχr

(aq, bq; n; r),

where rr ≡ 1 mod q and qq ≡ 1 mod r.

Proof. By the Chinese reminder theorem, x = rrt+qqd runs through a complete
residue system mod qr when t and d run through complete residue systems mod
q and r respectively.

For fixed x = rrt+ qqd, an integer x′ satisfies xx′ ≡ n mod qr if and only if

tx′ ≡ n mod q and dx′ ≡ n mod r.
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Again by the Chinese reminder theorem, the set of all such x′ is parametrized
by x′ = rrt′ + qqd′, as t′ and d′ run through all solutions of tt′ ≡ n mod q and
dd′ ≡ n mod r, respectively.

Therefore

Sχ(a, b; n; qr) =
∑

tt′≡n

mod q

∑

dd′≡n

mod r

χ(rrt+ qqd)e
(a(rrt+ qqd) + b(rrt′ + qqd′)

qr

)

=
( ∑

tt′≡n

mod q

χq(t)e(
art+ brt′

q
)
)( ∑

dd′≡n

mod r

χr(d)e(
aqd+ bqd′

r
)
)
.

For p|c, write c = pcpc(p) and n = pnpn(p), where p ∤ c(p)n(p). Then by
successive applications of the proposition and (9.3), we obtain the following.

Corollary 9.14. With notation as above,

Sχ(a, b; n; c) =
∏

p|c
Sχp

(ac(p), bc(p)n(p); pnp ; pcp). (9.23)

If p|N , then χp is the Dirichlet character mod pcp defined as in (5.35), so that
χp(d) = 0 if p|d. If p ∤ N , then χp = 1 is the constant function 1 on Z/pcpZ.

Each local factor in (9.23) can be expressed in terms of the familiar twisted
Kloosterman sums (9.2), as the next proposition shows.

Proposition 9.15. Fix integers k ≥ 0 and ℓ ≥ 1, and let χp be a Dirichlet
character modulo pℓ. Then

Sχp
(a, b; pk; pℓ) = Sχp

(a, bpk; pℓ), (9.24)

If instead of a Dirichlet character, χp = 1 is the constant function 1 on Z/pℓZ,
then when k < ℓ,

S1(a, b; p
k; pℓ) =





pk
min(bp,k)∑

i=max(0,k−ap)
S(

a

pk−i
,
b

pi
; pℓ−k) if k ≤ ap + bp

0 otherwise,

(9.25)

where as usual ap = ordp(a) and bp = ordp(b). For the k ≥ ℓ case, the sum is
evaluated in (9.27) below. It vanishes unless ℓ ≤ ap + bp + 1.

Proof. The left-hand side of (9.24) is a sum over xx′ = pk in (Z/pℓZ). If p|x,
then χp(x) = 0. Therefore we can take x ∈ (Z/pℓZ)∗, and x′ = xpk. Eq. (9.24)
follows.

For the case χp = 1, suppose first that k < ℓ. Group the sum in S1(a, b; p
k; pℓ)

according to i = ordp(x) ≤ k. Suppose

xx′ ≡ pk mod pℓ. (9.26)
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Then x = pit and x′ = pk−it for some tt ≡ 1 mod pℓ−k. For given t, t, we
have solutions x = pi(t + pℓ−kd) and x′ = pk−i(t′ + pℓ−kd′). As d, d′ and t
range through Z/pk−iZ, Z/piZ and (Z/pℓ−iZ)∗ respectively, x and x′ give all
incongruent solutions to (9.26) modulo pℓ. Thus

S1(a, b; p
k; pℓ) =

k∑

i=0

∑

t∈(Z/pℓ−kZ)∗

pk−i∑

d=1

pi∑

d′=1

e(
api(t+ pℓ−kd) + bpk−i(t+ pℓ−kd′)

pℓ
)

=

k∑

i=0

∑

t∈(Z/pℓ−kZ)∗

e(
apit+ bpk−it

pℓ
)

pk−i∑

d=1

e(
ad

pk−i
)

pi∑

d′=1

e(
bd′

pi
).

The ith summand is non-zero only if pk−i|a and pi|b. In this situation, write
a = pk−ia′ and b = pib′. Then the above is

= pk
∑

0≤i≤k,
k−ap≤i≤bp

∑

tt≡1
mod pℓ−k

e(
a′t+ b′t

pℓ−k
) = pk

∑

0≤i≤k,
k−ap≤i≤bp

S(a′, b′; pℓ−k).

This proves (9.25).
Now suppose k ≥ ℓ. Then xx′ ≡ 0 mod pℓ, and we write x = pit, x′ = pℓ−it′,

for t ∈ (Z/pℓ−iZ)∗ and t′ ∈ Z/piZ. Thus

S1(a, b; p
k; pℓ) =

ℓ∑

i=0

∑

t

∑

t′

e(
apit+ bpℓ−it′

pℓ
)

=

ℓ∑

i=0

∑

t∈(Z/pℓ−iZ)∗

e(
at

pℓ−i
)
∑

t′∈Z/piZ

e(
bt′

pi
). (9.27)

The sum over t can be evaluated explicitly using

∑

t∈(Z/prZ)∗

e(
at

pr
) =

pr∑

t=1

e(
at

pr
)−

pr−1∑

t=1

e(
apt

pr
) =





pr − pr−1 if 0 < r ≤ ap
−pr−1 if r = ap + 1

0 if r > ap + 1,

and the sum over t′ is pi or 0 according to whether or not i ≤ bp. In particular,
the ith term of (9.27) vanishes unless ℓ− i ≤ ap+1 and i ≤ bp, i.e. ℓ− ap− 1 ≤
i ≤ bp. Thus the whole expression vanishes unless ℓ ≤ ap + bp + 1.

9.3 Proof of Theorem 9.2

We will bound each term of (9.23). Suppose p|N . Then by Proposition 9.15,

Sχp
(ac(p), bc(p)n(p); pnp ; pcp) = Sχp

(ac(p), bc(p)n; pcp).
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Applying Theorem 9.3 to the latter sum,

|Sχp
(ac(p), bc(p)n(p); pnp ; pcp)| ≤ τ(pcp) (a, bn, pcp)1/2pcp/2c1/2χp

≤ τ(pcp) (an, bn, pcp)1/2pcp/2c1/2χp
. (9.28)

Now suppose p|c but p ∤ N . Then χp = 1, and if np < cp, by (9.25) we have

S1(ac(p), bc(p)n
(p); pnp ; pcp) =

min(np,bp)∑

i=max(0,np−ap)
pnpS(

ac(p)

pnp−i
,
bc(p)n(p)

pi
; pcp−np)

Therefore applying the Weil bound |S(a, b; c)| ≤ τ(c)(a, b, c)1/2c1/2 to each term
in the sum, we find (still assuming np < cp)

|S1(ac(p), bc(p)n
(p); pnp ; pcp)| ≤

∑

i

τ(pcp−np)pnp(
a

pnp−i
,
b

pi
, pcp−np)1/2pcp/2−np/2

≤ (np + 1)(cp + 1)(an, bn, pcp)1/2pcp/2, (9.29)

since the sum has at most (np + 1) terms. If np ≥ cp, the bound (9.29) also
holds, since from (9.27),

|S1(ac(p), bc(p)n
(p); pnp ; pcp)| ≤

cp∑

i=0

pcp−ipi

≤ (np + 1)pcp = τ(pnp)(an, bn, pcp)1/2pcp/2.

Multiplying the local bounds (9.28) and (9.29) together, by (9.23) we have

|Sχ(a, b; n; c)| ≤ τ(n)τ(c)(an, bn, c)1/2c1/2c1/2χ ,

which proves the first inequality in Theorem 9.2. The proof of the second
inequality is identical, using the second inequality of Theorem 9.3 for (9.28) in
the case that p|cχ, and using the classical Weil bound (9.6) in place of (9.28) in
the case that p|N but χp is principal, i.e. p ∤ cχ.
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10 Equidistribution of Hecke eigenvalues

The Hecke eigenvalues attached to cusp forms have many interesting statistical
properties. On one hand, there is the “horizontal” Sato-Tate problem of fixing
a newform u(z) and determining the distribution of the Hecke eigenvalues at
all primes away from the level. If u is non-dihedral, then conjecturally the
normalized eigenvalues νup are equidistributed relative to the Sato-Tate measure

dµ∞(x) =

{
1
π

√
1− x2

4 dx if − 2 ≤ x ≤ 2

0 otherwise.
(10.1)

This problem is very deep, being tied to the analytic properties of the symmetric
power L-functions of u. It has now been proven if u is holomorphic of weight
k ≥ 2 by Barnet-Lamb, Geraghty, Harris, and Taylor, [BLGHT].

Another point of view is the “vertical” problem of fixing the prime p and
determining the distribution of the eigenvalues of Tp on a parametric family of
cusp forms, as the parameter (level, weight) tends to infinity. This question has
been addressed independently by several authors: for Maass forms by Brugge-
man [Brug] and Sarnak [Sar2], and for holomorphic forms by Serre [Ser] and
Conrey/Duke/Farmer [CDF]. Strikingly, the relevant measure in this case is
not the Sato-Tate measure, but the p-adic measure

dµp(x) =
p+ 1

(p1/2 + p−1/2)2 − x2 dµ∞(x).

Serre’s article discusses many interesting applications of this result. Effective
versions have been given by Murty and Sinha ([MS]) and Lau and Wang ([LW]).

In the holomorphic case, one obtains a different vertical result using Peter-
sson’s trace formula in which each Hecke eigenvalue has an analytic weight
coming from Fourier coefficients and the Petersson norm of the cusp form. When
weighted in this way, the eigenvalues of Tp become equidistributed relative to
the Sato-Tate measure itself (independent of p), as the level N → ∞ ([LiC],
[KL3]).

In this section we treat the case of Maass forms from the latter perspective,
using the Kuznetsov trace formula. We will prove that for a fixed prime p ∤ N ,
the eigenvalues of Tp on the Maass eigenforms, when given the weights that
arise naturally in the Kuznetsov formula, become equidistributed relative to the
Sato-Tate measure as the level goes to infinity. An interesting feature is that
the weights depend on the choice of f∞ (or equivalently, its Selberg transform
h(t)), while the measure is independent of this choice.

Fix an integer m > 0 and a function h(t) as in Theorem 8.1. We will apply
the Kuznetsov formula with m1 = m2 = m. Fix a prime p ∤ N and an exponent
ℓ ≥ 0. For a Maass eigenform u ∈ F , define the normalized Hecke eigenvalue

νupℓ = ω′(p)ℓ/2λpℓ(u) ∈ R.
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The value is real because ω′(p)ℓ/2Tpℓ is self-adjoint, and it is bounded in absolute
value by a number depending only on pℓ (see p. 73). For all ℓ ≥ 0,

νupℓ = Xℓ(ν
u
p ),

where

Xℓ(2 cos θ) =
sin((ℓ+ 1)θ)

sin θ
= eiℓθ + ei(ℓ−2)θ + · · ·+ e−iℓθ

is the Chebyshev polynomial of degree ℓ (see e.g. Proposition 29.8 of [KL2]).
Now for each uj ∈ F , define a weight

wuj
=
|am(uj)|2
‖uj‖2

h(tj)

cosh(πtj)
, (10.2)

where tj is the spectral parameter of uj . Note that at this point, wuj
may be a

complex number. However, in the equidistribution result below (Theorem 10.2),
we shall impose an extra hypothesis to ensure that wuj

is a nonnegative real
number for all j.

Proposition 10.1. With h(t) as in Theorem 8.1, we have

∑

u∈F
Xℓ(ν

u
p )wu =

{
Jψ(N) +O(N

1
2+ε) if ℓ = 2ℓ′ with 0 ≤ ℓ′ ≤ ordp(m)

O(N
1
2+ε) otherwise

as N →∞, where

J =
1

π2

∫ ∞

−∞
h(t) tanh(πt) t dt =

4

π
V (0) =

4

π
f∞(1). (10.3)

Here, V and f∞ are the functions attached to h in (8.15) and (8.3) respectively,
and the equalities in (10.3) are from (3.17).

Remark: This demonstrates the existence of cusp forms with nonvanishing mth

Fourier coefficient for all sufficiently large N .

Proof. Taking m1 = m2 = m and n = pℓ in Theorem 7.14, the cuspidal term is

∑

u∈F
λpℓ(u)wu = ω′(p)

ℓ/2∑

u

Xℓ(ν
u
p )wu, (10.4)

the sum converging absolutely. This is equal to the first geometric term

T (m,m, pℓ)ψ(N)ω′(pℓ/2)
1

π2

∫

R

h(t) tanh(πt) t dt = T (m,m, pℓ)ψ(N)ω′(pℓ/2)J

plus the remaining geometric terms and minus the continuous term. By Propo-
sition 7.8 and Proposition 7.12, the latter terms are both O(N1/2+ε).4 It is easy
to see that T (m,m, pℓ) = 1 if and only if ℓ = 2ℓ′ for some 0 ≤ ℓ′ ≤ ordp(m).
Multiplying through by ω′(p)ℓ/2, the result follows.

4These bounds were proven for h ∈ PW 12(C)even, but they hold as well for h as in Theorem
8.1 so long as A > 1

4
and B > 2, as shown in the proof of Proposition 8.24.
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Theorem 10.2. Fix a prime p and let m > 0 be an integer. For each n =
1, 2, . . .,

• let Nn be a positive integer coprime to p, such that lim
n→∞

Nn =∞

• let ω′
n be a Dirichlet character modulo Nn

• let Fn be an orthogonal basis for L2
0(Nn, ω

′
n) consisting of Maass eigen-

forms.

Define weights wu as in (10.2). Suppose h(t) is chosen as in Theorem 8.1 so
that J in (10.3) is nonzero, and h(tj) ≥ 0 for all spectral parameters tj. (The
latter condition will be discussed afterwards.) For each n, define the multiset

Sn = {νup |u ∈ Fn}.

Then the sequence {Sn} is wu-equidistributed with respect to the measure

dµ(x) =

ordp(m)∑

ℓ′=0

X2ℓ′(x) dµ∞(x), (10.5)

where dµ∞(x) is the Sato-Tate measure (10.1). This means that for any con-
tinuous function f on R, we have

lim
n→∞

∑
u∈Fn

f(νup )wu∑
u∈Fn

wu
=

∫

R

f(x)dµ(x). (10.6)

Remarks: (1) If we choose m so that p ∤ m, then dµ = dµ∞ is the Sato-Tate
measure itself. In this case, the measure is independent of p, m and h.

(2) The theorem illustrates in particular the fact that the normalized Hecke
eigenvalues νup are dense in the interval [−2, 2]. Thus the Ramanujan Conjecture,
if true, is optimal. In the other direction, the theorem provides evidence for
the conjecture, by virtue of the fact that the measure is supported on [−2, 2].
Any counterexamples to the Ramanujan conjecture are sparse enough to be
undetectable in (10.6).

Proof. Setting ℓ = 0 in Proposition 10.1 gives
∑

u∈F
wu = Jψ(N) + o(N). (10.7)

In particular, the denominator in (10.6) is nonzero when n is sufficiently large.
We may assume that this is the case for all n. By (10.7), for all ℓ ≥ 0 we have

lim
n→∞

∑
u∈Fn

Xℓ(ν
u
p )wu∑

u∈Fn
wu

=

{
1 if ℓ = 2ℓ′, with 0 ≤ ℓ′ ≤ ordp(m)

0 otherwise

=

∫

R

Xℓ(x)dµ(x).
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The latter equality holds because the polynomials Xℓ(x) are orthonormal with
respect to the Sato-Tate measure (see e.g. [KL2], Proposition 29.7). By linearity,
(10.6) holds for all polynomials. Let I ⊇ [−2, 2] be a compact interval containing
νup for all u. (According to the Ramanujan conjecture, we can take I = [−2, 2],
but we do not assume this here. See [Ro] Proposition 2.9 for an elementary proof
of the existence of I.) As one can show, both sides of (10.6) define continuous
linear functionals on C(I), relative to the sup-norm topology. Since the set of
polynomials is dense, it follows that (10.6) holds for all continuous functions, as
required.

In more detail, suppose f is any continuous function on I. Given ε > 0, let
P be a polynomial approximating f to within ε on the interval I. Then for any
n,

∣∣∣∣∣

∑
u∈Fn

f(νup )wu∑
u∈Fn

wu
−
∫

R

f(x)dµ(x)

∣∣∣∣∣ ≤
∣∣∣∣∣

∑
u∈Fn

(f(νup )− P (νup ))wu∑
u∈Fn

wu

∣∣∣∣∣

+

∣∣∣∣∣

∑
u∈Fn

P (νup )wu∑
u∈Fn

wu
−
∫

R

P (x)dµ(x)

∣∣∣∣∣+
∣∣∣∣
∫

R

(P (x)− f(x))dµ(x)
∣∣∣∣

≤ ε+
∣∣∣∣∣

∑
u∈Fn

P (νup )wu∑
u∈Fn

wu
−
∫

R

P (x)dµ(x)

∣∣∣∣∣+ ε

∫

R

dµ(x). (10.8)

In the first term of (10.8), we have used the fact that wu ≥ 0 for all u, which
holds because of the hypotheses imposed on h and the fact that cosh(πtj) ≥ 0
for all tj . The latter assertion is clear when tj ∈ R by the definition of cosh. The
hypothetical exceptional parameters are of the form tj = ixj for xj ∈ (− 1

2 ,
1
2 ),

so that cosh(πtj) = cosh(iπxj) = cos(πxj) ≥ 0 as well.
As shown in the first part of the proof, the middle term of (10.8) has the

limit 0 as n→∞. Therefore

lim sup
n→∞

∣∣∣∣∣

∑
u∈Fn

f(νup )wu∑
u∈Fn

wu
−
∫

R

f(x)dµ(x)

∣∣∣∣∣ ≤ ε(1 +
∫ 2

−2

dµ(x)).

Letting ε→ 0, we obtain (10.6) as needed.

In the theorem, we assumed that h(tj) ≥ 0 for all spectral parameters tj .
Since tj ∈ R ∪ i(− 1

2 ,
1
2 ), the condition holds if h is nonnegative on the real and

imaginary axes. Examples of allowable h include the Gaussian h(t) = e−t
2

and

the function hR(t) = e−(t2−R2)2 .

y =C hR(t)
-R R

C

The latter detects just those Maass forms with spectral parameter close to ±R.
When we apply the theorem to hR, the fact that the result is independent of R
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shows that the equidistribution holds even when we restrict to a small piece of
the spectrum.

Other functions h satisfying the hypotheses of the theorem may be con-
structed as follows. Let h be the Selberg transform of a function f∞ = F ∗ ∗ F ,
where F ∈ Cmc (G+//K∞) for m ≥ 12. Let f1 : G(Afin) → C be the identity
Hecke operator, corresponding to n = 1. Then if u is a Maass cusp form with
spectral parameter t, by Proposition 4.8 we have

h(t) =
〈R(f)ϕu, ϕu〉
〈ϕu, ϕu〉

=

〈
R(F × f1)ϕu, R(F × f1)ϕu

〉

‖u‖2 ≥ 0.
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[Ma] H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen
und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math.
Ann. 121, (1949), 141–183.

[Mi] T. Miyake, Modular forms, Springer-Verlag, Berlin, 1989.

139



[Mo1] Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts
in Mathematics, 127. Cambridge University Press, Cambridge, 1997.

[Mo2] ——, Sums of Kloosterman sums revisited, appears in “The Conference on L-
Functions”, 141–163, World Sci. Publ., Hackensack, NJ, 2007.

[Mo3] ——, Chapter 6: Appendix, post-publication appendix to [Mo1],
arXiv:0810.2847, 2008.

[MS] R. Murty and K. Sinha, Effective equidistribution of eigenvalues of Hecke oper-
ators, J. Number Theory 129 (2009), no. 3, 681–714.

[Mu] R. Murty, On the estimation of eigenvalues of Hecke operators, Number theory
(Winnipeg, Man., 1983). Rocky Mountain J. Math. 15 (1985), no. 2, 521–533.

[MV] P. Michel and A. Venkatesh, The subconvexity problem for GL2, Publ. Math.
Inst. Hautes Études Sci. No. 111 (2010), 171–271.

[P1] H. Petersson, Uber die Entwicklungskoeffizienten der automorhen formen, Acta.
Math. 58, (1932), 169–215.

[P2] ——, Uber eine Metrisierung der ganzen Modulformen, Jahresber. Dtsch. Math.-
Ver. 49 (1939), 49–75.

[Ra] K. Ramachandra, Theory of numbers: a textbook, Alpha Science, Oxford, 2007.

[Ro] J. Rogawski, Modular forms, the Ramanujan conjecture and the Jacquet-
Langlands correspondence, appendix in “Discrete Groups, Expanding Graphs
and Invariant Measures,” by A. Lubotzky, Birkhäuser, Basel, 1994, pp. 135–176.
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Notation index

1 (constant function 1), 53, 129
xp = ordp(x), Np = ordp(N), etc., 10
dN , idele (xp), xp = d for p|N , xp = 1

otherwise, 10
c(p) = p−cpc, n(p) = p−np

n, 129
f∗(g) = f(g−1), 25
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