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Abstract

We give an adelic treatment of the Kuznetsov trace formula as a relative trace
formula on GL(2) over Q. The result is a variant which incorporates a Hecke
eigenvalue in addition to two Fourier coefficients on the spectral side. We include
a proof of a Weil bound for the generalized twisted Kloosterman sums which arise
on the geometric side. As an application, we show that the Hecke eigenvalues of
Maass forms at a fixed prime, when weighted as in the Kuznetsov formula, become
equidistributed relative to the Sato-Tate measure in the limit as the level goes to
infinity.
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CHAPTER 1

Introduction

1.1. Some history. A Fourier trace formula for GL(2) is an identity between
a product of two Fourier coefficients, averaged over a family of automorphic forms
on GL(2), and a series involving Kloosterman sums and the Bessel J-function. The
first example, arising from Petersson’s computation of the Fourier coefficients of
Poincaré series in 1932 [P1] and his introduction of the inner product in 1939 [P2],
has the form

I'k—-1) am(fan(f) _ ik S(m,n;c) dr/mn
it 2o TR et 3 T e (),

cENZT
where F(N) is an orthogonal basis for the space of cusp forms S (T'o(V)), and

S(m, n; C) — Z eZm’(mx+n§)/c

zZ=1 mod ¢

feFr(N)

is a Kloosterman sum. Because of the existence of the Weil bound
(1.1) |S(m, n;c)| < 7(c)(a,b,c) /22
where 7 is the divisor function, and the bound

Je—1(z) < min(zF~t 27 1/?2)

for the Bessel function, the Petersson formula is useful for approximating expres-
sions involving Fourier coefficients of cusp forms. For example, Selberg used it in
1964 ([Sel3]) to obtain the nontrivial bound

(1.2) an(f) = O(ntk=1D/2+1/44¢)

in the direction of the Ramanujan-Petersson conjecture a,(f) = O(nF=1/2te)
subsequently proven by Deligne.

In his paper, Selberg mentioned the problem of extending his method to the case
of Maass forms. This was begun in the late 1970’s independently by Bruggeman
and Kuznetsov ([Brug], [Ku]). The left-hand side of the above Petersson formula
is now replaced by a sum of the form

(13) 3 am(uj)an(u;)  hit;)

fluil> cosh(mt;)’

u; €F

where m,n > 0, F is an (orthogonal) basis of Maass cusp forms of weight k = 0
and level N =1, t; is the spectral parameter defined by Au; = (% + t?)uj for the
Laplacian A, and h(t) is an even holomorphic function with sufficient decay. There
is a companion term coming from the weight 0 part of the continuous spectrum,

1



2 A. KNIGHTLY AND C. LI

describable in terms of the Eisenstein series

1 y1/2+s L '
E(s,z):§ c;z [z + d|ite (Re(s) > 5, > 0,2 = x +iy).
(eyd)=1

More accurately, it involves the analytic continuation to s on the imaginary line.
This analytic continuation is provided by the Fourier expansion

_y2es o 1/2—s V/TL(5)C(25)
(14) E(s,2) =y +y'/? I'(1/2 + s)¢(1+ 2s)
1/271.1/2+s

2y .
SK. (2 mima
T2+ )01+ 25) ,%e:oazs(m)lm s(2m|mly)e

Here 035(m) = Zo<d|m d? is the divisor sum, and K, is the K-Bessel function.
The continuous contribution to the Kuznetsov/Bruggeman formula is the following

integral of the product of two Fourier coefficients of E(it,z) against the function
h(t):

1 o0 (m/n)“crgit (m)agit (n)
1.5 — h(t)dt.
(1) 3 cies el
The Fourier trace formula is then the equality between the sum of (1.3) and (1.5)

on the so-called spectral side, with the geometric side given by
(1.6)

Smn / h(t) tanh(mt) £+ 2 3 Smanic) / Ty (VY RO,
oo T

2
T it c oo c cosh(mt)

Using this together with the Weil bound (9.2), Kuznetsov proved a mean-square
estimate for the Fourier coefficients a,(u;) ([Ku], Theorem 6), which immediately
implies the bound
an(u;) <;e plt/4te

in the direction of the (still open) Ramanujan conjecture a, (u;) = O(n). (See also
[Brug], §4.) This extended Selberg’s result (1.2) to the case of Maass forms.

Kuznetsov also “inverted” the formula to give a variant in which a general test
function appears on the geometric side in place of the Bessel integral. (Motohashi
has given an interesting conceptual explanation of this, showing that the procedure
is reversible, [Mo2].) This allows for important applications to bounding sums of
Kloosterman sums. Namely, Kuznetsov proved that the estimate

S .
(L) 3 w e X
c<X

holds with # = ¢ ([Ku], Theorem 3). The Weil bound alone yields only § = 3, show-
ing that Kuznetsov’s method detects considerable cancellation among the Kloost-
erman sums due to the oscillations in their arguments. Linnik had conjectured in
1962 that (1.7) holds with # = 0, and Selberg remarked that this would imply the
Ramanujan-Petersson conjecture for holomorphic cusp forms of level 1, ([Sel3]; see
also §4 of [Mu]). By studying the Dirichlet series

S(m,n;c
Z(s,m,n) :24( e ),
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Selberg also codified a relationship between sums of Kloosterman sums and the
smallest eigenvalue A; of the Laplacian, leading him to conjecture that Ay > % for
congruence subgroups. He obtained the inequality A\; > 1% using the Weil bound
(9.2). This inequality is also a consequence of the generalized Kuznetsov formula
given in 1982 by Deshouillers and Iwaniec ([DI]).

Fourier trace formulas have since become a staple tool in analytic number
theory. We mention here a sampling of notable results in which they have played
a role. Deshouillers and Iwaniec used the Kuznetsov formula to deduce bounds
for very general weighted averages of Kloostermans sums, showing in particular
that Linnik’s conjecture holds on average ([DI], §1.4). They list some interesting
consequences in §1.5 of their paper. For example, there are infinitely many primes p
for which p+1 has a prime factor greater than p?!/32. They also give applications to
the Brun-Titchmarsh theorem and to mean-value theorems for primes in arithmetic
progressions (see also [Iw1], §12-13).

Suppose f(x) € Z[z] is a quadratic polynomial with negative discriminant. If
p is prime and v is a root of f in Z/pZ, then the fractional part {£} € [0,1) is
independent of the choice of representative for v in Z. Duke, Friedlander, and
Iwaniec proved that for (p, ) ranging over all such pairs, the set of these fractional
parts is uniformly distributed in [0, 1], i.e. forany 0 < a < 8 <1,

#{(p,v)lp <z, f(v) =0 mod p,a < {7} < 5}
#{p < | p prime}
as x — oo ([DFI]). Their proof uses the Kuznetsov formula to bound a certain
related Poincaré series via its spectral expansion. See also Chapter 21 of [IK].
Applications of Fourier trace formulas to the theory of L-functions abound.
Using the results of [DI], Conrey showed in 1989 that more than 40% of the zeros
of the Riemann zeta function are on the critical line ([Con]).! Motohashi’s book
[Mo1] discusses other applications to ((s), including the asymptotic formula for its
fourth moment. In his thesis, Venkatesh used a Fourier trace formula to carry out
the first case of Langlands’ Beyond Endoscopy program for GL(2) ([L], [V1], [V2]).
This provided a new proof of the result of Labesse and Langlands characterizing
as dihedral those forms for which the symmetric square L-function has a pole, as
well as giving an asymptotic bound for the dimension of holomorphic cusp forms
of weight 1, extending results of Duke. Fourier trace formulas have also been
used by many authors in establishing subconvexity bounds for GL(1), GL(2) and
Rankin-Selberg L-functions; see [MV] and its references, although this definitive
paper does not actually use trace formulas. Subconvexity bounds have important
arithmetic applications, notably to Hilbert’s eleventh problem of determining the
integers that are integrally represented by a given quadratic form over a number field
([IS1], [BH]). Other applications of Fourier trace formulas include nonvanishing of
L-functions at the central point ([Du], [IS2], [KMYV]) and the density of low-lying
zeros of automorphic L-functions (starting with [ILS]).

~(B—a)

1.2. Overview of the contents. Zagier is apparently the first one to ob-
serve that Kuznetsov’s formula can be obtained by integrating each variable of an
automorphic kernel function over the unipotent subgroup. His proof is detailed
by Joyner in §1 of [Joy]. See also the description by Iwaniec on p. 258 of [Iw1],

LConrey, Iwaniec and Soundararajan have recently proven that more than 56% of the zeros
of the family of Dirichlet L-functions lie on the critical line, [CIS].
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and the article [LiX] by X.Li, who also extended the formula to the setting of
Maass forms for SL,(Z), [Gld]. Related investigations have been carried out by
others, notably in the context of base change by Jacquet and Ye (cf. [Ja] and its
references).

Our primary purpose is to give a detailed account of this method over the adeles
of Q, for Maass cusp forms of arbitrary level N and nebentypus w’. We obtain a
variant of the Kuznetsov trace formula by using the kernel function attached to a
Hecke operator Tp,. The final formula is given in Theorem 7.14 on page 79, and it
differs from the usual version by the inclusion of eigenvalues of T, on the spectral
side. The cuspidal term thus has the form

An () @y (U5) Gy (15 h(t;
3 (1)) am, (u))am, (uz)  h(t;)

1. .
(18 e cosh(n)

uj €F(N)

This is a complement to the article [KL1], which dealt with Petersson’s formula
from the same viewpoint. As we pointed out there, the above variant can alter-
natively be derived from the classical version (see Section 7.7 below). It is also
possible to invert the final formula to get a version with the test function appearing
on the geometric side rather than the spectral side, although we will not pursue
this. See Theorem 2 of [BKV] or [A], p. 135.

The incorporation of Hecke eigenvalues in (1.8) allows us to prove a result about
their distribution (Theorem 10.2). To state a special case, assume for simplicity
that the nebentypus is trivial, and that the basis F (V) is chosen so that a1 (u;) =1
for all j. Then for any prime p t N, we prove that the multiset of Hecke eigenvalues
Ap(u;), when weighted by

v = L h(ty)
g |1? cosh(rt;)’

becomes equidistributed relative to the Sato-Tate measure in the limit as N — oo.
This means that for any continuous function f on R,

>userny S Oplug))w; 1 /2

fl@)n/1-— 2 4.

lim = — o

N—o00 w; EF(N) wj ™ J)_9o
This can be viewed as evidence for the Ramanujan conjecture, which asserts that
Ap(uj) € [-2,2] for all j. The above result holds independently of both p and the
choice of h from a large family of suitable functions. We discuss some of the history
of this problem and its relation to the Sato-Tate conjecture in Section 10.

The material in the first six sections can be used as a basis for any number
of investigations of Maass forms with the GL(2) trace formula. Sections 2-4 are
chiefly expository. We begin with the goal of explaining the connection between
the Laplace eigenvalue of a Maass form and the principal series representation of
GL2(R) determined by it. We then give a detailed account of the passage between
a Maass form on the upper half-plane and its adelic counterpart, which is a cuspidal
funcion on GL2(A). We also describe the adelic Hecke operators of weight k = 0
and level N corresponding to the classical ones Tj.

Although similar in spirit with the derivation of Petersson’s formula in [KL1],
the analytic difficulties in the present case are considerably more subtle. Whereas
in the holomorphic case the relevant Hecke operator is of finite rank, in the weight
zero case it is not even Hilbert-Schmidt. The setting for the adelic trace formula is
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the Hilbert space

¢:GA) = C
LPw) =4 o(x19) = w(z)eg) (2 € Z(A),7 € G(Q)),

Jz@mc@naa) 19 < o0,
where G = GL», Z is the center, and w is a finite order Hecke character. Rela-
tive to the right regular representation R of G(A) on L?(w), there is a spectral
decomposition L?(w) = L3 (w) & L% (w). The classical cusp forms correspond
to certain elements in the discrete part, while the continuous part is essentially a
direct integral of certain principal series representations H (it) of G(A). We begin
Section 6 by describing this in detail, following Gelbart and Jacquet [GJ]. For a
function f € L'(w) attached to a classical Hecke operator, we then investigate the
kernel

(1.9) Ky = >  f@'w)

1€Z(Q\G(Q)

of the operator R(f). We assume that f. is bi-invariant under SO(2), compactly
supported in G(R)*, and sufficiently differentiable. Then letting ¢ range through
an orthonormal basis for the subspace of vectors in H(0) of weight 0 and level N,
the main result of the section is a proof that the spectral expansion

K(z,y) = mé/@m) foydg+ Y Tel)el)

el
1 o0
+ 35 2 [ Bl o Bl

is absolutely convergent and valid for all z,y. These are, respectively, the residual,
cuspidal, and continuous components of the kernel.

In Section 5, we discuss the Eisenstein series. We give an explicit description of
the finite set of Eisenstein series F(¢s, g) that contribute to the above expression for
K(z,y). Their Fourier coefficients involve generalized divisor sums and Dirichlet
L-values on the right edge of the critical strip, directly generalizing (1.4). We derive
bounds for these Fourier coefficients, which are useful for both the convergence and
applications of the Kuznetsov formula. For this purpose we require lower bounds
for Dirichlet L-functions on the right edge of the critical strip, reviewed in Section 2.
(We note that more generally, in establishing absolute convergence of the spectral
side of Jacquet’s GL(n) relative trace formula, Lapid makes use of lower bounds for
Rankin-Selberg L-functions on the right edge of the critical strip due to Brumley,
[Lap], [Brum].)

In Section 7 we integrate each variable of K(z,y) against a character over the
unipotent group N(Q)\N(A). Using the geometric form (1.9) of the kernel, we
obtain the geometric side of the Kuznetsov formula as a sum of orbital integrals
whose finite parts evaluate to generalized twisted Kloosterman sums, defined by

S (ma, my;n;c) = Z W (d)e2mildmatd'm/e (for N|c),
dd’=n mod ¢

where w’ is the Dirichlet character of modulus N attached to w. These sums also
arise in the generalized Petersson formula of [KL1]. After an extra averaging at the
archimedean place, we obtain the J-Bessel integrals as in (1.6). Using the spectral
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form of the kernel we obtain the spectral side of the Kuznetsov formula, giving the
main result, Theorem 7.14. The function h(t) of (1.8) is the Selberg transform of
the archimedean test function f.

The hypothesis that f,, be smooth and compactly supported amounts to re-
quiring that h(iz) be an even Paley-Wiener function. This is very restrictive, ruling
out well-behaved functions like the Gaussian h(t) = e~*". In Section 8, we carefully
study the various transforms involved under more relaxed hypotheses, and show
that the Kuznetsov formula remains valid. We start with a function f on G(A)
which is C™ for m sufficiently large, and has polynomial decay rather than compact
support. We then express f as a limit of compactly supported C™ functions (for
which we have already established the Kuznetsov formula), and then show that the
Kuznetsov formula is preserved in the limit. A key step is proving that R(f) is a
Hilbert-Schmidt operator on the cuspidal subspace (cf. Corollary 8.33).

In Section 9, we prove the Weil bound

(1.10) 1Sy (a,b;n;¢)| < 7(n)7(c)(an, bn, c)l/ch/Qci/Q,

where ¢, is the conductor of x, and 7 is the divisor function. Various identi-
ties relate the generalized sum to classical twisted Kloosterman sums Sy (a, b; c) =
Sy (a,b;1;¢). Therefore we reduce to proving a Weil bound for the latter sums.
The latter is well-known, but seems to be a gap in the literature. Furthermore, it
is sometimes erroneously asserted that | S, (a,b;c)| < 7(c)(a, b, c)'/?ct/2. We give a
counterexample on p. 115. For these reasons, we have included all of the details of
the proof of (1.10).

For simplicity, in this paper we only treat forms of weight k = 0 over Q, and we
deal only with positive integer Fourier coefficients for the cusp at infinity. There are
many expositions of the Kuznetsov formula in the classical language which extend
beyond this scope and give other applications. See especially [DI], [CPS], [Mo3]
and [BM]. The latter incorporates general weights and cusps over a totally real
field. We also recommend the text of Baker [B].

1.3. Acknowledgements. We would like to thank Jon Rogawski and Eddie
Herman for suggesting several changes which have greatly improved the exposition.
In particular, Herman drew our attention to the thesis [A] of Andersson, and sug-
gested including the content of Section 7.7. We also thank Farrell Brumley, George
Knightly, and Yuk-Kam Lau for helpful discussions. The first author was supported
in part by the University of Maine Summer Faculty Research Fund and by NSF
grant DMS 0902145.



CHAPTER 2

Preliminaries

2.1. Notation and Haar measure. Notation and normalization of measures
is the same as in [KL2], where full details are given. Let G = GLo, let M =
{(59)} € G be the diagonal subgroup, and let N = {(}%)} € G be the upper
triangular unipotent subgroup. The Borel subgroup of upper triangular matrices is
denoted B = MN = NM. We write G for G/Z, where Z is the center of G, and
generally for a subset S C G, S denotes the image of S in G. Let

(2.1) Koo = {ko = (5% 50)|6 € R}

—sinf cos 6
denote the compact subgroup SO(2) of G(R).

Let Z™ denote the set of positive integers and let RT denote the group of
positive reals. If p is prime, we let Q, and Z, denote the p-adic numbers and
p-adic integers, respectively. For any rational integer x > 0, we often use the
notation

xp = ordp(z),
so that x = prxp, N = prNP, etc.

Let A, Ag, be the adeles and finite adeles of Q. Then 7= Hp Z, is an open
compact subgroup of Ag,. For an element d € Q* , we let
(2.2) dy € A*

be the idele which agrees with d at places p|N and is 1 at all other places.
Let K, = G(Z,) and Kg, = G(Z) denote the standard maximal compact
subgroups of G(Q,) and G(Ag,) respectively. By the Iwasawa decomposition,

G(A)=M(A)N(A)K,
where
K = K. X Kgy.
For an integer N > 1, define the following nested congruence subgroups of Kgy:
Ko(N)={(2%) € K| c=0mod NZ},
Ki(N)={(%) € Ko(N)|d =1 mod NZ},
K(N) = {k € Kgo| k= (}9) mod NZ}.

Each of these is open and compact in G(Agy,). By the strong approximation theo-
rem, we have

(2.3) G(A) = GQGR)" x Ki(N)),

where as usual G(Q) is embedded diagonally in G(A), and G(R)" is the subgroup
of GL2(R) consisting of matrices with positive determinant. We will also use the
local subgroups Ko(N), ={(2}) € K,|c € NZ,}, and similarly for K1(N),.

7



8 A. KNIGHTLY AND C. LI

We take I'g (), T'1 (V) and T'(N) to be the intersections of the above congruence
subgroups with SLy(Z) as usual. We set

(2.4) U(N) = [Kgin : Ko(N)] = [SL2(Z) : =N J] +

p|N
p prime

and locally 9 (N) =[], 1, (), where
Up(N) = [Kp : Ko(N),] = p™ 7 (p+1).

Haar measure will be normalized as follows. See §7 of [KLZ] for more detail.
On R we take Lebesgue measure dz, and on R* we take 2 ‘ . On Q, we normalize
by meas(Z,) = 1, and on Q; we take meas(Z;) = 1. These choices determine
measures on A and A* Z(A), with meas(Q\A) = 1. We normalize dk on K.,
by meas(K) = 1, and use the above measures on R and R* to define measures
on N(R) 2 R and M(R) = R* x R*. These choices determine a measure on
G(R) by the Iwasawa decomposition: writing g = mnk, we take dg = dm dn dk.
We normalize Haar measure on G(Q,) so that meas(K,) = 1, and on G(Agy,) by
taking meas(Kn,) = 1. We then adopt the product measure on G(A) = G(R) x
G(Agn). Having fixed measures on G(A) and Z(A) = A* as above, we give
G(A) = G(A)/Z(A) the associated quotient measure. It has the property that
meas(G(Q)\G(A)) = /3. In the quotient measure on G(Q,), we have meas(K,,) =
1. We also take meas(K,) = 1, which is not the quotient measure on K., /{#1}.

For any real number x, we denote

€($) — e27rix.
We let 0 : A — C* denote the standard character of A. It is defined by
e(—x) = e 2m if p=oo
(2.5) Op(z) = o2 .
(T.P(x) p if p < o0,

where r,(x) € Q is the p-principal part of x, a number with p-power denominator
characterized (up to Z) by z € r,(x) + Z,. Then 6 is trivial on Q, and 65, =
Hp <oo Op 1s trivial precisely on Z. For m € Q, we define the character 6, by

Om(z) = 0(—mzx) = O(mx).

It is well-known that every character of Q\ A arises in this way, i.e. Q = 6\7& by
the the map m — 6,,.

If V is a space of functions on a group G, then unless otherwise specified, we
denote the right regular action of G on V by R. Thus for ¢ € V and g,z € G,

R(g)p(x) = p(zg).
2.2. Characters and Dirichlet L-functions. For a positive integer N, a
Dirichlet character modulo N is a homomorphism
(2.6) X:(Z/NZ)* — C*,

extended to a function on Z by taking Xx(n) = 0 if ged(n, N) > 1. The simplest
example is when (2.6) is the trivial homomorphism. In this case we say that X is
the principal character modulo N.
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If d|N and x’ is a Dirichlet character modulo d, then it defines a Dirichlet
character ¥ modulo N by the composition

(2.7) X:(Z/NZ)* — (Z/dZ)* — C*,

where the last arrow is x’'. We say that X is the character of modulus N induced
from ’. Conversely, if Y is a Dirichlet character modulo N that factors through the
projection to (Z/dZ)* for some positive d|N as above, then we say d is an induced
modulus for ¥. The conductor of X is the smallest induced modulus ¢5 for .
Equivalently, ¢y is the smallest positive divisor of N for which x(a) = 1 whenever
ged(a, N) =1 and @ =1 mod ¢g. If ¢g = N, then X is primitive.

Write A* = Q*(R™ x 2*) A Hecke character is a continuous homomorphism
X : A* — C*, trivial on Q*. The restriction of x¥ to R¥ is of the form = ~ z* for
a unique complex number s. Therefore the Hecke character

Xo(a) = x(a)la|™*
is trivial on Q*R™, so it has finite order (cf. Lemma 12.1 of [KL2]; beware that in
the bijection discussed after that lemma, Dirichlet characters should read primitive
Dirichlet characters). Thus an arbitrary Hecke character is uniquely of the form
Xo®]|-|*, where xq has finite order. The local components x, : Q; — C* (p < o0)
are given by

th

xpla) =x(1,...,1, a,1,1,...),

so that y = Hp Xp-
For a finite order Hecke character y, we let

¢, €ZT

denote the conductor of y. This is the smallest positive integer which has the
property that x(a) =1 for all a € (14 ¢,Z)NZ*. For any N € ¢, Z" we can attach
to x a Dirichlet character x’ = x’y of modulus N and conductor c,, via

(2.8) Y:Q*(RT x Z2*) — Z* — (Z/NZ)* — C*,

where the last arrow defines x’. The case N = ¢, defines a bijection between the set
of finite order Hecke characters of conductor N and the set of primitive Dirichlet
characters modulo N. For any integer d prime to N, we have

(2.9) X'(d) =[] xp(@ =x(dy)  (d,N)=1,
p|IN

with dy as in (2.2).

LEMMA 2.1 (Dirichlet vs. Hecke L-functions). In the above situation,

where the partial L-function on the right is defined by the Euler product
(2.11) Ly(s.x) = [[(@ = xp(p)p™)~".
pIN

Remark: If N = ¢, i.e. ¥ is primitive, then Ly(s, x) = L(s, x) by definition.
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PRrROOF. It is easy to show that 1 = x(p) = xp(P)X'(p) for any pt N ([KL2],
(12.7)). Therefore

L(S’V) = Zmn_s = H(l _Wp_s)_l = LN(87X)' U

n>0 ptN

We will need lower bounds for Dirichlet L-functions on the right edge of the
critical strip, since such L-values arise in the denominators of the Fourier coefficients
of Eisenstein series.

THEOREM 2.2. Let x be a non-principal Dirichlet character modulo N. Write

s = o +it. There exists a constant ¢ > 0 for which the following statements hold.
c

(log (N ([[#[] +2)))?

7
L(s,x) ™" < (log(N(LJt]] +2))

for an absolute implied constant.

(1) If x is non-real, then for 1 —

<o <2

(log(N ([[#]] +2)))

L, 0" < (log(N(Jtl) +2)))

for an absolute implied constant.
(3) If x is real and € > 0 is given such that N© >log N, then in the region

1— §os <0 <2, T:}W§|t|§1,wehave

L(s,x)"' < N™

(2) If x is real, then in the region 1 — 5 <o <2t >1,

for an absolute implied constant.
(4) If x is real and € > 0 is given, then when N is sufficiently large (depending
ong), for|s — 1| < 11z we have

L(s,x) ™" <. N°/?
for an ineffective implied constant depending on €.

PROOF. See equations (3), (4) and (5) on page 218 of Ramachandra’s book
[Ra]. The fourth case requires Siegel’s Theorem, which is why the constant in that
case is not effective. O

COROLLARY 2.3. Fix e > 0. For all Dirichlet characters x of modulus N,
(2.12) L(1+it,x) " <. Ne(log(|t| + 3))7
for an ineffective implied constant depending only on €.

PRrOOF. Note that since log3 > 1,

log(N([]t]] +2)) <log N + log(|t| + 3) = log(|t| + 3) < log N )

log(|t| 4+ 3)
< log(|t| + 3)(log N + 1) <. log([t| + 3)N=/7.

Therefore by parts 1 and 2 of the theorem, (2.12) holds if x is non-real, or if x is a
non-principal real character and |¢| > 1.
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Suppose x is real and non—principal and let ¢/ = ¢/7. We need to establish

(2.12) for [t| < 1. Because 10]1\[5/ < NE//2, we see that either 10NE’ <[t <1lor
t] <

must hold. Therefore as long as N is sufficiently large (N > C(¢)),

Ns Nel/2
L(1+it,x) " < N < N*(log(3 + [t]))”

as needed. We still have to treat the case N < C(e), |[t| < 1. We know that L(1 +
it,x)~! is continuous in ¢, and hence bounded on |t| < 1. There are only finitely
many characters x with modulus < C(g), so their L-functions can be bounded
uniformly on [¢| < 1. Thus L(1 +it,x) < 1 on [t| <1 when N < C(g).

Lastly, suppose x is the principal character modulo N. Recall the well-known
estimate ((1 + i)~ < (log(3 + |t[))” ([In], Theorem 10, p.28). Then

(2.13) L +it,x)"t=¢1+it)™? H p(Fin)=
plN
< (log(3+ )" [ (1 - L)t < (log(3+ )" 12
PIN g pIN

<. (log(3 +|t]))"N=. O






CHAPTER 3

Bi- K -invariant functions on GLy(R)

Our objective is to study the cusp forms of weight 0, realized as certain right
K o-invariant L2-functions on G(R) x G(Agy,). In order to isolate the K -invariant
subspace of L2, we will use an operator R(fo X fin), where fo is a bi- K -invariant
function on G(R). In this section we review the properties of such functions which
will be useful in what follows.

3.1. Several guises. Let m be a fixed nonnegative integer or co. Define
C™(GT//K) to be the space of m-times continuously differentiable functions f on
GR)" = {g € G(R)| det(g) > 0},

whose support is compact modulo Z(R), and which satisfy

(3.1) f(zkgk') = f(9)
for all z € Z(R) and k, k' € K. In later sections, we will view these as functions
on G(R) by setting f(g) = 0 if det(g) < 0. When m = 0, we sometimes denote the
space by C.(GT//K).

In terms of the Cartan decomposition

(3.2) GR)" = Z(R)K { <y1/2 y1/2) } Koo,

an element f € C™(G*//K) depends only on the parameter y. As a function of y,
it is invariant under y — y~*, since f((_; *)g(, ~')) = f(g). Thus we have the
following isomorphism

CHGT//K) — CMRT)",

where C™(R™T)Y is the space of smooth compactly supported functions on R* (the
set of positive real numbers) that are invariant under y — y~!. The value of such
a function depends only on the unordered pair {y,y~'}. The set of such pairs is in
1-1 correspondence with the real interval [0, 00) via {y,y '} <y +y~ ! —2.

PROPOSITION 3.1. Suppose m > 0 and 0 < 3m’ < m+ 1. Then fory € RT,
the substitution

(3.3) u=y+y -2

defines a C-linear injection CT"(RT)* — O™ ([0,00)) whose image contains
C™([0,00)). In particular, this map is an isomorphism in the two casesm =m' =0
and m =m’ = co.

PROOF. We first consider the case of smooth functions. Let a(y) € C°(RT)Y,
and let A(u) = a(y) be the associated function of u € [0, 00). It is easy to see that
Ais C* on (0,00), however the smoothness at the endpoint u = 0 is not obvious

13
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because < Z=(1- y%) I blows up at y = 1. It is helpful to write y = e, and define
h(z) = a(e”) = A(u). Then:
e h(—z) = h(x) is even

h(
o heC=(R)

o u=¢"+4+e"

— 2,80 % = ¢” — 7% = 2sinh(z).

For u > 0, write
A _ pn(z) )
() 27 (sinh )27 —1
When n = 1 this holds with p; (z) = h'(z), and by differentiating, we find in general
that

(3.4) Pn+1(z) = sinh(z)p), () — (2n — 1) cosh(z)p, ().
We claim that p,41(2z) vanishes at least to order 2n + 1 at 0. We prove the claim
by induction, the base case being p1(0) = h'(0) = 0, &’ being odd since h is even.
It is clear that p,41(z) vanishes to at least order 2n — 1 at 0, since this is true of
both terms on the right-hand side of (3.4) by the inductive hypothesis. It remains
to show that
2n—1 2n

p'(n-H )(O) = pSH_%(O) =0.

By differentiating (3.4), we see that for 0 < j <2n —1,

pY)y () = sinh(2)pl ) (x) — (20 — 1 — j) cosh(a)p) (x) + Ly (=),

where Lo(z) = 0 and L;j(z), j > 0, is a linear combination of derivatives of p, of
order < j. In particular, L;(0) = 0 for all j < 2n — 1. Taking j = 2n — 1 gives

pr Y (0) = sinh(0)p{2™) (0) + Lay—1(0) = 0.

Furthermore, it follows inductively from (3.4) that p,4+1(x) is an odd function, so
that the even order derivative pfﬂ (0) vanishes. This proves the claim.

Now we can prove by induction that A (u) is defined and continuous at u = 0.
This is clear when n = 0. Assuming it holds for some given n > 0, we note that by

L’Hospital’s rule,

A () — AMO) A () = Tim, Pnt1(z) ,

T us0+ u u—0+ z—0 2"+ 1 (sinh z)2n+1
provided the limit exists. The denominator vanishes exactly to order 2n + 1 at 0,
and we just showed that p,11(x) vanishes at least to order 2n + 1 at 0. Therefore
we may apply L’Hospital’s rule 2n + 1 times, at which point we get a nonvanishing
denominator at 0, giving a finite limit as needed.

Now suppose a(y) (hence h(x)) is only assumed to be m-times continuously
differentiable. In order for the above argument to run with m’ = n + 1, we need
Pri1(z) (hence ("1 (z)) to be (2n+1)-times continuously differentiable, i.e. m >
3n+2 = 3m’ — 1. It is clear that the resulting map C™(RT)* — C™ ([0, 00)) is
injective. On the other hand, given A € C7([0,00)) and defining a(y) = Ay +
y~!—2) = A(u), it follows from the fact that Z“ = (1—y~?) is smooth on R™ that
a€ CM™(R")¥, so A is in the image of the map. O

We define, for f € C"(G"//K),

55 v =vi+r -2 =1L )
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By the preceding discussion, we have the following.

PROPOSITION 3.2. Suppose 0 < 3m’ < m + 1. Then the assignment f — V
defines an injection C™(GT//K) — C™ ([0, 00)) whose image contains C7([0, 00)).
In particular, it is an isomorphism if m =m' =0 or m = m/ = co.

ab

For g = (c d) € G(R)T, we can recover the parameter y + y !

as follows.

/
Writing g = (\/detg)k(y(y1 ’ y—1/2)k97 we see that 'gg = (detg)ke’l(y y—l)km
where *g denotes the transpose. Therefore

1 tr(lgg)  a?+ b +E+d?
(36) yty = detg ad — be ’
Thus we can recover f from V via:
a b a®+ b2+ A+ d?
7 =V —2).
(37) (8 )=

We can also identify f with a function of two variables on the complex upper
half-plane H. Recall the correspondence

GR)*/Z(R)Ko +— H
induced by (¢4) — (25)(i) = Zf—jr's. By this, the following function is well-defined:
(3.8) k(z1,2) = f(g1'92) (21,22 € H),
where g;(i) = z; for j = 1,2. Clearly
k(vz1,722) = k(z1, 22)
for all v € G(R)™T, and in particular for any real scalar ¢ > 0,
(3.9 k(czy,cza) = k(z1, z2).

PROPOSITION 3.3. With notation as above, for g1, g2 € G(R)™ we have

) = (91" 92)-

yg (zg—=z7)

ProOF. Writing g7 'g2 = (% % )71(7{)"’ )= o ), by (3.6) we have

|21 — 2]?

k‘(Zl,Zg) =V (
Y1Y2

2,32, 2, 42 _ 2 2 _ 2 _ 2
a2 b+ +d _2:y_2+($2 1) L ny: _ (@2 —m)° + (g2 —y1)” 4

ad—be Y1 Y1Y2 Y2 Y1Y2 Y1Y2
3.2. The Harish-Chandra transform. Given f € C7(G"//K), its Harish-
Chandra transform is the function of y € R™ defined by

(Hf)(y) =y 1/2 /R f((1 ”{) (W y_1/2>)dx.

The absolute convergence follows easily from the compactness of the support of f.
It is clear that H f is also compactly supported.

If we identify f with V, and let u = y 4+ y~! — 2 as before, the transform is
traditionally denoted

Q(u):/RV(qumz)dx,
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following Selberg. To see the equivalence, by (3.6) we have

i =2 [ (Y T o= (M 5 )
(3.10) :/RV(ery*1+x2—z)dszV(qua:?)dx.

From this, we see that H f belongs to the space C"(R™)™.

PROPOSITION 3.4. Suppose m,m’ > 0 with 3m’ < m + 1. Then the Harish-
Chandra transform defines a commutative diagram

cm(ar /) L emmeryw

| J

Cm' ([0, 00)) —=% € ([0, 00)),

where all arrows are injective. The image of the bottom map V +— @ contains
C™([0,00)). When m = m’ = oo, all arrows are isomorphisms. Generally, if
m' >0 then foru=y+y ' —2 and

HEy) = Qu) = /R V(ut a?)de,

the inverse transform is given by
1

(3.11) Viu) = ——/ Q' (u + w?)dw
TJR

Remarks: For the smooth case, see also [Lang], §V.3, Theorem 3, p. 71. For more

detail about the inverse transformation, see Propositions 8.16 and 8.17 below. For

example, we will show that the image of the bottom map contains C™ +1([0, 00)).

In fact given Q in this space, if we define V by (3.11), then V € C™ ([0, 00)) and
= [g V(u+a?)dx.

PROOF. The commutativity of the diagram follows from (3.10). The vertical
maps are injective by Propositions 3.1 and 3.2 above. As described there, the image
of the right-hand vertical map Hf + @ contains CI*(]0, 00)), so by commutativity
of the diagram, the same holds for the image of the bottom map V +— Q. It follows
that when m’ = oo, all arrows are surjective. The injectivity of the horizontal arrows
is a consequence of the inversion formula (3.11), so it just remains to prove the
latter. We can differentiate Q(u) under the integral sign because V € C7 ([0, 00))
for m’ > 1 (cf. Proposition 8.3). Thus

Q’(u):/RV’(quxQ)dx.

,_/ Q' (u+ w?) :7—// (u+ w? + 2?)dvdw

2
- / V/(ut r?)rdrdf = 2 / Vit s =vw. O
™ Jo 0 0 2

Hence
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3.3. The Mellin transform. For ® € C"(R™), its Mellin transform is the
function of C defined by

o de
(312) (Ma)(s) = [ oy
0
This is a Fourier transform on the multiplicative group R*. We also denote the
above by M ®. It is easily shown to be an entire function of s. When m > 2, we
have
1 —S8
(313) ) =5 [ (MB)y s
Tl JRe(s)=c
for any 0 € R. This is the Mellin inversion formula, which we will prove under
somewhat more general hypotheses in Propositions 8.10 and 8.11.
We say that an entire function n : C — C is Paley-Wiener of order m if
there exists a real number C' > 1 depending only on 7 such that

Clol
(1 + [ehm™

We let PW™(C) denote the space of such functions. If the above holds for all m > 0
with the same C, then n belongs to the Paley-Wiener space PW>(C) = PW(C).

(3.14) In(o +it)] Km,n

ProroOSITION 3.5. Suppose m > 0. Then the Mellin transform defines an
injection
M:C"(RY) — PW™(C)
whose image contains PW™T2(C). On PW™42(C), the inverse map is given by
(3.13). In particular, if m = oo the transform is an isomorphism.

PROOF. (See also [Lang], §V.3, Theorem 4, p. 76.) First we show that the
image of the Mellin transform lies in PW™(C). When m = 0 this is obvious. Given
® € C™(R") for m > 0, we may apply integration by parts to (3.12) to get

1 > d
- - / ' (y)y Y
0 $Jo Yy

Since ® is compactly supported in R™, the first term on the right vanishes. Con-
tinuing, we find

S

_ (_1)m o (m) s+m@
M(I)(S)_s(s+1)---(s+m—1)/0 ¢ Wy y
Using this, it is straightforward to see that M® satisfies (3.14). The injectivity of
the map is immediate from the inversion formula (3.13).
For n € PW?(C), we can define ®(y) = 5 [5.._, n(s)y~*ds as in (3.13),
the convergence being absolute for any o by (3.14) with m = 2. To see that ® is
compactly supported, consider

1 - <Oyl -1
D(y) = — °d ———dt< (C .
y) =5 /RCS:U n(s)y = ds < /_OO Azt < (@)
If |y| > |C|, then the right-hand side approaches 0 as ¢ — oo, so ®(y) = 0. Thus
Supp ¢ C [-C,C].

Lastly, if n € PW™*2(C) and @ is defined as above, then n = M® (cf. Propo-
sition 8.11), and it is not hard to show that ® € C(R™). The idea is that after
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differentiating under the integral sign m times, we still have an integrand with suf-
ficient (quadratic) decay in t = Im s for convergence. See Proposition 8.13 below
for details. d

3.4. The Selberg transform. If we restrict the Mellin transform to the space
CM(R1)Y defined on p. 13, it gives an injection to the space PW™(C)°ve" of
even functions that are Paley-Wiener of order m. The composition of the Harish-
Chandra and Mellin transforms is called the spherical transform, which we de-
note by

(8f)(s) = Ms(HS).

Because M and ‘H are injective, we immediately see the following.

PROPOSITION 3.6. For m > 0, the spherical transform

S:Cr(Gt//K) L7250 pwm(c)ven

is injective, and its image contains PW™2(C)¢*". In particular, when m = oo it
is an isomorphism.

The Selberg transform of f € C™(G"//K) is a variant of the above, defined
by
(3.15) h(t) = (Sf)(it) = MuH.
It is given explicitly by

o) )= [ [ AT L =[] ks

where dz = d’;# is the G(R)T-invariant measure on H. Note that s — h(—is) is
Paley-Wiener of order m.

PROPOSITION 3.7. Suppose m > 2 and h(—is) = (Sf)(s) € PW™(C)ever.
Then the inverse of the Selberg transform is given by

1 o0
V(u) = E/ P_1 (1 + 3)h(t) tanh(rt) ¢ dt,

— 00

for the Legendre function Ps(z) = P2(z). In particular, we have

T ar

(3.17) F(1) = V(0) = = / " h(t) tanh(rt) ¢ dt.

— 00

PROOF. (See also (2.24) of [Za] or (1.64") of [Iw2].) Beginning with the fact
that M(H[f) = h(—is), we apply Mellin inversion (3.13) to get, for y > 0,

1 1 ) 1 .
= — h(—is)y *ds=— [ h dr=— [ h(r)y*"d
(HNW) = 5 /R | hlisyTrds = o /R (r)y™""dr = /R (r)y"dr,
since h is even. Write y = e” and u =y + 3y~ ' —2 =¥ + e~ ¥ — 2, and define

9(v) = Q(u) = (Hf)(y)-
1

Then g(v) = %/ h(r)e'™ dr, and differentiating (cf. Proposition 8.3),
R

g'(v) i/Rrh(r)e"’”ﬂdr:—%/Rsin(rv)rh(r)dr

:271'
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since h is even. We have used the fact that m > 2, so in particular the above is
absolutely convergent. Now we invert the Harish-Chandra transform via (3.11) to
get

w):——/Q w + 2* dx———/ Q' (w+ %)
1 g'(v)dv

] T
™ Jw u—w m Cosh_1(1+%) \/ev_|_e v—2—w

sin(rv)
dvrh(r)dr.
2772/ /cosh 1(1+w)\/e”+e v—2—w )

The interchange of the integrals is justified by the absolute convergence of the
integral, which follows easily by the fact that m > 2. As observed by Zagier ([Za]
(2.24)), using the identities 8.715.2 and 8.736.7 of [GR], it is straightforward to
show that the above is

1
e Py (L4 %) tanh(wr)r h(r)dr. O
It is sometimes desirable to extend all of these transforms to functions with
sufficient decay rather than just the case of compact support. We will discuss
this in detail in Section 8, but we mention here that the following conditions are
equivalent:
V(u) =0(u #) as u — 00
Q(u) = O(u=4/?) as u — oo
. h(t) is holomorphic in the horizontal strip | Im(¢)| < A/2.
See [Za], p. 320.

3.5. The principal series of G(R). Here we recall the construction of the
principal series of G(R) and prove some well-known simple properties. Detailed
background is given, e.g., in §11 of [KL2]. For €1,e2 € {0,1} and s1, s2 € C, define
a character x = x(e1, €9, 51, s2) of B(R) by

X( (Oad b)) = sgn(a)51 |CL|51 Sgn(d)s‘z |d|52.

Every character of B(R) has this form. We let m, = 7(ey,¢e2,s1,52) denote the
representation of G(R) unitarily induced from x. The underlying representation
space V, consists of measurable functions on G(R) satisfying

IR

with inner product given by

(P1,¢2) = / ¢1(k) o (k)dk
Koo
The action of G(R) is given by right translation
T (9)¢(x) = d(xg).

The representation 7, is unitary when x is unitary, i.e. when s1,s2 € {R. See §11.3
of [KL2] for details.
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We say that a vector has weight k if it transforms by the scalar e*? under the
action of kg € K. A natural basis for V, is {¢x|k € &1 + e2 + 2Z}, where ¢y is
characterized by

¢k(l€9) _ ezkﬁ'

This function spans the one-dimensional space of weight k vectors in V.

We define the spectral parameter of 7, by

)

(318) t= 75(81 752).
The representation m, is reducible if and only if ¢ # 0 and 2it 4+ €; 4 €2 is an
odd integer. Furthermore, the Casimir element A in the center of the universal
enveloping algebra U(gc), whose right regular action on C*°(G(R)T) is given in

the coordinates z(§ ) (yl/2 2 )ko by

¢ ¢ %9
(3.19) R(A)p = — (8 5+ By ) +y Y590
acts on the K.-finite vectors of V by the scalar
1
(3.20) Ty (A) = it t2.

(See e.g. [KL2], pp. 169, 185.)
The only irreducible finite dimensional unitary representations of G(R) are the
unitary characters. For the infinite dimensional ones, we have the following.

PRrROPOSITION 3.8. Let m be an irreducible infinite dimensional unitary repre-
sentation of G(R). Then 7 contains a nonzero vector of weight 0 (resp. weight 1)
if and only if m = w(e1, €9, 81,82) is an @rreducible principal series representation
with €1 + €9 even (resp. odd), and either:

- 81,89 €iR (um'tary principal series) or

~teiR, 0< |t| < 1, and s; + s2 € iR (complementary series),
fort as in (3.18). The vector 1s unique up to scalar multiples.

PROOF. Any irreducible unitary representation m is infinitesimally equivalent
with a subrepresentation of a principal series representation of G(R). A proper sub-
representation containing a vector of weight 0 or 1 is necessarily finite dimensional
(see e.g. [KL2], p. 164). Therefore m = 7(e1,¢€2, 51, $2) is itself a principal series
representation. Since 7 is unitary, one of the two given scenarios must hold. O

Generally, if ¢ is any continuous function on G(R), we extend the right regular
action of G(R) to an action of f € C"(G"//K) by defining

R(f)é(g) = /_ F(9)R(g)d(g')dg = /_ F(9)éd'9)dg.
G(R) G(R)

If ¢ is right Z(R)K -invariant, it can be viewed as a function on H, and after
replacing g by ¢’ g in the above, we find

(3.21) /k:z 2)

where k(Z, z) is the function attached to f in (3.8).
As shown by Selberg [Sel2], if ¢(z) is an eigenfunction of the Laplacian with
eigenvalue § + t?, then in the sense of (3.21), R(f)¢ = h(t)¢ for the Selberg

d:r dy
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transform h of f (see also Theorem 1.16 of [Iw2]). We prove this here in the special
case of interest to us. We use the setting of weight k functions as an example of
how the results of this section immediately generalize from k = 0.

PROPOSITION 3.9. Let m = m, be as above. Let foo be a continuous function
whose support lies in G(R)' and is compact modulo Z(R), satisfying

foo(zk:;llgk‘gz) = x(z) e ®O2=00) r_(g) (z€ Z(R), ko, € Koo).

Then the operator w(fo) preserves the one-dimensional subspace Vi of weight k vec-
tors in V,, and vanishes on its orthogonal complement. If this subspace is nonzero
(i.e. k =1+ €9 mod 2), then

(3.22) T(foo) P = h(t)x,

where t is the spectral parameter (3.18) of w, and h is the Selberg transform of fs,
defined in (3.15).

Proor. We will prove the first claim in a more general context in Lemma 3.10
below, so we grant it for now. Hence if ¢ = ¢ € V,, ¢ is an eigenvector of m(fs)
since dim Vi = 1. The eigenvalue A is given by

A= n(f)d(1) = / foo(9)(g)dg = / Foo(9)6(9)d,

G(R) SL2(R)

by our normalization of Haar measure (cf. (7.27) on page 95 of [KL2]). Here we
have used the fact that f. is supported on G(R)". Now since fo, and ¢ have
opposite weights on the right, the integrand is right K-invariant. Therefore we
have

1/2

dx dy
2

A= [ DT e

<[ 1z)(y"? (s1—82)/2,1/2, —2
= Foo(G9)(" 212 )y y' Py dx dy
0 —00
o0

_ Oo —1/2 1a)(y/? " itd_y: ) _
Ll [t e i) v = sanro) = oo,

as required. O

LEMMA 3.10. Let G be a locally compact group, let K C G be a closed subgroup,
and let  be a unitary representation of G on a Hilbert space V' with central character
X- Then for any bi-K-invariant function f € LY(G,x™') (i.e. integrable mod
center, with central character x=1), the operator w(f) on V given by

() = /6 f(g)m(g)vdg

has its image in the K-fized subspace VX, and annihilates the orthogonal comple-
ment of this subspace.

Remark: If the bi-K-invariance of f is replaced by the property
F(ktgk’) = m(k)T(K") "' f(9)

for a character 7 of K, then the above holds with V, = {v € V|7 (k)v = 7(k)v} in
place of VX, as is easily seen by adjusting the proof below.
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PROOF. See page 140 of [KL2] for a detailed discussion of 7 (f). In particular,
the vector 7(f)v is characterized by the property that

7(f)v, w) = /5 £(9) tm(g)v,w) dg

for all w € V. Since 7 is unitary, for any k € K we have

(k) (f)o,w) = (x(f)v, 7 / £(9) {m(g)v, w(k ) dg
/f w(kg)v, w) dg—/fk 1g) (n(g)v,w) dg = (w(f)v, w)

by the left K-invariance of f. Thus 7(k)7(f)v = n(f)v € VE as claimed.
The adjoint of 7(f) is the operator m(f*), where

f(9)=flg=) € LYG.x7).
The right K-invariance of f means that f* is left K-invariant, so the operator
7(f)* = w(f*) also has its image in VE. If w € (V)L then for any v € VE we
have

(m(f)w,v) = (w,w(f*)v) = 0.
Hence 7(f)w € VE N (VE)L = {0}, as needed. O



CHAPTER 4

Maass cusp forms

Here we review some well-known properties of Maass cusp forms, and spell out
their connection with the representation theory of the adele group GLa(A).

4.1. Cusp forms of weight 0. More detail on the material below can be
found e.g. in Iwaniec [Iw2]. Fix alevel N € ZT, and let w’ be a Dirichlet character
whose conductor divides N and which satisfies

(4.1) W'(=1)=1.
We view w’ as a character of T'o(N) via w/'((24)) = w/(d). Note that w'(y) =1 if

v € I'1(N). Let L?(N,w’) denote the space of measurable functions v : H — C
(modulo functions that are 0 a.e.) such that

(4.2) u(yz) = w'(7)u(2)
for all v € I'y(IV), and whose Petersson norm

1 dz dy
4.3 u2:—/ u(z + iy)|?
(4.3) [l o) FO(N)\H\ ( 1=

is finite. Taking v = (_1 _1) in (4.2) gives w'(—1) = 1 if u(z) # 0, which is why
we imposed (4.1).
Let 6 € G(Q)™, and write
§TIT (NN N(Q) = {(§ ")t € Z},

where Ms > 0 (see Lemma 3.7 of [KL2]). If u is any continuous function satisfying

(4.2), we set

us(2) = u(8(2)).
Then us(z + Ms) = us(z), so for all y > 0, it has a Fourier expansion about the
cusp ¢ = §(oc0) of the form

oo

us(z) = Z am, s (u,y) e(nx/Ms).

m=—0o0

We drop ¢ and just write a,,(u,y) when ¢ = co. An element u € L?(N,w’) is
cuspidal if its constant terms vanish:

1M
— u(d(x +1iy))dz =0
i et i)
for all § € G(Q)' and a.e. y > 0. The subspace of cuspidal functions is denoted
L3(N,u").
The hyperbolic Laplacian is defined as an operator on C*°(H) by

0?  9?
N AL
(4.5) A=—y <8x2 + 5‘y2) .

23

(4.4) ao,s(u,y) =
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This operator commutes with the action of G(R)™:
(Au)(gz) = A(u(g2))-

By this invariance, A descends to an operator on C2°(I'y (N)\H), which is dense in
L?(N,w"). One can show that relative to the Petersson inner product, this operator
is symmetric and positive:

(4.6) (A, ¥) = (9, AY),
4.7 A, ¢) = mt—r v i) ||2dz dy > 0
(4.7) (86.6) = prooy | g I8 Py >

([Lang], §XIV.4). The operator A extends to an elliptic operator on the distribu-
tion space D'(I'1(N)\H) of continuous linear functionals on C°(I'y(N)\H). See
[F1], p. 284. Identifying ¢ € L?(N,w’) with the functional f + (f, ¢) realizes
L?(N,w') as a subspace of D'(I'y(N)\H), although this subspace is not stable un-
der the extended operator A.

A Maass cusp form of level N and nebentypus w’ is an eigenfunction u of
A in the subspace L3(N,w’) ([Ma]). By the elliptic regularity theorem, such an
eigenfunction is necessarily smooth, i.e. u € C>*(H) (cf. [F2] p. 214, or [Lang] p.
407). We write Au = (1 + t?)u for the Laplace eigenvalue and call ¢ the spectral
parameter of u. It is also customary to use s(1 — s) for the eigenvalue, where the
relationship is given by s = % +4t. We will not use this notation, preferring instead
to use s = it.

THEOREM 4.1. The cuspidal subspace L3(N,w') has an orthogonal basis con-
sisting of Maass cusp forms. FEach cuspidal eigenspace of A is finite dimensional,
and the eigenvalues are positive real numbers Ay < Ay < --- with no finite limit
point.

Remarks: (1) A famous conjecture of Selberg asserts that A; > %, or equivalently,

that all of the spectral parameters ¢ are real, [Sar1]. (It is not hard to show that the
set of t ¢ R is finite; see Corollary 7.3 on page 66.) Selberg proved that \; > %.
See §6.2 of [DI], where this is proven as a consequence of the Kuznetsov formula.
The best bound to date is A1 > 1 — ()% ~ 0.238037..., due to Kim and Sarnak
[KS].

(2) In the case of level N = 1, Cartier conjectured that the eigenvalues occur
with multiplicity one ([Car]). Until very recently, it was widely believed that
the eigenvalues of A on the newforms of level N should occur with multiplicity
one. However, Stromberg has discovered counterexamples on I'g(9) which, despite
coming from newforms, nevertheless arise out of the spectrum of a congruence
subgroup of lower level ([St]). Some of his examples were found independently by
Farmer and Lemurell.

PrOOF. (Sketch. See also [Iw2], §4.3 and [IK], §15.5.) The existence of the
basis is a consequence of the complete reducibility of L2(G(Q)\G(A),w) (see Propo-
sition 4.8 below). The discreteness of the set of eigenvalues and the finite dimension-
ality of the eigenspaces both follow from (7.3) on page 66. The fact that there are
infinitely many linearly independent cusp forms can be seen from Weyl’s Law (see
(7.4)). By (4.7) the eigenvalues of A are nonnegative. If Au = 0 for u € L3(N,w’),
then u is a harmonic function on I'y(N)\H. By the maximum principle ([F2],
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p. 72), the supremum of |u(z)| occurs on the boundary, i.e. at a cusp, where u
vanishes. Hence v = 0. This shows that the \; are strictly positive. O

If u is a Maass cusp form with A-eigenvalue i + 2, its Fourier expansion at co
has the well-known form

(4.8) u(x + zy) = Z A (u) yl/QKit(Qﬂm'y)eQmmz
meZ—{0}

for constants a,,(u) called the Fourier coefficients of u (see e.g. [Bu], §1.9). The
K-Bessel function can be defined by

(4.9) Ky(z) = 1/00 e_z(w-‘rw*l)/Z w® d_w
2 Jo w’

for s € C and Re(z) > 0.

4.2. Hecke operators. For u € L*(N,w’) and an integer n > 0, the Hecke
operator T, is given by

S az+r
Tou(z) =n~1/? Z Zw’(a)u( y] ).

ad=n r=_(
d>0

One shows in the usual way that T,u € L?(N,w’).

We also define T_ju(x + iy) = u(—z +iy). A Maass cusp form is even (resp.
odd) if T_qu = u (resp. T_1u = —u). If u is even, then in (4.8) we have a_,, = ay,
while if u is odd, a,, = —a_,.

PROPOSITION 4.2. The Hecke operators for ged(n, N) = 1 are normal operators
on L2(N,w'). They commute with each other and with A. Hence the family of op-
erators {A,T_1, Ty| ged(n, N) = 1} is simultaneously diagonalizable on LZ(N,w').

PROOF. We can compute the adjoint of T, as in §3.9 of [KL2]. The proof of
diagonalizability in the holomorphic case relies crucially on the finite dimensionality
of Sg(N,w’). In order to get the diagonalizability of T, on L3(N,w’) we can use
the fact that each T, preserves the A-eigenspace L3(N,w’, % + t2), which is finite-
dimensional. These subspaces exhaust the cuspidal spectrum by Theorem 4.1. See
also Proposition 4.8 below. O

A Maass eigenform is a cusp form u which is a simultaneous eigenvector of
the operators T, for n > 1, (n,N) = 1. We write Tyu = Ay(u)u for the Hecke
eigenvalue. In this situation,

an(u) = aq(u)Ap(uw)
whenever ged(N,n) = 1. This is a consequence of the fact that for any cusp form

U,

(4.10) am (Thu) = Z W' (£) azm (),

{| ged(n,m)

which is proven in the same way as for holomorphic cusp forms.

We now define a function which serves as the adelic counterpart to T, (see
Lemma 4.6 below). Fix integers N,n € Z" with ged(n, N) = 1, and let w be a
Hecke character of conductor dividing N. Define f*: G(Ag,) — C as follows. Let

Mi(n,N)={g= (%) € My(Z)| detg € nZ* and ¢, (d — 1) € NZ}.
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Let Mj(n, N), be the local component of this set in G(Q,). Note that if p { n,
then Mi(n,N), = Ki(N), = K1(N) N K,. The function f* is supported on
Z(Agn)Mi(n, N) and given by

(4.11) F(em) = wlz) )

meas(K;(N)) w(z)’

It is clear that f* is well-defined and bi-K;(N)-invariant. For any finite prime p,
define a local function f} on G(Q,), supported on Z(Q,)Mi(n, N),, by

n wp(z)
4.12 m) = ——————.
( ) fp(zm) meas (K (N)p)

Then f*(g) =11, /3 (9p)-
We now recall the definition of the unramified principal series of G(Q,).
Suppose p{ N, so wp is an unramified unitary character of Q. For v e C, let

(4.13) M(§4)) = xa(@)xe(d) |5

be an unramified quasicharacter of the Borel subgroup B(Q,). Here we take x1
and x2 to be finite order unramified characters of Q; with

v
p

X1(2)x2(2) = wp(2).
Let V) be the space of functions ¢ : G(Q,) — C with the following properties:
(i) For all (¢%) € B(Q,) and all g € G(Q,),

(5 )9 =u@v@|;

(ii) There exists an open compact subgroup J C G(Q,) such that ¢(gk) =
¢(g) for all k € J and all g € G(Q,).
We let m, denote the representation of G(Q,) on V, by right translation. It is
unitary when x is unitary, i.e. when v € iR. The space V, has a one-dimensional
subspace of K,-fixed vectors, spanned by the function

(4.14) do((§4)8) = xa(@)xa(@) |5

PROPOSITION 4.3. The representation (my, Vy) defined above is irreducible. Ev-
ery irreducible admissible unramified representation of G(Q,) with central character
wyp s either one-dimensional or of the form m, for some x as above. If 7, is unitary
then either:

- v € 1R (unitary principal series), or

-0 < |Rev| < % (complementary series).

PROOF. Refer, e.g., to Theorems 4.5.1, 4.6.4, and 4.6.7 of [Bu]. O

v+1/
o 2<z5(g)~

P

v+1/2
(k€ Kp).

p

The local component f} of f* acts on the unramified vector ¢o in the following
way.

PROPOSITION 4.4. Assume pt N, and let n, = ordy(n) > 0. With f as above,
the function ¢o of (4.14) is an eigenvector of the local Hecke operator m, (fy) with
etgenvalue

pnp/Q)‘pnp (Xla X2 V)a
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where

n,
P
p

(4.15) Ao (X1, X2,v) = (pgj ) Y xa(p)
j=0

ProOOF. The fact that ¢¢ is an eigenvector is due to Proposition 3.10, together
with the fact that the space of K,-fixed vectors is one-dimensional. Thus the
eigenvalue is equal to 7, (f})¢o(1), which can be computed using the decomposition

(4.16) Ml(n,N)p:G U (pj pnf_j) K,

j=0a€Z/piZ
([KL2], Lemma 13.4) as follows:

/_ fp(9)do(g dg—Zp

G(Qp)

X1 (P )x2(0™ ™) = /A (X1, X2, V)

np]
O

4.3. Adelic Maass forms. Let w be the Hecke character attached to w’ as
n (2.8). Using (2.9) and (4.1), we have

Woo(—1) = Weo (—1)w'(=1) = weo (— pr =w(-1)=1.
p|N
Since wy is trivial on RT, this implies that for all z € R*,
(4.17) Weo(z) = 1.

Let L?(w) = L?(G(Q)\G(A), w) be the space of measurable C-valued functions
1 on G(A) (modulo functions that are 0 a.e.) satisfying 1 (zvg) = w(z)y(g) for all
v € G(Q) and z € Z(A) = A*, and which are square integrable over G(Q)\G(A).
A function v € L?(w) is cuspidal if its constant term ¢y vanishes for a.e. g €

G(A):
YN (g) = / Y(ng)dn = 0.
N(Q)\N(A)

Let L2(w) C L?(w) denote the subspace of cuspidal functions. We let R denote the
right regular representation of G(A) on L?(w), and let Ry denote its restriction to
L3(w), which is easily seen to be an invariant subspace.

Let L!(w) denote the space of measurable functions f : G(A) — C satisfying
f(zg) = w(z)f(g) for all z € Z(A) and g € G(A), and which are absolutely
integrable over G(A). Such a function defines an operator R(f) on L?(w) via

R(f)é(z) = /6 Wiy

the integral converging absolutely. Recall in fact that ||R(f)dllrz < £z |9z
(see e.g. [KL2], p. 140). The restriction of R(f) to L3(w) is denoted Ro(f). For
f,h € LY(©), the convolution

* xTr) = 1.’L'
£ h(x) /6 LU

also belongs to L' (@), and by a straightforward computation we have

R(f *h) = R(f)R(h).
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To each u € L?(N,w’) we associate a function ¢, on G(A) using strong ap-
proximation (2.3) by setting

(4'18) SOu('Y(goo X k)) = u(goo(l))

for v € G(Q), goo € G(R)™, and k € K1(IN). Using the modularity of u, it is easy
to check that ¢, is well-defined.

PrOPOSITION 4.5. The map u — @, defines surjective linear isometries
L2(N,w/) N L2(w)K°°XK1(N)
and
L(N,w') — L§(w) K=K,

where the spaces on the right denote those functions satisfying o(gk) = ¢(g) for all
k€ Koo x K1(N).

PRrOOF. First we check that ¢, (z9) = w(z)py(g) for all z € Z(A). By strong
approximation, we can assume that g = goo x k € G(R)™ x K{(N). Write z =
2Q (%00 X 2fin) for zoo € RT and zg, € Z*. We have Zn = a mod NZ for some
integer a relatively prime to N. Then w(z) = w'(a) as in (2.8). Choose b, ¢, d such
that v = (‘; Z) € T'y(N). Then vza, € K1(N), and

Yu(29) = Pu(7129) = Pu(V900 X V2fink) = u(V9goo (7))

= w'(d)u(geo (i) = w'(a)pu(g) = w(2)pulg)
as needed.
For the square integrability, let Dy be a fundamental domain in H for I'y (V) \H.
We identify Dy with a subset of G(R)" via  + iy <+ (§ {). Then by Proposition
7.43 of [KL2],

oulg)2dg = / oulg)[2dg

/5(Q)\5(A) D Koo x Ko(N)

—meas(Ko(V) [[ fute +in)PE =l

This proves that the map u + ¢, is an isometry of L?(N,w’) into L?(w)
since it is clear from the definition (4.18) that ¢, is invariant under K, x K;(N).
For the surjectivity, we note that the inverse map is given by

u(2) = ¢(goo),
where go, € G(R)" is any element satisfying g (i) = 2. The function u is well-
defined since ¢ is Ko-invariant. The fact that u(z) satisfies (4.2) can be seen as
follows. For v = (‘c‘ g) € I'g(N), we can write y~! = (aN an )k for k € K1(NV) (and
ay as in (2.2)). Thus

u(v2) = ¢(Yoogos) = P(goo X Van) = ©(Goc X (™Y ay )k)

= w(an)p(geo) = w'(a)u(z) = w'(d)u(2).
Lastly, for any g € G(R)" x K1(N), there exists § € G(Q)* determined by gsy,
such that

Koo xK1(N)
b

(pu), (9) = ao,6(u, y)
for y = Imgs(¢). This is proven just as in the holomorphic case, making the
obvious adjustments. See [KL2], pp. 200-201. Therefore u is cuspidal if and only
if ¢, is cuspidal. O
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Next, we describe some properties of the correspondence u — (.

LEMMA 4.6. The correspondence is equivariant for both A and the Hecke op-
erators, in the following sense: For all u € L?(N,w'),

(4.19) R(Peu= [ POR@.dg = Vapr,
G(Agin)

for f* defined in (4.11), and if u is smooth,

(4.20) R(A)pu = pau-

PRrOOF. In both cases it suffices by strong approximation (2.3) to show that
the two functions agree on elements of the form (¥ {) € G(R™) when u is smooth.
In (4.20), the symbol A is used in two different ways. On the right, A is the Laplace
operator (4.5), and on the left it is the Casimir element whose effect on C*°(G(R))
is given by (3.19). But because ¢,, is K-invariant, %(ﬁu =0, so we can drop the
second term of (3.19) to conclude

5 [ 07 02
R(A)eu((§7)) =~y (@ + a—yQ) eu((57))
(4.21) = Au(z +iy) = pau((§ 7)),
as needed.
The proof of (4.19) is the same as that of the version for holomorphic cusp
forms given in [KL2], Proposition 13.6. O

By a theorem of Gelfand and Piatetski-Shapiro, the right regular representation
Ry of G(A) on LE(w) decomposes into a direct sum of irreducible unitary repre-
sentations w. Each such cuspidal representation 7 is a restricted tensor product of
local representations: m = o ® Thin = Moo ® @), Tp (cf. [Bu], §3.4).

PROPOSITION 4.7. We have the following decomposition:

(4.22) L3(w) ¥ 51 — (Y Cuoe @ i ™),

where © runs through the irreducible cuspidal representations with infinity type of

the form mo = 7(e,€,s,—s), where either s € iR or f% < s < %, and Vo 1S @
nonzero vector of weight 0 (unique up to multiples). Equivalently, m runs through

the constituents of L3(w) which contain a nonzero K., x Ki(N)-fized vector.

Remarks: (1) Selberg’s conjecture asserts that the complementary series of Propo-
sition 3.8 do not actually show up here, i.e. that s € iR. Likewise, according to
the Ramanujan conjecture, the unramified local factors of 7g, are unitary principal
series rather than complementary series (cf. Proposition 4.3).

(2) Caution about notation: In §11 of [KL2], when discussing 7 (e1, €2, 51, S2) we
used the notation s = s; — so. In the present document, we take s = 2(s; — s2).

PRroor. For any irreducible cuspidal representation 7, the orthogonal projec-
tion map L3(w) — 7 commutes with the right regular action R(g). As an easy
consequence, we have

LS(w)KwXKl(N) _ @WKWXKl(N).

™
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The Casimir element A acts on the smooth vectors of an irreducible finite dimen-
sional representation of G(R) by a scalar which is < 0 (c¢f. Theorem 11.15 and
Proposition 11.22 of [KL2]). We conclude from the fact that Ro(A) is positive
definite that 7., is infinite dimensional. The proposition now follows immediately
from Proposition 3.8. Note that w., is the trivial character, so s; + so = 0 in the
notation of that proposition, and here we have set s = —s5 = s. O

An adelic Hecke operator of weight 0 is a function on G(A) of the form
(123) f= oo x fre LHE(A),D)

with foo € Co.(G1//Ks) and f* as in (4.11). We now show that for such f, the
operator Ro(f) on L(w) is diagonalizable. By Lemma 3.10, it suffices to consider
its restriction to LZ(w)Xe*K1(N);

PROPOSITION 4.8. For each cuspidal m = 7(e,e,8,—5) ® 7ay contributing to

(4.22), choose an orthogonal basis Fy for the finite dimensional subspace Cvso ®
ﬂf[iil(N). Let Fa = U, Fr be the resulting orthogonal basis for L3(w)Xe*K1(N),

Then each p € Fa is an eigenfunction of Ro(f) with eigenvalue of the form

(4.24) h(t)vn (),

where t = —is is the spectral parameter of T, h is the Selberg transform of foo,
and Au(p) = [l Ape is determined from m, for pln by (4.15). Furthermore, if
u € LE(N,w') is the function on H corresponding to o, then u is a Maass eigenform
with A-eigenvalue § + t2, and Hecke eigenvalue Ay(u) = Aa(i).

PROOF. Let 7 be one of the given cuspidal representations. When p|n, Wfl(N)p =

7p © is nonzero, so m, is an unramified unitary principal series representation. Write
K "
mp © = Cu,. By Proposition 4.4, we have

mp(fp)vp = pnp/2/\pnpvp.
At the archimedean place, Proposition 3.9 gives

Too(foo ) Voo = h(t) Vo

Consider any v € Cvg, ® wgll(N). For any object defined as a product of local

objects, let us for the moment use a prime ’ to denote the product over just the
finite primes p {n. Then
V=V @V ® ® vp
pn
for v, as above and
v e (ﬂ’)Kl(N)/ = ®7T£{1(N)P.
pin
By the definition (4.11) of f*, we see that

T (fY )W = meas(Kl(N)’)_l / 7' (k)v'dk = v'.
KL (N

Letting ¢ € L3(w) denote the function corresponding to v, it follows (e.g. by
Proposition 13.17 of [KL2]) that

R(f)p = oo (foo) Voo @ 7 ()0 @ Q) mp(f2)vp = VAXa () h(t)p.

pln
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Now let u be the element of L3(N,w’) attached to v. We need to show that

Au = (3 +t*)u. For any X € ggr, we have
def d d
m(X)v= —| w(exp(tX) X lan)v = —| Too(exp(tX))voo ® Vain.
dt|,_, dt|,_,
Therefore
T(A)0 = Moo (A) Voo @ vain = (3 + %0

by (3.20). Equivalently, R(A)p = (3 +t?)¢, so by (4.20), Au = (1 + t*)u. Lastly,
by Lemma 4.6 we also have Ap(u) = A\ (¢). O

With Fa as in the above proposition, we let
(4.25) F C L3(N,uw)

be the corresponding orthogonal basis. It consists of Maass eigenforms as shown
above. Using Proposition 4.8, we can arrange further for each v € F to be an
eigenvector of T .






CHAPTER 5

Eisenstein series

The continuous part of L?(w) is explicitly describable in terms of Eisenstein
series (see Sec. 6.1). Because we are interested in automorphic forms of weight
k = 0 and level N, we will concentrate on K, x K1 (N)-invariant Eisenstein series.

5.1. Induced representations of G(A). We begin by constructing certain
principal series representations of G(A). These are representations induced from
characters of the Borel subgroup B(A) = M(A)N(A). Any character of B(A) is
trivial on the commutator subgroup N(A), and hence is really defined on the diag-
onal group M(A) = A* x A*. We are only interested in G(Q)-invariant functions,
so we want a character of B(Q)\B(A), which by the above is nothing more than
a pair of Hecke characters, say x1 ® | - |[** and x2 ® | - |°2, where x1, x2 have finite
order. Furthermore, we need the product of these two characters to equal our fixed
central character w, which has finite order. This means in particular that so = —s;.

Thus for finite order Hecke characters x; and x2 with x1x2 = w, and s € C,
we consider the character of B(A) defined by

(6 %) = u@u@]s

We let (75, H(x1, X2, )) denote the representation of G(A) unitarily induced from
this character. This Hilbert space has a dense subspace spanned by the continuous
functions ¢ : G(A) — C satisfying

S

s+1/2

2 o(g)-

6.1 (5 5) 9 =n@n@|;

The inner product is defined by

(6,4) = /K S(k)D(R)dk.

This is nondegenerate since, by the decomposition G = BK, any ¢ € H(x1, X2, $) is
determined by its restriction to K. The right regular representation w5 = 7s(x1, X2)
of G(A) on H(x1, X2, s) is unitary if s € iR (for the idea, see e.g. [KL2] Proposition
11.8). As explained in §4B-4C of [GJ], we have

(52) H(XlaX?as) gH(XQaXlais)

as representations of G(A).
Restriction to K identifies H (1, x2,s) with the subspace of L?(K) consisting
of functions satisfying

W52k =xi(axa(d)f(k)  ((§5) € BA)NK).

33
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In this way, the spaces H(x1, x2,8) form a trivial vector bundle over the above
subspace of L?(K). Given ¢ € H(x1,X2,0) and s € C, we define ¢, € H(x1, X2, 5)
by

s+1/2

b a
o(§ 5) 0= x@n@|;
Equivalently, if H : G(A) — R™ is the height function defined by

(5.3) H(g)H((S )(1 f) k) =log| |

then
ds(g) = e g(g).

The map from H(x1,Xx2,0) to H(x1,Xz2,s) taking ¢ — ¢, is an isomorphism of

Hilbert spaces. We set
def

H(X17X2) = H(X17X27O)'

LEMMA 5.1. Suppose ¢ € H(x1,Xz2,$) is a right Ko X K1(N)-invariant func-
tion, i.e. ¢ € H(x1,X2,8)*K1(N) " Define oo : G(R)t — C by

(5.4) oo (goo) =Tm(2)*T2 (2 = goo (i) € H),
and for p{ N, define ¢, : G(Qp) — C by

o (5 )0 =]
Also set ¢’ = HMN op, and define ¢ : HP‘N G(Qp) — C by

on(gn) = d(le X gn x 1').
(When N =1, the above is just the constant ¢(1).) Then ¢ is factorizable as

D(goo X gN X §') = Poo(goo) N (9n) D' (9').
PRrOOF. Write

(u 0\ (1 z\ [(y'/?
9”(0 u) (0 1)( y1/2 ) oo

Then since ¢ is K -invariant,

s+1/2

B(goo X Gin) = WOO(U)XloO(yl/Q)X%o(971/2)95+%¢(100 X Yfin)
1
= ys+2¢(1oo X gﬁn) = ¢w(gw)¢(100 X gﬁn)
since wy is trivial by (4.17), and X1co, X200 are trivial on RT. Now according
to the Iwasawa decomposition, write ¢’ = V'k’ for ¥/ € K' = prN K, and b €
prN B(Qp). Then by the same argument, using the fact that ¢ is right invariant
under K’, we have
P(loe X gy % ¢') = ¢'(9)(1eo X gn x 1) = ¢'(¢")on (gn)-

The lemma follows. i

PROPOSITION 5.2. If f = foo X f* with foo € Co(GV//Ks), the operator ms(f)
acts by the scalar

h(t)v/n An(x1, X2, it)
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on H(x1, X2, 8) 55 (N) " and vanishes on the orthogonal complement of this finite

dimensional subspace. Here, t = —is, h is the Selberg transform of f, and
s xaldn)xe((F)n)
(5.5) An(X15X2,8) = [ Ao (X1 X 8) =0° Y Td,
pln d|n

for Apew (X1p, X2p, S) as in Proposition 4.4.

PROOF. The dimension of H(x1,x2,s)%>*¥ 1 (V) is computed in Section 5.4
below. By Lemma 3.10, 75(f) vanishes on its orthogonal complement. The second
equality in (5.5) comes from the fact that for any finite order Hecke character x of
conductor dividing N, and any positive integer d|n,

1=x(d) = HXp(d) H Xp(d),

pn pIN
SO -
[Dot™) = 1@ = [ (@) = x(@x).
pln pln p|N
For ¢ € H(x1, x2,s)5 K (N)  write
¢ = oo ® dn @ (X) 6p
pIN
as in the above lemma. Note that ¢ is a weight 0 vector in an induced represen-
tation moo = 7(e1,€2,8, —s) with spectral parameter t = —is. Likewise if p f N,

then ¢, is the K,-fixed vector in the unramified representation m, of G(Q,) in-
duced from the character (x1p, X2p) of B(Qp) (as in (4.13), taking v = s). Setting

fn =11, n fo, we have
Ta(£)6 = Too(foo) b0 @ R(fN)EN @ R 7 (£3)bp-
PN
Here
Too(foo)Poo = h(t) oo
by Proposition 3.9, and if pt N,
Wp(f;?)(bp = pnp/Q)\p"P (X1p7 X2p> S)¢p
by Proposition 4.4, while by (4.12)

1
R(fn)¢n(z) = —T)) /HpN e o (xk)dk = ¢n ().
Therefore m5(f)¢ = h(t)v/n Au(X1, X2, 5)¢ as claimed. O

5.2. Definition of Eisenstein series. The elements of H(x1, x2, s) are B(Q)-
invariant by construction. We use them to define G(Q)-invariant functions (auto-
morphic forms) on G(A) by averaging:

E(¢,s,9)=E(¢s,9) = Y.  ¢s(v9) (¢ €H(xi,x2))
+1EB@Q\G(Q)

This sum converges absolutely when Re(s) > 1/2 (see Proposition 5.6 below). For
now we will assume that s belongs to this domain. However, the Eisenstein series
FE has a meromorphic continuation to the complex plane. We will prove this well-
known result below in the case where ¢ is Ko, x K;(N)-invariant by writing down
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the Fourier expansion of E, which is seen to be meromorphic on C (cf. Theorem
5.16).

For a fixed level N, we will only be interested in the case where ¢ is a nonzero
(right) Ko x K1 (INV)-invariant vector. Such ¢ exists if and only if the product c,, ¢y,
of the conductors divides N (see Corollary 5.11 below). In this case, E(¢, s, g) is
left G(Q)-invariant and right K;(N)-invariant. By strong approximation we have
G(A) = G(Q)(G(R)" x K1(N)). Therefore it suffices to investigate E(¢, s, goo X
16n), where g € G(R)T = Z(R)B(R)K . Furthermore, because

(1) E(¢,$, goo) is right K -invariant

(2) the central character w = 1)z is trivial on Z(R) (see (4.17)),
the value of E(¢, s, goo) depends only on z = g (i) € H. So for z = x + iy € H,
we define

E¢(S,Z) = E(¢7S7goo X 1ﬁn)7
1/2
for any goo € Z(R)(§%) (¥ yfl/Q)Koo. Thus

E¢(5, Z) = Z bs (’Ygoo) = Z 65H(A{mgmxwin)¢(70®goo X 'Yﬁn)v
7€B(Q)\G(Q) YEB(Q)\G(Q)

where H is the height function defined in (5.3).

LEMMA 5.3. A set of representatives for B(Q)\G(Q) is given by £N(Z)\ SL2(Z).
The latter set is in one-to-one correspondence with ordered pairs (c,d) of relatively
prime integers with ¢ > 0, together with (0,1), via £N(Z)(%4) < (c,d).

PROOF. The first assertion follows from the decomposition

(5.6) G(Q) = B(Q)SLa(Z)

since B\BI' = (BNT)\I'. The decomposition (5.6) can easily be proven directly
as follows. Let g = (2%) € G(Q). Write (¢ d) =t(¢ d'), wheret € Q, ¢, d' € Z
and ged(c¢/,d’) = 1. There exist integers x and y such that ¢’z —d'y = 1. Then
(% *,) €SLa(Z) and (24)( % *)) € B(Q).

For the representatives, view Z x Z as a set of row vectors, and consider the
right action of SLy(Z) on this set. The stabilizer of (0 1) is N(Z). Therefore
N(Z)\ SLy(Z) is in one-to-one correspondence with the orbit of (0 1). It is easy to
see that this orbit is the set of ordered pairs of relatively prime integers:

0 1) (‘c‘ Z) — (¢ d).

Considering instead the set +\(Z x Z), the stabilizer of +(0 1) is =N (Z) and we
can take ¢ > 0, obtaining the given set of pairs (¢, d). O

By the above and Lemma 5.1, we have

E¢(S, Z) = Z BSH(’YOO‘%OXlﬁn)(ﬁoo(’ygoo)¢ﬁn(7)'
YEXN(Z)\ SL2(Z)

This holds since ya, € SLa(Z) C Kz, and the height function is Kg,-invariant.
Now using

) Y
e (e goc X lrin) — | Im(y2)| = lcz + dJ? (v= ((é 2))7
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together with (5.4) (with s = 0), we have

(5.7)  Eols,2) =9 0m(0,1)+ Y Y

c>0 dEZ
ged(c,d)=1

y1/2+s

e Pan (e, d).

lcz + d|1+2s Pain(c, d)

Here we have written ¢gy (¢, d) to denote ¢gy, (). This notation is apt because ¢gy,
is left B(Q)-invariant, so that for v = (2%) € SLa(Z), ¢an(y) depends only on
(¢,d) by Lemma 5.3.

5.3. The finite part of ¢. We eventually need to compute the Fourier coef-
ficients of E4(s, z) for ¢ in an orthonormal basis for H (1, x2) o x KN Since we
can take ¢, to be the function determined in Lemma 5.1, in order to find such a
basis we just need to write down the possibilities for ¢gy,.

LEMMA 5.4. Kg, = SLo(Z)K;(N).

~

PROOF. Let S = SL2(Z) N K1(N) denote the set of determinant 1 elements of

~

K1 (N). Note that S is an open subgroup of SLy(Z). Hence
SLo(Z) = SLy(Z) - S

since SLy(Z) is dense in SLy(Z) (see e.g. Proposition 6.6 of [KL2]). From this we
obtain the following decomposition:

Kgn = SLa(Z) (2 1) — SLy(Z) {s (2 1)} .

The lemma follows since the expression in the brackets is exactly K7 (N). (]

LEMMA 5.5. For a nonzero vector ¢ € H(x1, x2) =*F1N) with ¢o. given as

in Lemma 5.1, the finite part ¢g, is determined by its restriction to SLa(Z). For
v =(2Y) € SLa(Z), dan(7) depends only on (c,d) mod N.

PROOF. By strong approximation for B(A) ([KL2], Prop. 6.5),
G(A) = B(A)K = B(Q)(B(R)" K x Kgn).

Hence by B(Q)-invariance, ¢ is determined by its restriction to G(R)™ x Kq,. We
assume that ¢ is the function given in Lemma 5.1. By K;j(N)-invariance and
Lemma 5.4, ¢, is determined by its values on SLo(Z). Lastly, because K(N) C
K1(N), ¢gin determines a function on Kq,/K(N) =2 G(Z/NZ). Therefore ¢an(7y)
depends only on the entries modulo N. (I

PROPOSITION 5.6. For any ¢ € H(x1, x2) =¥ ) and all z € H, the Eisen-
stein series Ey(s,z) is absolutely convergent on Re(s) > 1/2. For any § > 0 and
compact set C' C H, the convergence is uniform on the set Re(s) > %—1—5 and z € C.

Remark: A similar proof applies to the case of arbitrary ¢ € H(x1,x2) (cf. [Bu],
Proposition 3.7.2).

PRrROOF. It follows from Lemma 5.5 that ¢g, is a bounded function. So up to
a constant multiple, E4(s, z) is majorized by the classical series

yRe(s)+1/2

E(Re(s),2) = > o2 1 dPRe
(e,d)#(0,0)

which is easily seen to converge when Re(s) > 1/2. O
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As indicated in the proof of Lemma 5.5, ¢g, can be viewed as a function
on G(Z/NZ). Let D(x1,x2,N) denote the space of all functions ¢ on G(Z/NZ)

satistying
o((* ) E(" )= aea@e

for all k € G(Z/NZ) and a,d,d’ € (Z/NZ)* and b,b’ € Z/NZ, or equivalently,

o((" ) E(7 ) = n@na@s@om.

Here d' € (Z/NZ)*, and we view x1 and xo as characters of (Z/NZ)* as in (2.8),
ie. xj(a) = x;(an). We make D(x1, X2, N) into a finite dimensional Hilbert space
by defining

(5.8) (61,02) = |G(Z/NZ)| ™" D du(k)da(k).

ke€G(Z/NZ)

Notice that if ¢,1 € H(x1, x2)%=>*% 1) then with notation as in Lemma 5.1,
it is easy to see that

@) = [ om0k [ RNk [ 00Tk

Kn

(5.9) = N (k) (k)dk

Kn
where Ky = [[, |y Kp. Letting Ky(N) = {k € Kn[k =1 mod N}, the K;(N)-
invariance then gives

(5.10) (0,9) = [Kn : Kn(N)] > on(k)n(k)
keKn/Kn(N)
= |G(Z/NZ)|T" Y en (k) (k).
KEG(Z/NZ)

(When N = 1, this is just ¢(1)¢(1).) In view of (5.8), this proves the following.

LEMMA 5.7. The identification of ¢an with a function on G(Z/NZ) induces an
isometry of H(x1, x2)%>=*F (N) with D(x1, x2, N).

The space D(x1, x2,N) can be analyzed locally since
G(z/NZ)= || G(Zp/NZy).

p|N
We let D, (x1, x2, V) denote the space of functions on G(Z,/NZ,) satisfying!
a b a v
sy w(* k(7 ) = v@vu@ e

for k € G(Z,/NZ,), a,d,d’,d" € (Z,/NZ,)*, and b,V € Z,/NZ,. This is a Hilbert
space with inner product given by the local analog of (5.8):

(5.12) (f1,02) = [Kp : Kp,(p™) 70 >0 dn(k)ea(k),

k€G(Z,/NZy)

1Here and henceforth, for a € Q; we evaluate x1(a) by embedding a as an idele which is 1
outside p. This is equivalent to x1p(a) but we sometimes wish to avoid the extra subscript when
the context is completely local.
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and we have isometries
(513) H(X17X2)KOOXK1(N) gD X1’X2’ ®D X17X27
pIN

When N =1, the empty tensor product on the right is to be interpreted as C.

5.4. An orthogonal basis for H(y1, x2) >~*51(M), Most of the material in
this section is drawn from pages 305-306 of Casselman’s article [Cas].

In order to construct an orthogonal basis for H(x1, x2)%=>*%1(V)  we see from
(5.13) that it suffices to do so for D,(x1, x2, N). Define

B(Z,/NZ,) = {(83 la,d € (Z,/NZ,)*,be Z,/NZ,}.

ProPOSITION 5.8. For a prime p|N, we have the following disjoint union:

Z,/NZ,) UB »/NZ,) (; ?)B(Z,,/sz).

PROOF. Let ¢ = (%%4) € G(Z,/NZ,). Setting i = min(ord (¢c), Np), it is
elementary to show that g belongs only to the double coset of ( » 2) For future

reference, we give the decomposition explicitly. There are three cases. If ¢ = 0,
then p» = 0 mod NZ, and

s (5 1) eB@Ng) = 5@z (5 ) BN,

Second, suppose that 0 < ¢ < Np. Then a is a unit mod p and

b (9% )0 DE B) e

If = 0, then c¢ is a unit, and we have
a b 1 2—1\ /(1 0\ [c d—2dte
o (o)A ()

By equation (5.11) and the above proposition, we see that a function ¢ €
D,(x1, X2, N) is determined by its values on the matrices ( i 1) fori=0,..., NN,

d

-
Therefore if D, (x1, x2, V) is nonzero, it is spanned by functions (biflf ]’3,(;” satlsfylng
10
X1prX2 _
(5.17) Ppin, ( (pj 1>) =%

Often we denote the above by ¢; when the other parameters are clear from the
context. Because the decomposition of g into the form (8 Z) (;@ [1))(‘6’ si) is not
unique, for some values of 4 it may not be possible to start with (5.17) and extend
to G(Z,/NZ,) via (5.11). We give here the conditions on ¢ under which such a

function exists:

PROPOSITION 5.9. The function ¢; = ¢§71i‘:]’\>,<p2p is well-defined on G(Z,/NZ,)
if and only if

(5.18) ordy(cy,) < i < Np —ordy(cy, ),
where N, = ord,(N).
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PRrROOF. First, we suppose that (5.18) holds, and we check that ¢; is well-
defined. It suffices to show that if

(5.19) (8 Z) (pl (1)> - (pl (1)> (8 i)

then the two values produced by ¢; using (5.11) coincide:

(5.20) x1(a)xz2(d) = x1(t)x2 ().
The equality (5.19) gives

(AN a+ bp b
0 t)  \dp'—ap’'—bp* d—bp')"

From the lower left corner, we see that (d — bp?)p’ = ap’ mod p™», so
(5.21) d —bp’ = a mod p™Nr~t.
Because ordy(¢y,) < N, — 4, this implies
x1(a) = x1(d = bp') = xa(t).
Similarly, because ordy,(cy,) < %, we have
xa(d) = xa(d = bp') = xa(t).

This proves (5.20), so ¢; is well-defined.
Conversely, assume ¢; is well-defined. Thus we suppose that whenever (5.21)
holds, we have the equality

x1(a)xz2(d) = x1(d — bp")x2(d — bp").

Using this we must deduce (5.18). Set a = 1, b =0, and d = 1 + up™»~" for any
u € Zy,. Then (5.21) holds, so by our hypothesis we get

X2 (14 up™r =) = x1(1 + up™r ) x2 (1 + up™r ).

This implies x1(1 + up™»~%) = 1, so ord,(c,,) < N, — i as needed. Now set a = 1
and d = 1 + bp' for any b € Z,. Then (5.21) holds, so we have

x2(1+bp") = xa()xa(1) = 1.
Thus ord,(cy,) < ¢ as needed. O
COROLLARY 5.10. Given that (x1X2)p = wp, the space D, (X1, X2, N) is nonzero
if and only if
ordy(cy,) 4 ordy(cy,) < Ny,
i.e. if and only if NZ, C ¢y, ¢\,2Z,. If nonzero, its dimension is equal to 1 +
ordp(cL), with an orthogonal basis given by

x1 $x2
B, = Bp(x1,x2) = {¢i] ordp(cy,) <7 < Np —ordy(ey, )}

PrOOF. The only point remaining is the orthogonality of {¢;}, which follows
immediately from the definition of the inner product (5.12) since these functions
have disjoint support. O

Tensoring the local spaces together, we have:
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COROLLARY 5.11. Given that x1x2 = w, the space H(x1, XQ)K oo XKL (N) g
nonzero if and only if ¢y, ¢y, |N. If nonzero, its dimension is 7'( ) for the

divisor function T, with an orthogonal basis given by
B =B(x1,x2) = {¢4,) = [ [ #i,] ¢, € Bo}-
p|N

Here we implicitly use the natural identification (5.13). The norm of ¢ ) € B is
given by

P p—1 !
5.22 bl = S o+ 1) PN 1(p+1)
G2 elP= Il oy 1T mery I mepey
ip=0 0<ip<Np ip=Np

PROOF. The claim about the dimension follows from the fact that by (5.18)
the number of tuples (i) is

N
H(Np —ordy(ey,) —ordy(cy,) +1) = 7( .
p|N Cx1%x2

For the norm, by (5.9) we have

b, 12 = H/ i, (k V2dk = Hmeab{ ) € Kp| min(ord,(c), Np) =ip} -

pIN p|N
When i, = N,, the corresponding set is just Ko(N),, which has measure
1 1
Up(N) — pMrt(p+1)

(cf. [KL2], pp. 206-207). When 0 < i, < N, the corresponding set is equal to
Ko(p'r), — Ko(p'»™),, which has measure (lip) — 3 (p%pﬂ). This works out to

if 4, = 0. O

W1f0<2p<N and uSlngT/)p()—l,m

5.5. Evaluation of the basis elements. Given a basis element ¢ = ¢; ) of

H(x1, x2) %= K1(N) e will need to compute the Fourier expansion of the associ-
ated Eisenstein series. From our expression (5.7) for Ey(s, z), we see that we need
to be able to evaluate ¢g,((24)) for (24) € SL2(Z).

PROPOSITION 5.12. Let p|N. For a local element ¢; € B,, andk = (¢ 4) € K,
@i (k) = 0 unless i = min(ord,(c), Np,). If this condition is met, then

x2(d) i =N,
@((i Z>)= xi(ad = be)x1(:5) xa(d) 0 <i < Ny,
x1(ad — be)xi(c) i=0.

ProOOF. This follows from the definition (5.11) of D,(x1, x2,NV) and the de-
compositions (5.14)-(5.16). If ¢ = N, then by (5.18) ord,(cy,) < N, —i =0, so x1
is unramified at p. Since N, > 0, we see that a must be a unit, and by (5.11),

¢i((a Z)) = x1(a)x2(d) = x2(d).

C
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If 0 < i < N,, then a is a unit and by (5.15) we have

(m((a Z)) _ Xl(p;aba(ad— bC)Xz(ad_ bc)

c a a

= x1(5)x1(ad — be)xa(d — %) = x1 (5 )xa (ad — be)xa(d)
since & € ¢Z, = p'Z, C ¢,,Z,. When i = 0, we have ord,(c,,) = 0, so xa is
unramified at p. Then (5.16) gives

s((& )=o) = xalod - befa(@ 0

c C

Multiplying these local results together, we have, for (25) € SLz(i)

(5.23) i) (& an ) Hle H xp(55) P )x2p(d H Xap(d

pIN, p|N, pIN,
ip=0 0<ip<Np ip=Np

under the assumption that min(ord,(c), N,) = i, for all p (otherwise the value is
0). We can express this as a product of two Dirichlet characters as follows. Let

R

p|N,
ip<Np

Note that c,,|/N1. Attach to x1 a Dirichlet character modulo N; by

VS I xw(@) (@) =1
p|N1
as in (2.8)-(2.9) with Ny in place of N. We extend X} to Z in the usual way by
taking it to be 0 if (z, N1) > 1. For convenience later, we also set x}(x) =0 if x is

not an integer. Let
def

M = pir.

pIN

Then assuming ¢;, (( a b)) # 0, we have M|c since i, < ord,(c) for all p, and
= [T xw( M = T x5 xp(5).
pIN p|N1

Therefore defining the constant

we have

Similarly, we set

(the lexical ambiguity between the above definition and No = ords (V) should not
cause confusion). Observing that c,,| M| N2, we define a Dirichlet character modulo
Ny by

(@) € [ xepl@) (@ N2) =1

p|N2
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extending to all of Z by x4(x) = 0 if (x, N2) > 1. Note that because M and Nj
have the same set of prime divisors and ¢, |M, we have

(5.24) Xa(d + Mx) = x5(d)
for all z € Z. With the above notation, (5.23) becomes

a b e
(5.25) S, g )) = Can xi(57) xa(d).

In the preceding discussion, (5.25) was established under the assumption that
min(ord,(c), Np) = i, for all p. However, it actually holds in general:

PROPOSITION 5.13. Equation (5.25) is valid for all (¢Y) € SLa(Z).

PrOOF. When min(ord,(c), Np) # i, for some p, the left-hand side of (5.25) is
equal to 0. Thus it suffices to show that the same is true of x’(57). By definition,
X1(57) is nonzero if and only if M|c and gcd(M,Nl) = 1. This is equivalent to
ord,(c) > iy for all p and ordy(c) = 4, when 4, < N,. These conditions occur
precisely when i, = min(ordp(c), N,). O

5.6. Fourier expansion of Eisenstein series. For any ¢ € H(x1 ,)(2)1‘1°<>XK1(N)7
the Eisenstein series Fy(s, z) has period one as a function of z € H. Indeed, writing
= goo(i)7

E¢(87Z + 1) = E(¢787 ((1) %)goo X 1ﬁn) = E(¢787900 X (é ];j] )) = E¢(8,Z),

the second equality holding by the left G(Q)-invariance of E(¢, s, g), and the third
equality holding by the right K (N)-invariance of ¢. It follows that E4(s, z) has a
Fourier expansion

(526) E¢(8,Z> - Z am(svy)e(mx)7
meZ

valid when Re(s) > 1/2 by Proposition 5.6. It turns out that the right-hand side
also converges for other s, to a meromorphic function continuing E4(s, z). This
will be described in the next section. Here we will compute the Fourier coefficients
when ¢ = ¢(ip)-

Henceforth we fix the tuple (ip),n, setting ¢ = ¢(; ) and M = leNpip as
before. Assuming Re(s) > 1/2, by (5.7) and (5.25) we have

yl/2+s y'/?
Ey(s,z) = y'/** C(i,)x1(0) + / Ca,) Z Z |cz+d|H_25

c>0 dez
(d,c)=1

Recall that
1 (0) = { 1 if Ny =1, ie. i, = N, for all p|N,
0 if Ny > 1, ie. i, < N, for some p|N,
and x}(¢/M) = 0 unless M|c.
It will be convenient to sum over all d € Z rather than the restricted set
(d,c) = 1. We need the following lemma.

LEMMA 5.14. Suppose ged(c,d) = n. Write ¢ = nd’ and d = nd’ for integers
c,d. Then

(5.27) X1 (e/M)x5(d) = X1 (n)xa(n)xi (¢//M)x(d).
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PrOOF. If ged(n, N2) > 1, then x5(d) = 0 = x5(n). So equation (5.27) is valid
in this case. On the other hand, suppose (n, N3) = 1. Then (n, M) = 1 because
M|Ny. If M ¢ ¢, then both sides of (5.27) vanish. If M|c, then M|¢/, and (5.27)
follows by the multiplicativity of Dirichlet characters. O

Using the above lemma, we have

(d)
ZZ |CZ+d|1+25 Z Z Z ‘CZ+d|l+25

c>0deZ n>0 cEnZ+ dEZ

X )X
Z Xl n1+2s Z Z |Clz fd‘12+25

n>0 c>0 deZ
d,c)=1

= Ln(1+2s,x1X2 Z Z |cz+d\1+25'

c>0 dez
(dye)=1

Here we have applied (2.10), using the fact that X_'1X/2 has modulus lem(Ny, No) =
N. The above has period one as a function of z. This can be seen from the the fact
that the Eisenstein series has period one, or it can be seen directly as follows:

X1 —c)
R

c>0deZ c>0deZ

The summand vanishes unless M|c. Therefore by (5.24), x5(d — ¢) = x5(d) in
all nonzero terms, as needed. By this periodicity, the double sum has a Fourier
expansion

Xl M )X5(d
DD e |cz+d\1+25 =D bmls,y)e(ma).
c>0dez mezZ
The coefficient by, (s,y) is related to a.,(s,y) of (5.26) since
y1/2+sC(ip)

Ly (1+2s,x1X2) &3 ; |CZ + d|1+25

(5.28)  Eg(s,z) = y1/2+SC(ip)X/1(0) +

Explicitly, for Re(s) > 1/2 we have

(5.9) 1/2+SC’ X1 (0 )+y1/2+30( LN (1+2s, x1X2) 'bo(s,y) if m =0,
s =
Y 1/2“'56’ (i) LN(l +25,X1X2) 1o (s, y) if m # 0.

We now compute the coefficients by, (s,y). We have

m 5 y ZZ/ \cz+d|1+25 e(—mm)daz

c>0deZ

Xb(d + ct)
fz Z /Z|cz+d_|2_ct|1+2s e(—ma)dz.

c>0d€eZ/cZ teZ
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As before, the integrand is nonzero only if M|c, and under this assumption x5 (d +
ct) = x5(d) by (5.24). Therefore the above is

(d)
= E g / e(—ma)dx
1+25
iy \cz—l— d|

:ZX1( )ZdeZ/cZX2(d) /°° e(—max)

cl+2s = |z + %‘1+2s

dx

_ Z X1(37) Zaez ez Xa(d) /OO e(—m(z —9))

cl+2s oo (@24 y2) 12

e S dm )\ [ e(ema)
(5.29) —CE%:ZJr C1+A2/Is (deg/:CZXg(d)e( . )) /_OO ($2+y2)1/2+sd$.

Now apply the well-known formula:

27r1/2+5|y\ 3|m| K

(2m|mllyl) m #0,

/oo e(—mm) e — F(l + 8)
— 00 (xZ + y2)1/2+s ﬁy*QSF(s) N
T(its)

([Bu], p. 67). By (5.24), the character sum S in parentheses in (5.29) satisfies
dm d+ M)m mM
630 S= 3 wd- e = T xgaye(LEMm) — o
de€Z/cZ deZ/cZ

Hence ife(mTM) # 1 (or equivalently ¢ t mM), then S = 0. Therefore if Re(s) > 1/2,
the Fourier coefficient is given by

27T1/2+Sy78|m|8

S,

c

O-S(X/17X/27m)KS(27T‘m‘y) m#oa

L(3+s)
bn(s,y) =
VIy“EI(s) o,
—0y R 7O m = 07
for the sum (see also §5.8)
ro Xll(ﬁ) ’ dm
(531) ooem) = 30 A Sy
ceMzt d€Z/cZ
c|lmM
B X1 ' (d dm
Z 1+2s Z Xa( )e(m)
c|m de€Z/McZ

In the second sum, each summand is defined for d mod MZ, since M is a modulus
( (d+]\2/[) ) 6( dm

for x4 and e 97 ) since c/m. Thus

1 Xi(0) dm
(532) Os (Xllv X/27 m) = M1+25 Z 8125 Z Xé(d) e(ﬁc)
c|m deZ/MZ

We emphasize that even though m < 0 is allowed, the sum is extended only over
the positive divisors ¢ of m. When m # 0, the sum is finite. However, when m = 0,
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the sum is extended over all ¢ € Z*, and only converges absolutely for Re(s) > 1/2.
Indeed we have the following.

PROPOSITION 5.15. When m =0,

as(X15 X5,0) = M(1+2)s L, (2s,w) if x2 is trivial,
o 0 otherwise,

where ¢ is the Euler p-function.
PRrROOF. By (5.32),
L & Xile)
(X1 x5 0) = s D Ty D Xa(d):
c=1

d€Z/MZ

The sum over d vanishes unless x4 is the principal character modulo M. Indeed,

M . . . .
Yo = D (@)= {@(M ) if x5 ls.Prlnmpal
d=1

de(Z/MZ)* 0 otherwise.

Therefore if x4, is principal (in which case x» is trivial by (2.8) with N» in place of
N), we find

p(M) —
US(XIDX/%O) = WL(Q& Xll)

Applying (2.10), the proposition follows since y; = w in this case. O

5.7. Meromorphic continuation. To summarize the previous section, for
the scaled basis element

¢ = #'p)(b(ip) € H(x1, x2)f= (0N,
we have, for Re(s) > 1/2,

X5(d)
E 1/2+5 / 1/2+s
o(s,2) = ZO Z |cz+d|1+2s
(5.33) B
B I'(s) L, (2s,w)
_ 1/2+s / O 1/2 55 ()0( )\/7_1- 1 9
Yy x1(0) +y X2M1+2sr(%+s)LN(1+2s,w)

oyl 21 /2+s

(5.34) +r( +S)LN(1+2S - Z|m|sas (X1, X5, m) K (2m|m|y)e(mz).

Here d,, € {0, 1} is nonzero if and only if x is the trivial character.

THEOREM 5.16. The Fourier expansion (5.33)-(5.34) defines a meromorphic
function on C which continues Ey(s, z). It is holomorphic in the half-plane Re(s) >
0, except possibly for a simple pole at s = 1/2 which occurs precisely when x1 and
X2 are both trivial. In the event of a pole, its residue is

3p(M Con_ Ty
f;wg) [ a=p> J] 0+ )"
p|N p|N
ip:Np ip<Np

for the Euler ¢-function.
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PROOF. From the meromorphic continuation of Dirichlet L-functions, we see
that the constant term (5.33) is meromorphic. Since w’(—1) = 1, the completed
L-function of w has the form

A(2s,w) =77 °T(s)L(2s,w)

and is entire unless w = triv is the trivial character, in which case it has simple
poles at s = 0,1 ([Bu] Theorem 1.1.1). Therefore

D(s)Ln, (25,w) = 7°A(2s,w) [ (1 = wp(p)p™*)

PNy

pfew
is entire unless w = triv, in which case it has a simple pole at s = 1/2 and possibly
(if Ny = 1) a simple pole at s = 0. This possible pole at s = 0 is cancelled by the
simple pole of Ly (1 4+ 2s,triv) at s = 0 occurring in the denominator when w is
trivial. Recall also that in general I'(§ +s) Ly (14 2s,w) is nonzero when Re(s) > 0.
This shows that (5.33) has the desired properties, as does the first factor of (5.34).

It remains to consider the sum in (5.34). From (5.32), for m # 0 we have

1 1 1 1
/ / —
los(X1, Xa:m)| < M1+2Re(s) Z 2 Re(s) (dezg/%/fz 1) = M2Re(s) Z c2Re(s)

When Re(s) > 0, this is
< M72RE)r(m) < |mf,
while if Re(s) <0 it is
< (jm|M)~2ReG) (1) < |m|2ReG)l+e,

Here as usual 7(d) denotes the number of positive divisors of d, and is well known
to be < |d|*. Furthermore, the Bessel function decays exponentially. In fact, for

real z > 1+ [s|?,
T |s|2 +1
s = (1 T
Kq(x) ”2956 (+O< . >)

for an absolute implied constant ([Wa], p. 219, [Iw2], p. 204). Now suppose s and
y are restricted to fixed compact subsets of C and RT respectively. Then by the
above, there exists a constant C, depending only on the two compact sets, such that
|K(2m|mly)| < Ce=2™™Iv for all m. It follows that the sum in (5.34) converges
uniformly on compact sets, so the sum is entire.

In the event of a pole at s = 1/2, the singular part of the Eisenstein series is
the term

/2 (M) A(2s, triv) Hp\Nl(l —p29)
M2 AL+ 25, triv) [, v (1 = p=1-2s)°

The formula for the residue follows since A(2s, triv) has residue 3 at s = 1/2, while

in the denominator A(2,triv) = 7~ 1((2) = . O
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5.8. Character sums. In order to prove Theorem 10.2, we will need good
bounds for the Fourier coefficients of normalized Eisenstein series. For this purpose
we now examine more closely the character sums occurring there.

Let x be a Dirichlet character mod M of conductor ¢,|M. For a prime p|M,

we define a Dirichlet character x, modulo pMe by
0 if p|d
x(z) if ptd, where z =d mod p™r, x =1 mod ¢™a (q # p).

(5:35)  xp(d) = {

The value x,(d) is independent of both the choice of x and the choice of modulus
M € ¢,Z" NpZ. With the above definition, we have x = leM Xp- If we take
Xp = 1 to be the constant function 1 on Z when p { M, then the product can be
extended over all primes p.

We review some well-known facts about Gauss sums. For y as above, define

Gm) = > x(de(§).
deZ/MZ
Assuming that either (m, M) =1 or x is primitive, we have
(5.36) G (m) = 7(x)x(m),

where 7(x) = Gy (1) ((IK], §3.4). In general, suppose x" is the primitive character
inducing x, and write M = fc,,. Then ([Mi], Lemma 3.1.3)

(5.37) Gy(m)=7(x") Y aul/a)x"(t/a)x"(m/a)
al|(£,m)
for the Mobius function
1 ifn=1
u(n) =< (=1)" if n=py---p, for distinct primes p,...,p-,
0 if n has a square factor > 1.

It is well-known that

(5.38) Ir(xX°)] = /2.
Therefore (5.37) gives
(5:39) |Gx(m)| < e/%a(ml),

where, for k>0, o(k) = 344 450 9-
PROPOSITION 5.17. Let m1, mo be nonzero integers. Then
66,0172 7 0k s 1) s X )| = O(NF),
where the implied constant depends only on mi,ms and €.

PROOF. Write m = m; or mg. From (5.32),

1 Xi(e)
/ / _ 1
US(X17X27m) - M1+25 ‘ 825 GX/Q (m/c),
where M = [[p®». Applying (5.39), this gives
L2 L2
(5.40) s xbe )| < S 37 0(0) < S5 r(mo(m).

clm
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By (5.22), we have

_ 1 i 2 i 1
o> =TT a+-) ]I P+ —) II r>(+-).
p|N p|N p p|N b
ip=0 0<ip<Np ip=Np
Therefore
_ 2
(5.41) bl 2 <M H(l + j)'
p
p|N
Together, these bounds give
032 (X1 X )| _ s M2 2 1
< T(|m|)o(|m 1+ —
] v rmhemh IO =)
(5.42) <. m(|m|)o(|m|)N&/2.

The proposition follows. O






CHAPTER 6

The kernel of R(f)

In this section we give the spectral formula for the kernel function of R(f). We
refer to [Arl], [GJ] and [Kn] for further discussion and theoretical background.
Our purpose is to show that these spectral terms converge absolutely in a strong
sense (Theorems 6.10 and 6.11). This provides the justification for their use in the
relative trace formula. Our treatment is based on the methods of Arthur [Arl],
[Ar2], especially Lemma 4.4 of [Ar2]. His result holds for any connected reductive
algebraic group over Q. In the setting of GL(2) it gives e.g. that for an orthonormal
basis {¢} € H(0) (cf. (6.1)),

o0
I
We give a detailed discussion here partly to avoid referring the reader to a paper
on general groups just for a result about GL(2), but also because we need to show

that the absolute values can be brought inside the sum, at least for the class of
functions f considered in this paper.

ZE(Wit(f)d’itvx)E(d)it,y) dt < .
[

6.1. The spectral decomposition. The right regular representation of G(A)
on L?(w) decomposes in terms of cuspidal representations on GL(m) for m < 2.
The continuous part of L?(w) is indexed by certain cuspidal representations of
GL(1), i.e. Hecke characters, and the discrete part consists of irreducible cuspidal
representations and, in some situations, one-dimensional representations.

Suppose Y is a Hecke character satisfying x? = w. Then defining

ox(9) = x(det(g)) (9 € G(A)),

we see that ¢, is square integrable modulo Z(A), with

l¢x|I* = meas(G(Q)\G(A)) = /3.

Note that ¢,(zg) = w(2)py(g) for all z € Z(A). Therefore ¢, spans a one-
dimensional subrepresentation of L?(w), which we denote by C,. Conversely, any
one-dimensional subrepresentation of L?(w) arises in this way from a character
satisfying x? = w.

PROPOSITION 6.1. The spaces C,, are mutually orthogonal, and also orthogonal
to LE(w).

PROOF. Suppose V is a unitary representation of a group G. Then for any
closed G-stable subspace S, the action of G preserves the decomposition V =
S @ St. If W is any other closed G-stable subspace of V, then it is easy to show
that W = (WnNS)® (WnNSt). In particular if W is one-dimensional, then W C S
or W C St. Applying this with S = C,, and W = C,, shows the first claim,

51
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and taking S = L(w) gives the second. Note that ¢, is not cuspidal because its
constant term is

/ 6x(ng)in = 9,(9) #0. 0
N(Q\N(A)

We denote by L2, (w) the Hilbert direct sum
L?cs(w) = @ CX'
xZ=w

(These characters arise from the residues of certain Eisenstein series at s = 1/2).
If L2, (w) is nonzero, then it is infinite dimensional. To see this, note that if there
exists x with x* = w, then L (w) = @,2_, Cyy. There are infinitely many
quadratic Hecke characters 7.

The direct sum
def

chlisc(w) = L(%(w) D Lfes(w)
is the discrete part of the spectrum of L?(w). We next describe its orthogonal

complement L2 (w). For s € C define

cont
(6.1) H(s)= @ H(x x29),
X1X2=w

where H(x1, X2, $) is defined in §5.1, and this Hilbert space direct sum is taken over
all ordered pairs of finite order Hecke characters whose product is w.

Remark: Define a character (w,s) of B' < Z(A)N(A)M(Q)M(R*) by

(w,9): (F2)(67) = w2

The right regular representation 7; of G(A) on H(s) is equivalent to the induced

representation Indg,(A) (w,s). This latter viewpoint is the one taken in [GJ]. To

see the equivalence, note by transitivity of induction that

(6.2) Indg,(A) (w,s) = Indggﬁ% Indg,(A) (w,s).

By restriction, Indg/(A) (w, s) can be identified with Indlzvi(:‘)k(q)M(Rﬂ(w, s). The

quotient (Z(A)M(Q)M(R1))\M(A) is compact, so by the Peter-Weyl theorem,
the functions (x1,x2,s) = Xl(a))@(dﬂ%\H% with x1x2 = w form a basis for the
induced space. Thus the right-hand side of (6.2) is equal to Indgﬁ:g B(x1, x2,8) =

Let -
H= / H(it)dt
be the direct integral. This Hilbert space consists of all functions
A iR — U H(it) (disjoint union)
teR
(identifying functions that are equal a.e.) satisfying:
o A(it) € H(it) for all ¢,
e the composition iR —2, \J H(it) — H(0), obtained by identifying H (it)
with H(0) as in §5.1, is measurable,
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cf1 o .
-MW%;/ | A(it)|2dt < oo.

The associated inner product is given by

(6.3) (A,B) = / A, B(it)) dt.

T J -

Define an action of G(A) on H by
(gA)(it) = mir(g) A(it).
This representation is unitary since each m;; is unitary:
loal? =+ [ lmalo)atie Pde = 4]
By §4 of [GJ], there is a G(A)-equivariant Hilbert space isomorphism?
M(it) : H(it) — H(—it).
Thus the subspace
(6.4) L={Ae H|A(—it) = M(it)A(it) for all t € R}
is stable under the action of G(A). It is this representation which is isomorphic to
Lions(w):
THEOREM 6.2. Consider the orthogonal decomposition
L} (w) = L3 (W) ® L2, (w).

disc cont
There is a G(A)-equivariant isomorphism of Hilbert spaces

S L2

cont

which we extend to the full space L*(w) by taking S =0 on L3,
by the property that for any v € L?(w) and ¢ € H(0),

for almost all t. The following Parseval identity holds for 1,n € L*(w):

® xX2=w

(6.6) + % Z/m (h, B¢, it, ")) (n, E(, it, -))dt.
& —0o0

(W) — £,

(w), characterized

Y(g9)E(e,it, g) dg

Here, ¢ (resp. ¢) runs through an orthonormal basis for Li(w) (resp. H(0)).

Remarks: The fact that S is an intertwining operator can be seen from (6.5).
Indeed, for any ¢ € H(0),

(SR(9)¥(it), ¢ir) = 5 (R(9)Y, E(¢ir, ) = 5 (¥, R(g™ ) E (it )
= % (, E(mit (g7 bit, )y = (S, min(g7 ") i) = (min(9) S¥(it), dir)

N |
N |

1By an isomorphism of Hilbert spaces, we mean a bijective linear isometry.
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as claimed. Passing to the second line, we used R(g)E(¢s,z) = E(ms(g)¢s,x),
which is clear when Re(s) > 1/2 and holds for Re(s) = 0 by analytic continuation.
In a similar fashion, we can derive the useful identity
(6.7) (0, E(mit(f)its ) = (B(f) "), E(dit -))
for ¢ € L*(w) and f € L'(©).

PROOF. See §4 of [GJ] for an explicit construction of S. The identity (6.5)
is their (5.16). We just explain how to derive the Parseval identity from their

discussion. Let Pgisc (resp. Peont) be the orthogonal projection of L?(w) onto
L2 ( )(resp Lcont( )) Then

disc\W
<1/)7 > = <Pdiscwa Pdiscn> < contd)a contn>

We apply the usual Parseval identity in L3, (w) to obtain the discrete part of (6.6).
For the continuous part, by (6.3) we have

< Peont s cont"7> <Swa 57]> = /:)o <S1/)(Zt)7577(1t)> dt

3=

-2 ST (S it), due) (50, ) e
-

Here ¢ runs through an orthonormal basis for H(0), and we have applied Parseval’s
identity in H(it). We pull the sum out (justification given below) and apply (6.5)
to get

(68) < Cont¢7 contn Z/ "/}7 ¢7 Zt )> <777 (¢7lt )>
which gives (6.6). To justify pulling out the sum, we need to show convergence of

| S st o0 ol dr
2

Applying Cauchy-Schwarz to the sum, the above is
/2

/ (Z| (SvY(it), dit) | ) (Z| (Sn(it), pit) |) dt

= /OO IS (it)| |Sn(it)|| dt  (Parseval’s)

— 00

o0 1/2 oo 1/2
< {/ |Sw(it)||2dt} [/ |S17(it)||2dt] < oo (Cauchy-Schwarz). O

— 00 — 00

2. Kernel functions. Suppose X is a Radon measure space, and T is a
bounded linear operator on L?(X). We say that a measurable function K(x,y) on
X x X is a kernel function for T if T = Tk, where

Tic(a) /X K(z,) () dy.

If the equality T = Tk is only known to hold for all ¢ which are bounded and
of compact support, then we say that K(z,y) is a weak kernel for 7. We shall
repeatedly use the fact that K is a weak kernel for T if and only if (Tk)1,19) =
(T)1, ) for all 11,19 which are bounded and compactly supported.
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LEMMA 6.3. If K(x,y) and K'(z,y) are weak kernel functions for T, then
K(z,y) = K'(z,y) for almost all (x,y) € X x X.

PRrROOF. This is straightforward; see the proof of Proposition 15.1 of [KL2]. O

Given an operator T on a Hilbert space, its Hilbert-Schmidt norm is defined

by
IT)%s = Z I Te; |,

where {e;} is an orthonormal basis for the space. If the norm is finite, then it
is independent of the choice of basis, and we say that T is a Hilbert-Schmidt
operator. It is well-known that an operator 7 on L?(X) is Hilbert-Schmidt if
and only if it has a square integrable kernel K (z,y) € L*(X x X) ([RS], Theorem
VI.23). In this situation, if we let {¢)} and {¢} be orthonormal bases for L*(X),
then {¢) ® ¢} is an orthonormal basis for L?(X x X) ([RS], p. 51) and for almost
all (z,y) we have

K(z,y) = > (K0 @ 8) v(@)a(y) = >_ (3 (T, 4) () 6(y)

.9 ¢

(6.9) = Té(z)d(y).

For an integer m > 0, let C"(G(A),w) denote the space of factorizable func-
tions f = foo Hp fp on G(A) with the following properties:

e f has compact support mod Z(A)

e f transforms under Z(A) by w

e f is m-times continuously differentiable on G(R))

e Each f, is locally constant, and for almost all p, f, is the function sup-

ported on Z(Q,)K, defined by f,(zk) = wp(2).

THEOREM 6.4. Suppose m > 3. Then for any f € C"(G(A),w), the operator
Ro(f) on L3(w) is Hilbert-Schmidt. When fs is bi-K-invariant, m > 2 suffices.

PROOF. In the case of interest to us here, where f, is bi- K .-invariant, we will
prove that m > 2 suffices in Corollary 8.32 later on, as a consequence of a more
general result where we allow f,, to have noncompact support. For the general
case of f € CI"(G(A),w), see Theorem 2.1 of [GJ] for a sketch over the adeles, and
[Bu] or §3 of [Kn] for proofs over G(R)". As can be seen from the proof in [Kn],
m = 3 suffices. O

Let f € L'(©). Then for all ¢ € L?(w), we have

R(f)i(x) = / F (o) (ay)dy = / Fa )b (y)dy

G(A) G(A)

/_  K(ey)é(y)dy
G(Q)\G(A)

for the kernel function

(6.10) K(z,y)=Ks(z,y) = > fla ).
7eG(Q)



56 A. KNIGHTLY AND C. LI

If f is continuous and compactly supported modulo the center, then because G(Q)
is a discrete subset of G(A), the sum is locally finite, so K(z,y) is a continuous
function on G(A) x G(A).

The expression (6.10) is the geometric form of the kernel. When f € C7"(G(A),w)
for m sufficiently large (we will prove in Corollary 6.12 that m = 8 suffices), the
kernel also has a spectral expansion of the following form, valid almost everywhere

in G(A) x G(A):
(611) K(.Z‘, y) = Kcont (l‘, y) + Kcusp(xa y) + Kres(xa y)
Here

1 ° —_—
Kcont(-r;y) = in Z/ E(Wit(f)¢itam)E(¢it7y)dt
¢ — 00
for an orthonormal basis {¢} for H(0),

(6.12) Keusp (2, 1) ZR

as in (6.9) for an orthonormal basis {¢} for L3(w), and

resxy ZR ()

== Z (det x)x dety) /G(A)f(g)x(detg)dg

xXZ=w

(6.13) 2 [oa Fl9)dg i w s trivial,
. 0 otherwise.

To see (6.13), notice that in the integral on the previous line, if we replace g by gk
for k € K1(N), a factor of x(det k) comes out. So the integral vanishes unless y is
trivial on Z*. Since X has finite order, this is possible only if x is trivial (since Q
has class number 1), which means that w = x? is also trivial.

If f= foof™is a weight 0 Hecke operator as in (4.23), then using (3.16) and
(4.16), (6.13) becomes

3 *(m m—— ) = =h(})
o1y /a o (0 /Mlm,mf( ) OIS = 2ni) Y

pln j=0 dln

for the Selberg transform h of fu.

For such a Hecke operator, we will derive (6.11) from the spectral decomposition
in Theorem 6.2 using a nice choice of basis, and show that for this choice it is in fact
valid for all (z,y). This is a special case of a result of Arthur ([Ar2] §4, culminating
on p. 935). We need this fact because our principal objective is to derive a relative
trace formula by integrating K (x,y) over

(z,y) € (N(Q)\N(A))?,

a space which has measure zero in (G(Q)\G(A))2, so an almost-everywhere spectral
expression for K (x,y) is not adequate.
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6.3. A spectral lower bound for Kjp.p«(z,z). In this section we will take
f = h*h* for a suitable function h, and give a spectral lower bound for K(x,x)
in Proposition 6.6. We begin with the following lemma.

LEMMA 6.5 ([GGK], Lemma 5.2.1). Let X be a Radon measure space, and let
T be an operator on L?(X). Suppose there is a continuous weak kernel function
K(x,y) for T. Suppose further that for all bounded compactly supported 1,

(Te,4) > 0.
Then K(z,z) >0 for allx € X.

PROOF. Suppose for some = that Re K(z,x) < 0. By continuity there exists a
compact neighborhood U C X of x such that Re K(a,b) < 0 for all (a,b) € U x U.
Let ¥ be the characteristic function of U. Then

Og(sz,z/;):/){Tw(a)mda:/rj/UK(a,b)dbda.

The right-hand side has negative real part, which is a contradiction. Therefore
Re K(z,z) > 0. By a similar argument, we find also that Im K (x,z) = 0. O

PROPOSITION 6.6. Let h € C"(G(A),®) be a bi-Ko x K1(N)-invariant func-
tion form>2. Choose orthonormal bases {p} and {¢} for L3, (w) and H(0)%=>K1(N)
respectively, consisting of continuous functions. Then for all x € G(A),

(615) Z |R |2 + — Z/ 7rzt (yblt? )|2dt S Kh*h* (l’,l')

Here Kh*h*(x, y) is the geometric kernel defined in (6.10).

Remark: The set {¢} can be extended to an orthonormal basis for all of H(0)
n (6.15). Indeed, because h is Ko, x Ki(N)-invariant, by Lemma 3.10 7;(h)¢st
vanishes when ¢ belongs to the orthogonal complement of the finite dimensional
subspace

H(O)KOOXKl(N) — @ H(Xl,XQ)KNXKl(N)~

X1X2=w
exy exo IV

We will prove the proposition in stages. It is an application of Lemma 6.5,
but complicated by the fact that we do not know a priori that the left-hand side
of (6.15) is continuous. Thus we will approximate it by a partial sum, defined
as follows. Fix an orthonormal subset Q@ C L2 (w), and let J be a symmetric
compact subset of R. To these we attach the following function

(616) K/(.’E, y) = Kéisc($7y) + Kéont(‘r7y)7

where

KdlSC x y Z R ) (y)
PEQR
and

Keont(2,y) Z/E Tit(h)pit, ) E (it (h) i, y)dt

Here ¢ runs through an orthonormal basis for H (0)%e*K1(N),
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LEMMA 6.7. There exists a bounded linear operator T . on L*(w) for which
Kl . is a weak kernel: for all bounded ¢ € L*(w) with compact support modulo

Z(A)G(Q),
(617) Téontw(m) = ‘/7 o Kéont(x7 y)il)(y)dy
G(QN\G(A)

for almost all x. The analogous statement for K}, . also holds.

isc

PrOOF. For any measurable symmetric subset J C R, define
L= / H(it)dtN L,
J

where £ was defined in (6.4). Here we regard each element of the direct integral
as a function on all of R, taking the value 0 at points outside J. It is easy to
see that £ is a closed G(A)-invariant subspace of £, and we have the orthogonal
decomposition

L=L;DLr_J.
We denote the analogous decomposition in L2, (w) = £ by
Lzont(w) = LJ S LR—J'
Define a G(A)-equivariant map Sy : L?(w) — L; by
Sy if L Sy(it) forae. teJ
Sy =0V el L e Syuit) = V(it) forae. te
0 ifye(Ly)t, 0 for a.e. t & J.

Its restriction to L is an isomorphism of Hilbert spaces. The map
def

Py = (85)" S,
is the orthogonal projection of L?(w) onto Ly, so S; = S o P;.

Now let J be the given compact set. Define T/ . = P; R(h* h*)P;. It is a
bounded operator because || T}l < [[R(h*h*)|| < ||h*h*| 1 (cf. [KL2], p. 140).
For bounded compactly supported 91,1 € L?(w),

(Teonst1,¥2) = (PrR(hx W) Pyipy,th2) = (R(h*) Py, R(h™) Pyibo)
= (PyR(W* )1, PyR(W*)tba) = (SPyR(W* )1, SPyR(h* ))s)

= (SR, Sy RO =+ [ (SR (it) SRO)a(it)

_ % / (ria (W) St (i8), mia (™) St (it)) dlt
J

= %/JZ (S (it), mit (h) dit) (Stha2(it), mir (h)dir) dt
)

018 = [ 3w B, ) W Bl ) e
@

1 - -
- / / =y / E(ma(h) i, o) E(ma(W) b g)dt § 61 (y)dy | Do)
J
GQ\G(A) LG@\G(a) ¢

The interchange of the sum and integrals is justified by Fubini’s theorem, since the
Eisenstein series are continuous, J is compact, the sum over ¢ is finite, and since
11,12 are bounded with compact support modulo Z(A)G(Q). This proves (6.17).
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For K., the statement is much easier because K/ .(x,y) is square integrable
over (G(Q)\G(A))?, so for almost all z the expression [ K} (z,y)¥(y)dy is mean-
ingful for all ¢ € L*(w), and serves to define T, ¥(z). To see the square integra-
bility, note that by the Cauchy—Schwarz inequality,

[Kaise(@,9)* < (Y [R(M)e(@)P) (D [R(W)e(y)]?)

PEQ peQ
Therefore
T Kbl Pdody < (X RS [R0)IP)
(GQN\G(A)) 0EQ veQ
which is finite since R(h) is a Hilbert-Schmidt operator on L3, (w) by Theorem
4. (On L2 (w) it actually has finite rank as shown in (6.13).) O
PROPOSITION 6.8. Let T" = T, + Ttone with notation as in the above lemma.

Suppose that the orthonormal set Q C L3, (w) is finite, and that J C R is compact
and symmetric. Then

(T, ) < (R(h* h* )y, )
for all bounded 1) € L?*(w) of compact support modulo Z(A)G(Q).

PRrOOF. Extend @ to an orthonormal basis Q of L%, .(w). We have

Ty = [ (3 RO@FTG )y ) ST
G@\Ga) G@\aa) EQ

The sum can be pulled out because of the conditions placed on @ and since @ is
finite. So the above is

=Y (R, )P < >R Y2 =" [, R(h)*¥) |

pER 0EQ veQ
= <Pd150 ( ) 77[}’ disc ( ) ¢> = <PdiscR(h * h*)w7¢>

Passing to the last line, we applied Parseval’s identity (6.6), while the last equality
follows easily by the fact that R(h) commutes with the orthogonal projection Pgigc.
Likewise, by (6.18),

(T, ) = Z | 1w By, ) Par

éf%j/w Blmie(R)6i, ) Pt = Z/ B(gu ) [di

— 00

:< contR( ) wa ContR( ) ’(/}> :< ContR(h*h*)w7w>-

Again we used Parseval’s identity (6.8) in passing to the last line. We have also
used (6.7). O

PROOF OF PROPOSITION 6.6. Let @) be a finite subset of the given orthonormal
basis {¢} of L2, (w), and let J be a symmetric compact subset of R. Let K'(z,v)
be the associated partial kernel function as above, and set f = h *x h*. Then
K'(z,y) is continuous since all ¢ and ¢ are continuous by hypothesis. On the other
hand, we saw in (6.10) that K¢(x,y) is also continuous. By the above proposition,

((R(f) —T")1p,%) > 0 for all bounded 1 € L?(w) of compact support modulo the
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center. Hence by Lemma 6.5, K¢(z,z) — K'(z,2) > 0 for all z € G(A). It follows
that

sup K'(z,z) < K¢(z, ).

Q,J
The proposition now follows, since the supremum is precisely the left-hand side of
(6.15). O

6.4. The spectral form of the kernel of R(f). The following lemma, which
follows from a result of Duflo and Labesse, will enable us to reduce to the special
situation f = h x h* discussed above.

LEMMA 6.9. Let v > 1, and suppose f € C2"(G(A),w) is bi-invariant under
Koo X K1(N). Then there exist functions hy, ha, k1, ks € C*"=2(G(A),w) which are
also bi-invariant under Ko, X K1(N) such that

f=hy*xho+ky *xks.

PrOOF. Write K’ = Ko, x K1(N). In this proof only, we normalize so that
meas(K’) = 1. A function a(g) on G(A) is said to be K'-central if a(kg) = a(gk)
for all k € K'. For any function a(g) we define

ilg) = [ atkg)dr.

Obviously a is left K’-invariant. If a is K'-central, then a(g) is also right K'-
invariant.
Define an action of gr = Lie(G(R)) on the smooth functions by

(6.19) X flg) = —

il flexp(~tX)g).

This extends naturally to an action of the universal enveloping algebra U(gc). By

[DL] (I.1.11), there exist K’-central functions a € C?"~2(G(A),w), b € C°(G(A),w),

and a differential operator D € U(gc) of order 2, such that
f=ax(D" s« f)+bxf.

Let ¢ = D"« f. Because f is C%7, ¢ is C¥~(27+2) = 0?7=2_ Tt follows from (6.19)
that ¢ is right K’-invariant. By the left K’-invariance of f,

/ f(kx) dkf/ / g tkx) dgdk+/ / g Ykx)dg dk
- /6 | atia)ts ayandg+ [ / bkg) f(g™" )k dg = (a-+ ) () + (b f)().
Because a is bi-K'-invariant, it is easy to verify that @ c = ax ¢. Therefore we can
takehlzd,hgzé,kzlzbandkzzzf. O

THEOREM 6.10. Let f = foof®, where foo € CT(G(R)T//Ko) for m > 8.
Let Fa be an orthonormal basis for L(Q)(w)KNXKl(N), chosen as in Proposition 4.8.

Then both L L
> R(He()p(y) and > [R(fe(z)e(y)l

pEFA pEFA

are bounded on any compact subset of G(A) x G(A) and continuous in x and y
separately.
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PROOF. It suffices to prove the assertion for the expression with the absolute
values. Because m > 8, by Lemma 6.9 there exist hy, ha, k1, k2 € C2(G(A),w) such
that f = hy * ho + k1 % ko. By linearity and the triangle inequality, it suffices to
prove the theorem for f = hy * hso.

By Proposition 4.8, for ¢ € Fa we can write

R(f)e =Ap, R(hi)p=Aip, R(ha)e = logp.

Note that ¢ is also an eigenvector of R(h%). The eigenvalue is \; since

(R(h})e, ) = (@, R(h1)p) = A1 (0, ¢) .

Furthermore, A = A1 \g since

M, o) = (R(f)p,p) = (R(h2)p, R(hT)p) = A2 (¢, 9) -
This implies that

R(f)e(x)e(y) = Mdep(x)e(y) = R(h)p(z)R(h3)e(y).
By Cauchy-Schwarz, for any subset S of Fa,

YO IR(Ne@)e)l = D [R(n)e(z)R(h3)e(y)]

pES w€eS

1/2 . 1/2
(6.20) < (M IRee@12) (X IR W)
peS peS
< Khl *hy (ZC, 'r)l/?th *ha (y7 y)1/2'
The last inequality holds by Proposition 6.6. Because the two kernels are continu-
ous, the above is bounded on any compact set.

Now we show that > [R(f)¢(z)e(y)| is continuous in y for fixed z. Let U
be any compact subset of G(A). Fix x € G(A). It suffices to show that the
series converges uniformly as a function of y € U. Let C be an upper bound for
Khysh, (y,)"/?2 on U. Fix ¢ > 0. We know that P |R(h1)p(x)|* < co. Hence for
any ordering 1, o, ... of {¢}, there exists N > 0 such that

2

> 1R)en(@)? < -

n>N

Therefore by (6.20),
1/2

> IR(Ne@ew)] < (Y IRM)ea(@)P) T <=

n>N n>N

Hence the series converges uniformly for y € U, as needed. Similarly for fixed y,
the sum is continuous in z. O

THEOREM 6.11. Let f = foofn be as in the previous theorem. Then both

(6.21) Keont (7,9) Z/ E(mit(f)dit, o) E(ir, y)dt

and

(6.22) MZ/ E(mit(f)it, ©) E(Sir, y)|dt
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are bounded on any compact subset of G(A) x G(A) and continuous in x and y
separately. Here ¢ runs through an orthonormal basis for H(O)K“XKl(N).

PrOOF. The proof is similar to that of the previous theorem. We can assume
f=hi*hy. For j > 1,let R; =[—j,—j+1]U[j — 1,7], and define

(z,y) Z47r/ (mit(f)@it, ) E(bit, y) | dt

It is a continuous function of z and y. Note that (6.22) is equal to } -, G;(z,y). It
suffices to show that for fixed x this series converges uniformly for y in a compact

set. Write
mit(h)die = A () it it (ha)Pir = A5 (£) bz
Gj(z,y) is

For any set S of natural numbers, >, ¢

< = 20, wrwmeinnra) ([ piope. e

jes ¢ VR
1/2
4WZZ/ IN(H) (o, it, )| dt) ZZ/ N2 () E (o, it, y)\2dt)
JES @ jES ¢
< Kpysns (7, 0) 12 th*hz(yay)l/z

by Proposition 6.6. The proof now proceeds as before. [l

Now we derive the spectral formula for the kernel K (z,y) of R(f). Because
R(f) R(f)PdISC + R(f) cont

it suffices to give kernel functions for each of the operators on the right-hand side.
The operator R(f)Paisc is Hilbert-Schmidt, so its kernel is given by

Kaisc (ZE, y) = Z R(f)Pdiscw(x)@'

{p}CL2(w)
on.b.

Because R(f)Paisc annihilates all ¢ € L2, (w), the above is equal to the sum
Keusp(2,y) + Kres(z,y) as in (6.12) and (6.13).

For R(f)Peont, Suppose 91,1, € L?(w) are bounded and compactly supported
modulo Z(A)G(Q). Then

(623) <R(f)Pc0ntw17 1/)2> < contd)ly COIltR(f*)¢2>
= iﬁ Z/ (U1, E(dit, ) (E(bit, -), R(f*)ab2) dt
6 VT

-L1]L 47TZ | Bl )6 0BG i)y | Galods

We used Parseval’s identity (6.8) when passing to the second line, and (6.7) when
passing to the third line. The convergence is absolute by Theorem 6.11 and the
conditions on )1, %3, so the rearrangement of the sum and integrals is justified. It
follows that the expression in the braces, which coincides with (6.21), is a weak
kernel function for R(f)Peont-
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COROLLARY 6.12. Suppose foo € C(G(R)"//Ko) for m > 8, and let f =
foof™ Then for all x,y € G(A),

K(.Z‘, y) = Kcusp(xa y) + Kres(x7 y) + Kcont(xa y)7

where we choose bases as in Theorems 6.10 and 6.11. FEach function on the right
is separately continuous in each variable.

PROOF. Denote the right-hand side by ¥(x,y). As we have just shown, ¥ is a
weak kernel function for R(f). By Lemma 6.3 we conclude that K(z,y) = U (z,y)
almost everywhere in G(A) x G(A). We know that K (x,y) is continuous. By the
above theorems, ¥(x,y) is continuous in z and y separately. By Lemma 6.13 below,
it follows that ¥(z,y) = K(z,y) for all z and y. O

LEMMA 6.13. Let X and Y be two positive Borel measure spaces. Let D be a
measurable function on X XY such that D(z,y) = 0 almost everywhere and D(x,y)
is a continuous function of x and y separately. Then D(x,y) =0 for all x and y.

PROOF. Because [y [, |D(x,y)|dydz = 0, the set {x € X| [,, |D(x,y)|dy > 0}
has measure zero. Let S C X denote its complement. For fixed 2’ € S, D(z',y) =0
for almost all y € Y. By the continuity of y — D(z’,y), D(2’',y) =0 for ally € Y.
Therefore SxY C {(z,y)|D(z,y) = 0}. This means that forany y € Y, D(z,y) =0
for all z € S, i.e. for almost all x € X. Now by the continuity of = — D(x,y), it
follows that D(z,y) =0 forallz € X and all y € Y. O






CHAPTER 7

A Fourier trace formula for GL(2)

For integers mq,my,n > 0, we will compute a variant of the Kuznetsov/Brug-
geman trace formula, involving Fourier coefficients at my,mq, the eigenvalues of
T, and Kloosterman sums.

Let f = foo X f?, with foo € C"(G"//K) for m > 8 to allow for use of
Corollary 6.12 (though for the convergence of the cuspidal term in Proposition 7.5
we will take m > 12). For real numbers y;,y2 > 0 and K(z,y) as in (6.10), consider
the expression

1 .

(71) I = // K(?’Ll(yl 1),712(y2 1))9m1 (n1)0m2(n2) dnldng,
yly<21\r<a>\N(A))2

where

0n((51)) = Om(z) = 0(~mz)
for the standard character 6 defined by (2.5), and dn; is the Haar measure of total
volume 1. We will compute the relative trace formula obtained by evaluating the
above in two ways, using the geometric and spectral expressions for the kernel. The
result is a primitive Kuznetsov formula given as Theorem 7.13. The variables y1, y2
give us some extra flexibility. To obtain a more refined formula, we will set

(7.2) Yyimy = Yome = w
in the primitive formula, and then integrate w from 0 to oco. The result is Theorem

7.14, which is a generalized Kuznetsov formula.

7.1. Convergence of the spectral side. According to Corollary 6.12,
K(.Z‘, y) = Kcusp(xa y) + Kcont (l‘, y) + Kres(xa y)7

where each term on the right is separately continuous in each variable. Each term
is also bounded on the compact set (N(Q)\N(A))? by Theorems 6.10 and 6.11,
and hence integrable there. Furthermore, the sums defining Kcusp and Kcone can
be pulled out of the double integral for the same reason.

The justification for integrating over w will be handled later.

7.2. Cuspidal contribution. Here we will compute the cuspidal term

_ 1 Y1 Y2 Y ERY
Icusp - \/ﬁ // Kcusp(nl ( 1) , 12 ( 1 )9m1 (n1)9m2 (n2)dnldn2-

(N(Q\N(A)?
By Lemma 3.10, Ro(f) annihilates the orthogonal complement of L2 (w)Xe*K1(N),

Let Fa be the eigenbasis of L3 (w)>~*K1(N) defined in Proposition 4.8, so that for

65
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@ € Fa we have R( ) (x) = \/_h() ( )o(xz). Then Kcusp(x y) equals

J/a Z a(p; S||02J( - o Z uju@r;( )‘PUj(y)

©;EFA ;i ujEF

for F as in (4.25). As explained in Section 7.1 above, I,sp is absolutely convergent,
and by Fubini’s Theorem

_ n h(tj)/\n(uj) Y1 T —.73 T TR z)dx
T Q\/Agow((m)emlmd [ o (G Domaoie

Q\A

LEMMA 7.1. Let u be a Maass cusp form with Fourier expansion as in (4.8).
Then forr € Q and y € R*,

Y ar(w)y'? Ky (2n|rly) if r € Z — {0}
/Q\A<P ((0 ! ))9 (@)de = {O otherwise.

PROOF. Using the fundamental domain [0, 1] x Z for Q\A and (4.18), we have

/Q\A @u((gf))ﬁr(x)dx:/o u(m—|—iy)€oo(ms)dm/29ﬁn(rx)dm.

The second integral on the right vanishes unless r» € Z, in which case it is equal
to 1. Assuming r € Z, this becomes fol u(x +iy)e 2™ dx, and the assertion then
follows by substituting the Fourier expansion (4.8) of w. O

LEMMA 7.2. Let {u;} be an orthogonal basis for LE(N,w') consisting of cusp
forms. Let t; be the spectral parameter of u;. Then for any M > 0,

(7.3) ‘{j: |t]-|§M}‘ < .

Remark: Much more is known. According to Weyl’s Law (which in this context
follows from the Selberg trace formula),

VOl Fo(

(7.4) (It < M}} = N 2y O(NY2M log(NM))

(IK] p. 391, [Seld] p. 668).

PROOF. Let h(iz) € PW*(C)®*". By Proposition 3.6, there exists a function
feo € C2(GT//Ky) whose Selberg transform is h(t). Let f' = fo x f1, where
f1is the Hecke operator on G(Ag,) with n = 1. By Proposition 4.8, the operator
Ry(f’) is diagonalizable with eigenvalues h(t;). By Theorem 6.4, this operator is
Hilbert-Schmidt. Therefore

> Ihlt)I?

J
On the other hand, if (7.3) fails to hold, the set {¢; : |t;| < M} has a limit point
P € C. Choosing h so that h(P) # 0 would then contradict the above summability.
It remains to show that such h exists. If P = 0, we can let h be the Mellin transform
of a nonzero element ® € C°(R1)Y that assumes only nonnegative real values.

Then h(0 fo dy > 0, as needed. Now suppose P # 0. Let hy € PW(C)ever
be nonzero, with hl(Q) # 0, say. By continuity, we may assume that ) # 0. Then
we can take h(z) = hl(%z). O

COROLLARY 7.3. The set of exceptional spectral parameters t; ¢ R is finite.
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PROOF. If t; is exceptional, then by Proposition 4.7, t; = —is for some real
s € (- 27 3). In particular, |t;| < 3, and the above lemma shows that the set of
such t; is finite. O

LEMMA 7.4. With t; as in Lemma 7.2, we have
Z |h(t;)] < o0

for any function h(iz) € PW"L(C)GW” with m > 10.

Remark: More is known. Using Weyl’s Law (7.4), it is straightforward to show that
L+ [t;] > jY/2. Therefore 3" |h(t;)| < A+ [t;) ™ < S5 ™2 < 00 if m > 2,

PROOF. Let f' = f.o x f! be the global function attached to h as in the proof

of Lemma 7.2. Let ¢; = Hi“ S L3(w) be the unit vector attached to u;. Noting

that fo € C3(GT//Kx) by Proposition 3.6, we can write f/ = a x b+ ¢ x d for
bi- K w-invariant functions a,b, c,d € C?(G(A), w) by Lemma 6.9. Then by (4.24),

Z\h |—Z\ Ro(f")pj,05) |—Z\ Ro(a)Ro(b)pj, ;) + (Ro(c)Ro(d)pj, ;) |

<Z| Ro(b)g;, Ro(a®)e; |+Z| Ro(d)pj, Ro(c*);) |

J
<Z||Ro );lll| Fo(a %IHZHRO )%l o (™) 5

< (Z 1B 2) " (ZHRO(G*)%’HQ)
(X Iro@esl?) (Aot yeil?)

The above is finite since all four operators are Hilbert-Schmidt by Theorem 6.4. O

PROPOSITION 7.5. Given h(iz) € PW™(C)¢"*™ with m > 10, let foo be its
inverse spherical transform in C™ 2(G*//K.) as in Proposition 3.6, and let
f = foo x f*. Then the integral I.,sp is absolutely convergent. It vanishes un-
less m1,ma € Z — {0}. Let F be an orthogonal eigenbasis for L3(N,w') as in
(4.25). Then for m1,mg € ZT, we have

(Us) @y (U5) Ay (U5)
( ) cusp — \/_ Z ] ||; ||‘72 22 J h(tJ)Kth (zﬂmlyl)Kitj(Qﬂ'mQyZ))
u; EF

the sum converging absolutely. Now suppose m > 12. Then letting I.usp(w) denote
the above when w = yymy1 = yamo, we have

(76) /OOO Icusp( _ 71'\/_ Z U] Am, U])amz(uj) h(tj)

s [|lw;|? cosh(rt;)’

the sum and integral converging absolutely.

Remark: In fact, (7.6) converges absolutely for any function h (holomorphic or
not) satisfying a bound of the form h(t) < W for m > 3. Indeed, granting

Weyl’s Law, one finds as in the proof below that (7.6) is < > |h(t;)|(1 + [¢;]) <
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S+ )™ < S5 mHY/2 < o0 if m > 3. By the fact that Weyl’s Law is
an exact asymptotic, any improvement allowing smaller m (say m > 2) must come
from a strengthening of the estimate (7.8).

PrROOF. The absolute convergence of Io,sp (with absolute values inside the
sum defining Kc,sp) is a consequence of the continuity result of Theorem 6.10 and
the compactness of N(Q)\N(A). The equality (7.5) and fact that mq,me must
be integers follow immediately from Lemma 7.1 and the discussion preceding it.
The second Bessel factor does not need the complex conjugate because ¢; is purely
imaginary or purely real (cf. Proposition 3.8), so that Ky, () is real for real x by
(4.9) (if ¢ is real, consider w — w~! in that equation).

Equation (7.6) follows formally from (7.5) by the identity

oo Lt +ait)(3 - it) T
7.7 Kt (2mw)?dw =
(7.7) /0 ¢(2mw) dw 8 8cosh(7rt)
([GRJ, 6.576), which is valid whenever Im(t) = Re(it) < 1, which holds here by

Proposition 3.8. As justification, we have to prove that the mtegral

/O \/— Z ‘)‘ u] Am,y uj)amz(uj)||h(tj)Kitj(27rw)2|d'U)

= o2

converges. By (7.7) and the fact that |K;;(27w)|? = K (2mw)?, this amounts to
showing that the right-hand side of (7.6) is absolutely convergent.

Recall that |As(u;)| is bounded by a constant depending only on n. (For an
elementary proof, see [Ro], Proposition 2.9. Currently the best known bound is
7(n)n"/%* due to Kim and Sarnak [KS]. According to the Ramanujan conjecture,
()] < 7(n).)

For any Maass cusp form u with spectral parameter ¢, and m # 0, we have the
well-known elementary bound

|an (u)|?
[[ull?

where the implied constant is absolute (see Theorem 3.2 of [Iw2]). This gives

120y el
<o) (e + o) el

|@m, (W) @m, ()]
[[ull?

When t is real, the exponential factor is negated by cosh(nt) > eIt in the denom-
inator of (7.6). For the finitely many non-real t]-, we have [t;| < % Hence

[ Aa (1) @, (107) Gy (1) 2
7.9 h(E) (1 + |¢4]).
( ) UZGJ: Hu]HQCOSh(ﬂ't << Z| + ‘ JD

(7.8) L Nomymy (1]t

Let h(t) = t?h(t). Assuming h(iz) is Paley-Wiener of order m > 12, it is easy to
show that h(iz) € PW1(C)even, Note that

Do DI+ < Y 1P = D (A
15122 1122 5122

By Lemma 7.4 above, the latter expression is finite. In view of (7.3) with M = 2,
this implies that the right-hand side of (7.9) is finite. O
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7.3. Residual contribution. By (6.13), K, vanishes when w is nontrivial.
Otherwise by (6.14) we have

1 -
Ircs(famlamQaw) = \/y1—y2 // I{rcs((yo1 o )17 (%2 3212 ))gml(ml) omg(xQ) dxl dl‘g

(Q\A)2

= ﬂgh—f;(z:d) /(Q\Amdx/ O(mex)dx.

dn QA
Both integrals vanish since my,my # 0. Thus the residual spectrum makes no

contribution to this trace formula.

7.4. Continuous contribution. We continue to assume that f = fo, x f*
satisfies the hypotheses of (7.1). Using the decomposition H(0) = € H(x1, x2),
the continuous kernel is given by

(7.10) Keont (91, 92) = % > Z/jo E(mi(f)dit: 91) E(Pit, g2)dt.

X1:X2 ¢

Here x1, x2 ranges through all (ordered) pairs of finite order Hecke characters satis-
fying x1x2 = w, and ¢ ranges through an orthonormal basis for H(x1, x2)%>= xK1(N)
By Corollary 5.11, the latter space is nonzero if and only if ¢,, ¢,,|N. In particular,
both sums above are finite.

For ¢ € H(x1, x2)%=*51(N) we know that

Tt (f)die = Vo da(x1, X2, i) h(t) it
by Proposition 5.2. Hence for the orthogonal basis B(x1,x2) given in Corollary
5.11,

Kcont(glv 92) =

GUEECS SIS )@ / BON 1 x: #)E(6i 1 EC )

X1,:X2 ¢€B(Xx1,X2

We need to integrate the above over (N(Q)\N(A))?. For m € Q and real
y >0, let

aﬁl(s,y) = / E(¢,s,n(y 1)) Om(n)dn
N(Q)\N(A)

be the adelic Fourier coefficient of E(¢, sm(y 1 )) The above coincides with the
m'™ Fourier coefficient of Ey4(s,z), which was denoted a,(s,y) earlier. Indeed,
using the fundamental domain [0, 1] x Z for Q\A,

a? (s,) :/o /ZE((b,s, (57) x (§4)e(—ma)bsn(mu) du dx

:/ E(¢,s,(§7) x 1ﬁn)e(—mm)dx/A9ﬁn(mu) du.
0 Z

Because Z = ker Ogn, this is

1
_ / Ey(s,z +iy)e(—maz)de meZ
= 0

0 otherwise

= am(s,y), as claimed.
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Therefore by the formula for Fourier coefficients given in §5.6, the continuous
contribution to the trace formula is

/ / Keone((" %), (%)) By (21) 0y (22)dirr s

1
I =
cont \/yl—:yQ

(Q\A)?
X17X27Zt) b (s d’i
— e h(t)ag,, (it y1) am, (it, y) dt

(7.12)
=2 Z Z X17X271t)0'1f()(17X27m1)o'tt(X1!X27m2)(:;)lt it (2mmay1) K (2rmay2)h(t)

dt.
¢ip) 12T (3 +i8)?| Lv (1+2it, x1X2) |

X1,X2 (ip) g

The notation is as in §5.6, and is also recalled in Theorem 7.14 below. We have
used the fact that [C; )| = 1 and that K (z) is real.

We explained in §7.1 why the above expression is absolutely convergent. This
can also be seen directly, using the following lemma.

LEMMA 7.6. Fory >0 and s = o + it with o > 0,
Kl <2)" (1+2[s])
g < —_—
IT(z +s)| Y YT

PROOF. By Basset’s formula for K, (z) (eq. (1) on p. 172 of [Wa]),

K (y) / cos(ya)
e ———dr,
I'(3+s) \/— (x2+1)2

valid for ¢ > 0. Integrating by parts, we have

Kiy) 2y (1425) [ asin(ye)
I‘(%+s)_(y) NG /0 (22 +1)5+

This equality is valid on o > f% since the right-hand side is convergent for such s.
Therefore if 0 > 0,

(27 Qa2 [T a2y 2 g
1 = gde = ~) ——=—.
IT(z+s)| — \y T Jo (22 41)3 y YT

By the lemma, the combined contribution of the Bessel and Gamma functions

in the integrand of (7.12) is < (1 + 2|¢[)%. By Corollary 2.3,

(7.13) Lyn(1+2it,x1x2) " = L(1+ 2it, x| x4) " < N°(log(3 + 2|¢]))".
Thus, the absolute convergence of the integral (7.12) follows from
(7.14) h(t) < (14 [t))~*

(which holds since h(iz) is Paley-Wiener of order m > 10 > 4).
In fact we can prove the following asymptotic bound for I.ont-

PROPOSITION 7.7. For any e > 0, the quantity (7.12) is < N2te. The implied
constant is ineffective, but depends only on €, n, my, ma, foo, and y1,ys.

PRrOOF. By Proposition 5.17, we have

O'it(X/hX/val)Uit(X/p X/27 mz)

7.15
(7-15) e

<<m1,m2,5 NE'



7. A FOURIER TRACE FORMULA FOR GL(2) 71

It is clear that
Palvixe i8] = [ 3@ @BV < r(@) <a 1
dln
Therefore by Lemma 7.6 and (7.13)-(7.15), the integral occurring in (7.12) is

(7.16) < N3¢ /OO h(t)(1 + 2[t)*(log(3 + 2|t]))**dt = O(N3*),

with the implied constant depending on f.., €, y1, Y2, m1, M2, and n. Thus, recalling
Corollaries 5.10 and 5.11, (7.12) is

< N¥F N > > oL

(ip) (v1pivap) X1x2=w
0<ip<Np wvo,<ip<Np—vy, tx;=Ippr /P
(G=1,2)
The set of tuples (i) is in 1-1 correspondence with the set of positive divisors
M = []p'» of N, and likewise {(v1,)} > {v1|2;} and {(v2,)} <+ {v2|M}. Hence

the above triple sum can be rewritten

2. > > >t

MIN vaM vy X1x25e

“x2=v2
The number of terms M is < N¢, and the same is true for v1 and v5. Thus for fixed
M, vy, v, it remains to count the number of pairs (x1, x2). Because vivo| N, there
exists j € {1, 2} such that v; < N /2 The number of possibilities for the character
x; of conductor v; is |(Z/v;Z)*| < NY2. Once x; is chosen, its counterpart is
determined by xix2 = w. Thus the number of pairs (xi,x2) is < N'/2. This
proves that (7.12) is < N2 16, O

Lastly, let I.ons(w) denote the quantity in (7.12) with w = miy; = mays. Using
(7.7), we see that / Teont (w)dw is equal to
0
(7.17)

\/_ Z Z/ X17X272t)0—1t(X17X27ml)Jzt(XlaX27m2)( )Zth()
8 166, IIPILn (1 + 2it, x1X2)]?

X1X2=W (ip)

dt.

The exchange of the dt and dw integrals is justified by the absolute convergence of
(7.17), which is proven in the same way as Proposition 7.7, giving the following.

PROPOSITION 7.8. For any € > 0, the quantity (7.17) is <. N2+e.

7.5. Geometric side. In this section, we take f as in (7.1), although we can
relax the requirement on m. In Proposition 7.9, we will require m > 5, and in
Propositions 7.11 and 7.12 we need m > 2.

For positive integers my,ma, we need to evaluate the integral (7.1)

I'=1Ttmimayye = Y212 ))0(maty — maty)dty dts,

1 t1
VY1Yy2 /Q\A /Q\A ) ( 01

using K (g1, g2) = nyeﬁ(Q) f(917 'vg2). This was carried out in detail with a differ-
ent choice of fo, in [KL1], and we follow the same procedure here.
Let H = N x N, and endow it with an action on G by

(n1,m2) -y = ny 'yns.
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We break the sum over v € G(Q) into H(Q)-orbits to get

0, (110, (¢
I = /H o yl 1{11 )5(1/2 tlz )) 1( 1;1y22( 2) d(tl,tg).
5€N(Q)\G(Q)/N(Q) s(QNH( ) v

Here Hs denotes the stabilizer of d, and d(t1,t2) denotes the quotient measure com-
ing from the Haar measure dt;dty on H(A) = A x A, the latter being normalized
as in Section 2.1. The interchange of the sum and the integral is justified because
the function - |f(z'yy)| is continuous and hence integrable over the compact
set H(Q)\H(A).

We let Is(f) denote the integral attached to ¢ as above. The following set of
representatives ¢ is obtained from the Bruhat decomposition:

{ADveHHAO ) neq

An orbit § is relevant if the character ,,,6,,, is trivial on Hs(A). The orbital
integral I5(f) vanishes if ¢ is not relevant. It is straightforward to show that the
relevant orbits are

{(mam ) me Q)
See [KL1] for details.
7.5.1. First cell term.

PROPOSITION 7.9. Let § = (7”2/7”1 1) for my,mg > 0. Then Is(f) is nonzero
only if mime = b?n for some positive integer bl ged(my, mo). If this condition is
met, then

P(N)w'(my/b) /Oo v (t2 +miy; +m3ys 2) Q2mit gy
b\/y1y2 oo m1Yy1May2

for V as in (3.5). Letting Is(w) denote the above quantity for w = yy1my = yama,
we have

= __ Y{V)ym
(7.19) /0 L;(w)dw—2w/<\/m)

PRrROOF. For this choice of ¢, we find as in [KL1] that

m@={(" 7). (" [leeaf.
Now note that

won) (B Y (e oe) o (R SGi-w)
1-1 1 1 1

_ (M mays Maota — Mty
mlyl_l mi1y1 '

Here we view m; € Q* C A* and y; € R*. Thus because f is invariant under
Z(R)"2(Q),

N | e )
{(—212 t3) eQQ}\A2

(7.18) I5(f) =

v (0).
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Here d(t1,t2) is the quotient measure coming from dt;dty. In A2, let t = maty —
mat;. Then the map A2 — A? defined by (t1,t2) + (¢,t2) induces a homeomor-
phism between the quotient spaces

{(2262,12) It € Q) \A? — {(0.12)]t2 € QN\A® = A x (Q\A),

Noting that dt dty = |m|adtidts = dtidty, we see that the quotient measure is
d(t1,te) = dt dta, where we use dta now to represent the quotient measure on Q\A.
Thus

_ maye ¢y O(=0)dtadt _ (e 0(—t)
I f) /A»/Q\Af(( mlyl)) \/M f m1y1))mdt'

The integral factors as Is(f)anls(f)co- As shown in Proposition 3.3 of [KL1], the
finite part vanishes unless mjmsg = b?n for some positive integer b| gcd(mq,mz), in
which case

P(N)

Iﬁ(f)ﬁn = W]_/b)

The archimedean part is

1 > mays t 2t
Ié(f)oo—\/M _oofoo(( mlyl))e dt,

and (7.18) follows upon using (3.7).

Set w = y1m1 = yame in (7.18), s \/yl_ =vr ——=. Then

— ( / 27Tit
Ts(w) = = o0 ml/b V(g)e* .

Replacing t by wt and dt by 4t “and using Y2 = \/n, we have

Let r(t) = V(t?), a compactly supported continuous even function. Note that

f(’UJ) = / V(t2)6—27riwtdt — / V(t2)62ﬂiwtdt

— 00

is also an even function. By Fourier inversion,

1 1 1 [ >
SV(0) = 3r(0) = §/ r(w)dw:/o #(w)dw,

— 0o

which proves (7.19). We recall that Fourier inversion is valid so long as r and  are
both integrable. Because fo € C(G"//K) for m > 5, V and r are compactly
supported and twice continuously differentiable by Proposition 3.2. It follows by a
standard argument (see Proposition 8.8 below) that #(w) < (1 +w?)~! and hence
is integrable. O
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7.5.2. Second cell terms. We will need a few facts and definitions. For the
function k(z1, 22) attached to foo in (3.8), define its Zagier transform by

-1
k‘(s,t):/ k(z—l—t,7)ysdz,
H

where dz = df}#. Using Proposition 3.3, we see that

o= [ v(EHEEE ) i ] v (Frs 2Ly .

where the second expression comes from completing the square and replacing z by
z—%. We refer to Proposition 4 of [Za] (where the above is denoted V (s, t)) for the
absolute convergence and other information. In Section 5 of [Za], it is computed
in terms of the Selberg transform h(¢).

We will only be interested in the case s = 1, so we set

(7.20) Z(t) = Zk(1,t) // ('Z “__'2)%%5.

This is expressed in terms of the Selberg transform h(t) in (4.12) of [Za]. Since V/

is compactly supported, Z(t) is also compactly supported as a function of ¢t € R.

2

Indeed, writing u = 22, v = y? and w = —(1 — %), we have

2 t2 12 2 2
2+ 1= —v— +4 —u—v+ +4
| _ Tl (u—v—w) w  (—u—v+w) YW g = 2 — 4,
Y v v

Thus, if |¢| is sufficiently large, t> — 4 exceeds the supremum of Supp(V'), and the
integrand of (7.20) is 0.
The orbital integral attached to § = (9 /) involves the Fourier transform

~ o . o .
Z(a) = / Z(t)e 2™atqt = / Z(t)e* et dt,
— 00 — 0o

PROPOSITION 7.10. For a # 0, we have

Z(a) = Z—a / b Jm(zm)% dt

for the J-Bessel function, and the Selberg transform h(t) of foo-

— 00

PRrROOF. This is due to Zagier. The proof is explained in §2.1 of [Joy]. Another
account is given in [LiX], Lemma 3.4. The absolute convergence of the integral
holds by the fact that h € PW™(C)®V*" for m > 2 (see the proof of Proposition
7.12 below). O

Also, for any ¢ € c¢Z", we will need the following generalized Kloosterman
sum:

d+ bd’
(7.21) Swr(a,byn;c) = Z w’(d)e(L).
d,d' €Z/cZ, ¢
dd’'=n

We will describe some basic properties of these sums in Section 9.
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PROPOSITION 7.11. Let § = (9 /") for p € Q*. Then I5(f) is nonzero only if
w = 25 for some positive integer c € NZ. Under this condition,

S,
(7.22) I5(f) :¢(N) w mgg;zlan C // 21,02 2m (mazo—miz1) dxldxg,

RXR

where k(z1,22) = foo(97 'g2) as in (3.8). Taking Is(w) to be the above quantity
when w = myy; = MaYys, the integral fooo Is(w)dw equals

nay RN Selmmn [~ (e 10,

c c cosh(7t)

— 00

PROOF. For § = (, "), we find that Hs(A) = {(1,1)}. Given y1,y2 > 0, we
need to integrate

(7.24) f((y1 196—11 ) ( 1 7“) (y2 T ))9(m15€1 — MaT).

Again the integral factors as Is(f)anls(f)eo. Because f.. is supported on G(R)™,
the archimedean integral vanishes unless p > 0. Under this assumption, the finite
part was shown in Proposition 3.7 of [KL1] to vanish unless p = % for some
¢ € NZ*, in which case

(7.25) Is(f)fin =

Swr(ma, mysn;c) = Y(N)Sy(ma, my;n, c).

From (3.8), foo(("" [24)(, 7*) (" %2)) = k(z1, ~%), so the archimedean part can
be written as

1 —
1 o = k(z1, —)e(maoxs — myix)dx1dxs.
(D= [ ke, Foetmazs — oo
Setting p = %, (7.22) follows immediately.

Now write ©1 = /ums/mit; and zo = \/umy/mats, so that dridrs =

/Ldtldtg = C%dtldtg. Then

. —u Um 1Yy1my -1
T+, ——— | = 1 ’ imays ’
T2 + 1Yo mq VEmime ty + N

The scalar in front does not affect the value of k by (3.9). Set w = myy; = mays, so

that \/M VL2 | The archimedean part of the integral of I5(w) is the product
of ™™ with

c2
; g, dw
[ // bt o e ) 0 T dndn
RxR Ve t Jamis

Arguing formally for the moment, we exchange the order of integration. Substitute
we dw

t =t1 —ty for t1, x for to, and y for NI Then because <7 is a multiplicative

Haar measure, the above integral is

—1 1 ., \/Damima
(7.26) / / / (x + iy + ¢, ) —dydre e dt
rz+iy /)y
2( N / J 477\/1m) h(t)t
c T 4/am 2it( cosh(rt)
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by Proposition 7.10. Formula (7.23) now follows upon multiplying by =52 and
the finite part (7.25). The exchange of the order of integration is justified by Fubini’s
Theorem. Indeed, as explained after (7.20), Z|k|(1,t) is compactly supported as a
function of t. Therefore the triple integral (7.26) is absolutely convergent. (]

The geometric side is equal to the main term from Proposition 7.9 plus the sum
over ¢ € NZT of the term in Proposition 7.11.

ProOPOSITION 7.12. We have the following bound for the sum of the Klooster-
man terms on the refined geometric side:

(r2n) Y i\/ﬁz/:(N) Sur (mg, my;m;c) /°° J%t(m/m) ot

c c cosh(7t)

— 00

ceENZ+
= O(N?),

where the implied constant depends on n, h, mi, ms, and 0 < e < 1.

PROOF. (See also Theorem 16.8 on page 414 of [IK] for the casen = 1, w = 1.)
We will show below that

(7.28) /OO Joit (4”x/fm) h(t)t i< <@>1

c cosh(7t) c

In Theorem 9.1 we will prove the Weil-type bound
[Swr (ma, my;n;c)| < 7(n)7(c)(mon, min, 0)1/201/2Ci}//2.
Together these statements imply that (7.27) is
N)NY27(N
T cund 3 T PEONYIT) (o

c3/2—e — N3/2—¢ c3/2—¢”
cENZ+ ceZt

Using 7(N) < N¢ and ¢(N) = N[, x(1+ 3) < N'*¢, this gives

(7.27) <« ———— = N*,

as needed.

It remains to establish (7.28). We let s = o+t be a complex variable. Let oy <
3 be a fixed positive number. The restriction on o is to ensure that cosh(—ims) is
nonzero on the strip 0 < ¢ < gy. From the integral representation

_ (=/2)
(s +1/2)v/7 Jo
([AAR], Corollary 4.11.2), we see that for o > 0,

@ < (3) @

for an absolute implied constant. By the hypotheses on h(t), there exists a positive
constant C such that

Js(z) = cos(z cos 6) sin® 0 df (Res > —1)

CO‘

h(—is) <« W,
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for any m > M > 2. By these asymptotics, the integrand of (7.28) is

(7.30) . (4”\/IW ) h(—is)(—is)

c cosh(—ism)

<2ﬁ,/nm1m2>2g |s|C? 1
h (

c L+ [th™ |T'(2s + 3) cosh(—is)|’
By [AAR], Corollary 1.4.4, for 0 < o <  and [t| > 1,
I0(s)] = V2t~ 2/2e=m2(1 4 O(1/}4]))
for an absolute implied constant. Thus for 0 < o < g9 < % and [¢t| > 1,

1 emltl

< t—20
IT'(2s + 3) cosh(—ism)| i

|e(t7¢o)7r + e(*t+i0)7r| = Oq(1).
The left hand side is continuous and hence bounded on the compact set 0 < o < oy,
|t| < 1. Thus the expression is bounded on the whole strip 0 < ¢ < g¢. (We have
imposed og < % in order to avoid the zero of cosh(—ism) = cos(sm) at s = 3.)
Hence for such o,

(7.31) s (%/W) h(—is)(—is) - (%/W)?"( 1s|C

c cosh(—ism) c 14 [¢eh)M-

Let T be an arbitrary large real number, and let Ry be the contour defined by
the rectangle with vertices A = —iT, B =09 — i1, C = 09 + T and D =T, with
counter-clockwise orientation. By the Cauchy residue theorem,

[ o (A s,

c cosh(—ism)

By the estimate (7.31) with M > 2, we see that

lim (7.30)ds = lim (7.30)ds = 0,
T—oo JAB T—oo JoD

and that (7.30) is absolutely integrable over iR and og + iR. Taking T' — oo,

/oo " <4Wm> JOLE /Remo . (4WM) h(—is)(—is) .,

c cosh(nt) c cosh(—ism)

— 00

<00

<2m/nm1m2 ) 200
Cc

by (7.31) with M > 2. Taking og = 5 — §, we obtain (7.28). O

1
2

7.6. Final formulas. The formulas given below follow upon equating the geo-
metric side with the spectral side in the two cases (primitive and refined) computed
above.

THEOREM 7.13 (Pre-KTF). Let F be an orthogonal eigenbasis of T, for the
space LE(N,w') of cusp forms of weight 0, chosen as in (4.25). Let h(iz) €
PW2(C)even and let foo € CX(GY//Ky), V, and k be the associated func-
tions as in (3.15), (3.5) and (3.8). Then for any positive integers mq,ma, and real
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y1,y2 > 0, we have

) Gy (U5) @y (10
Vo Z I ”Jg) ( ])h(tj)Kitj(QWmlyl)KitJ(QWm2y2)
u; EF
WA Y Z/ leX27Zf)h(t)(%)“mt(QWmlyl)Kit(%mzw)
¢, 12 IT(5 + it) Ly (1 4 2it, x1x2) |

X1,X2 (ip)

X Uit(xll7 XI27 ml)Uit(Xll7 XIQ7 m2) dt

=T(my,ma,n)

N’ nm;
VRGN (/5 /mv<t2+m%y%+m5y;_2> ritgy
Vv Mm1mayiy2 miyimay2

S
+w(N) Z mg,ml,n c // 17 27rz(mga:2 mlxl)dxldxg,

ceNZ+ VY2 g

where:

® \1, X2 range through all ordered pairs of finite order Hecke characters with
X1X2 = w and whose conductors satisfy ¢y, ¢y, |N.
o Ln(s,x1X2) is the partzal L-function defined in (2.11).
o A\(x1, Xx2,it) = Z (dg) X1(dn)x2((5)n), where dy is the idele which
d|n
agrees with d at all places p|N and is 1 at all other places.
o (ip) runs through all sequences (ip)yn with

ordp(cy,) <ip < Np — ordp(ey, )

e \ is the Dirichlet character of modulus N1 = [] p™r attached to x;

p|N
ip<Np
as in (2.8).
e 4 is the Dirichlet character of modulus Ny = [] p™* attached to xo as
&%
n (2.8).

o z1 =1+ Y, 22 = To+ 1Yo,
o All other notation is given in Theorem 7.14 below.

Remark: The hypothesis that h be Paley-Wiener of order 12 arises from the fol-
lowing places. We need the inverse Selberg transform f., to be in C% in order
to apply Corollary 6.12, whose hypothesis stems from the restrictions in Lemma
6.9. By Proposition 3.6, we are only able to guarantee this if h € PW1'0. Further-
more, we needed z2h(iz) € PW1Y to prove the convergence of the cuspidal term.
As remarked there, assuming Weyl’s Law would render this step unnecessary. In
computing the main geometric term, we required V to be twice differentiable to
justify using Fourier inversion. For this it would be enough for f., to be in C? (see
Proposition 3.2), or for h to be Paley-Wiener of order m > 4 (see Proposition 8.16
below). We will discuss weakening the hypotheses in Section 8.

For the refined version of the KTF given below, we have multiplied each term by
%\/ﬁ, and we have used formula (3.17) for V(0). We have also expressed everything

in purely classical (non-adelic) terms, replacing the sum over pairs x1, x2 of Hecke
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characters of conductor dividing N by a sum over pairs X1, X2 of Dirichlet characters
of modulus N. Indeed, the two correspond bijectively by (2.8). Furthermore,
Ln(s,x1x2) = L(s, X1 X 5 2) by (2. 10) Lastly, we point out that by that fact that
X1p 1s unramified when ip = Np, X1 is induced (in the sense of (2.7)) from the
Dirichlet character x} of modulus N; attached to x; in the above theorem, and
likewise X2 is induced from 5.

THEOREM 7.14 (KTF). Let h(iz) € PW'2(C)ev® (see the remark above). Let
F be an orthogonal eigenbasis of T, for the space L3(N,w') of cusp forms of weight
0, chosen as in (4.25). Then for any positive integers my, ma, we have

An(Uj) @y (U5) Ay (05 h(t;
T (w)) amy (uj)am, (u;) — h(t;)

= s 2 cosh(rt;)

+ Z Z > A (X17X27lt)alt(X17X27m1)01t(X17X27m2)( )nh( )

- dt
1P, 12 1L(1 + 2it, X7 ' X2)[?

X1 X2 (ip)
= T (m1, mg,n)h(N)w' /mm_lj)%/_ h(t) tanh(wt) ¢ dt
_~_22'¢(N) Z Sur (M2, my;n;c) /Oo J2it<4ﬂ-\/m> h(t)t
™ —0o0o

c c cosh(mt)

ceNZ+

where:

$(N) = [SL2(Z) : To(N)] = N [T n(1 + 3)-
1

sdxd
e The Petersson norm is given by ||u;||* = o /F - |uj (z4iy) 2 < y'
0

o Foru; € F, Auj = (5 +t3)u; and Tyuy; = Agy(uj)u;.

1 if mimsa = b®n for some integer b| ged(my, ms)

0 otherwise.
Equivalently, T'(a1,a2,a3) € {0,1} is nonzero if and only if a;a;/ax is a
perfect square for all distinct i,j,k € {1,2,3}.

® X1, X2 range through all ordered pairs of Dirichlet characters modulo N
for which X1X2 = w' and whose conductors satisfy ¢5, ¢z, |N.

e (ip) runs through all sequences (ip)y N with

e T(my,mg,n) =

OI‘dp(C%Q) S ip S Ordp(N) - Ordp(cil)'

2 P L ;
° ||¢(Z-p)|| = H P+ H pr(p+1) H pr—l(erl).

&% 0<hy N, N
e X\ is the Dirichlet character mod Ny = [] p™* inducing X1 as in (2.7).
i
e \, is the Dirichlet character mod Ny = [[ p™» inducing Yo as in (2.7).
7‘2‘50
o \(X], X5, it) = Z (d—ng)it X1(d)x5(5). (This is the same as A(X1, X2, it)
d|n

since X1, X2 are induced from X\, x5 and (n, N) = 1. It is also the same
as (X1, X2, t) from the previous theorem, by (2.9).)
M =[x p'" is also a modulus for x;.
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X/ (c) dm .
o 0it(X1, Xa,m M1+21t Z 121t Z X'Q(d)e(m). The sum over d is
clm d€Z/MZ
also expressed in terms of the primitive character inducing x5 in (5.37).
—_— mgd + mld’
o Sulmamime)= Y Wde("ED),
d,d'€Z/cZ
dd’/=n
7.7. Classical derivation. When we take n = 1 in the above theorem, we
obtain the “classical” Kuznetsov formula

Ay (Uj) Ay (ug)  h(E;
> (u))am, (ug) _h(t))

[ 12 cosh(rt;)

u; EF

+ Z Z/ Ot X17X27m1)01t(X17X27m2)(m1 )Zth( )
i) 17 [ L(1 + 2it, X7 X2)[2

dt

X17X2 (ip)
0o

(7.32) = §(m17m2)w(N)w/<,/m1/m2)%/ h(t) tanh(wt) ¢ dt

—00

) 5 Selmamie) [, (VTR )

c c cosh(mt)

cENZT
Conversely, Theorem 7.14 can also be derived from (7.32). To see this, start by
choosing the orthogonal basis F to consist of Hecke eigenvectors with a;(u;) =
1. (Such a basis is easily constructed by a Gram-Schmidt procedure; cf. [KL1],
Lemma 3.10.) With this normalization, by (4.10), for all u; € F we have

(7.33) Aa(u))am, (ug) = Y w/(£) azma (uy).

3

£| ged(n,ma)

If we denote the classical formula (7.32) by CK(mq,mg), then the sum

(7.34) > W) CK(2mt, my)

£| ged(n,m1)

is precisely Theorem 7.14. The proof of this assertion involves proving four iden-
tities, one for each of the four terms (cuspidal, Eisenstein, main, Kloosterman) of
(7.32). Indeed each term can be summed individually over ¢ as in (7.34) to recover
the corresponding term in Theorem 7.14. For the cuspidal term, this is immediate
from (7.33). For the Kloosterman term, after summing over £, one applies a gener-
alization of Selberg’s identity for Kloosterman sums, given in (9.4) below, to obtain
the corresponding term in Theorem 7.14. For the main term, the desired identity
follows from

> Do ma (B = () YD ezt ma)

£|(n,m1) £|(n,my)

nml)

=T (m1, mg,n)w’ (/521

The manipulations required for the Eisenstein term are a bit more involved. The
goal is to prove that for any integers n, m prime to N,

(735) An(XllaXéalt)glt(xlpxlwm)mn = Z w ( )O—’Lt(X17X/27 722")(%)“
£|(n,m)
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Dividing both sides by ](V;Ti)m, using w'(f) = x4 (£)x5(¢), and simplifying what
remains, one reduces the problem to showing that

S)SLLLTESS xg<b>e<bﬁ"”;>

dln c|m b mod M
X1 / bmn
=2 > m LY el
£|(n,m) 7'| ZQ b mod M

Setting de = ¢r = a, it then suffices to show that for each divisor a|nm,

36 X @ X e = Y G0 Y b,

d|n,d|a, b mod M £|(m, ") Lla, b mod M
alm al g

PROPOSITION 7.15. Given almn as above, define
D(a) = {(d,¢)|dc = a,d|n, c|m}

and
D/(a) = {(67 7n)| br = a76|(n,m>’r‘7z_gb

( > ) a® — ( ) ) ad
(d’ C) = ( n: C’ (n,a)c) - ( nda ’ (n,a))
defines a bijection from D(a) to D'(a), with inverse

(nva‘)r a? _ (n7a) al
(E’T) = ( a ’(n,a)r) - ( I3 7(n7a)) :
The proof of the proposition is left to the reader. Using it, we see that the
left-hand side of (7.36) is equal to

> i) ¥ aode)

£|(m,n),L]a, b mod M

al ném

Then the map

n

Replacing b by bm (which is valid since
right-hand side of (7.36), as needed.

n
(n,a)

is prime to M), we obtain the






CHAPTER 8

Validity of the KTF for a broader class of h

We have shown that the Kuznetsov trace formula is valid for the restricted
class of functions h with h(iz) € PW12(C)¢"*". For certain applications it is useful
to allow for a wider class of functions. For example, the Gaussian h(t) = e /T’
has rapid decay for real ¢, but h(iz) is not Paley-Wiener of any order, due to faster

than exponential growth when z is real. Here we consider functions h satisfying:

h is even,
(8.1) h(t) is holomorphic in the region |Imt| < A,
h(t) < (1 + [t|)~® in the region |Imt| < A,

for positive real constants A and B.

THEOREM 8.1. If A, B are sufficiently large, then the KTF (Theorem 7.14) is
valid for all functions h satisfying (8.1).

Remarks: (1) We will not obtain the optimum values for A, B. Kuznetsov’s original
paper established the formula in the case N = 1 for any A > 1 and B > 2, [Ku].
According to [IK]| Theorem 16.3, these parameters work for any level N. This is
the range used by Selberg in his original work on the trace formula [Sel2]. Since,
as proven by Selberg, we have |Im(t)| < } for the cuspidal spectral parameters
t, it is plausible that A > i would suffice. This has been proven to be the case
when N = 1 by Yoshida, [Y]. However, allowing A < % results in poorer control
over the size of the Kloosterman term. See Proposition 8.24 below and the remarks

following it.

(2) Given the above theorem, one can use the following idea of Kuznetsov to show
that in fact B > 2 suffices. Briefly, suppose h satisfies (8.1) for some A sufficiently
large as in the theorem, and some B > 2. Choose a > 0 very small, but still large
enough that i < A. Define, for r € R,

ho(t) = _% (h(T Z %) (= 5)) - cosh(rr) cosh(rat)

o 7(r — at)) cosh(n(r + at))’

Then h,.(t) satisfies (8.1) for any B (it has exponential decay as |Re(t)| — 00), and
for A = 5-. Therefore if o is chosen suitably, the KTF is valid for h,(t) by the
theorem. In each term of this KTF, we integrate r over R and use the identity

which is valid for A analytic on |Im¢| < 5~ ([IK] Lemma 16.4, [Ku] (6.1)), to

conclude that the KTF is valid for A. It is not too hard to justify this process by

83
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showing that everything is absolutely convergent, using the fact that B > 2.

We prove Theorem 8.1 at the end of §8.3. We will make use of the KTF
already established for Paley-Wiener functions of sufficiently high order, and a
limiting procedure. Given h as in Theorem 8.1, let f be the corresponding function
on G(R)T, i.e. the inverse Selberg transform of h. It might not be smooth or
compactly supported modulo Z(R). In §8.2, we will define a family of compactly
supported C™ functions fr on G(R)™ for T' > 1 and some m > 0, such that fr — f
pointwise as T" — oco. We let hy € PW™(C)®V*® be the Selberg transform of fr.
The KTF holds for hy if m is sufficiently large, and we show that

TlEI;O(SpeC. side of KTF for hy) = Spec. side of KTF for h
and
lim (Geo. side of KTF for hr) = Geo. side of KTF for h,

T—o0
thus establishing the KTF for h.

We note that Finis, Lapid and Miiller have used a different limiting method
for GL(2), and (in large part) beyond, to extend Arthur’s trace formula to a space
of smooth functions allowing non-compact support even at nonarchimedean places
(IFL], [FLM]).

In §8.1, we extend the basic integral transforms of §3 to allow for non-compactly
supported functions. We then discuss the relationships between the various func-
tions f,V, @, h, and establish bounds for certain of their derivatives. In §8.2 - §8.3,
we define hr as in the above discussion, and apply a limiting process to the KTF
for h7. In the final two sections, we prove a needed auxiliary result, namely that for
a test function f = fo X fan with fg, Schwartz-Bruhat and f., bi-K.-invariant,
twice differentiable, and of mild polynomial decay, the operator Ro(f) is Hilbert-
Schmidt.

Notation. Throughout this section, all the constants implicit in < may depend
on A, B and h (and hence V', f, @ etc.) unless otherwise stated. The notation Cj
will denote a constant depending on ¢, A, B and h, and may have different values
in different places.

8.1. Preliminaries. We start by setting out some necessary trivialities.

PROPOSITION 8.2. Let I be an interval on the real line. Suppose f is a mea-
surable function on R x I with f(t,y) continuous in y for a.e. t € R. Suppose
|f(t,y)| < F(t) for some function F € L'(R). Then [g f(t,y)dt is a continuous
function of y € I.

PROOF. For any € # 0 with y +¢ € 1,

/R f(ty+ o)t~ /R £t y)dt = /R (F(ty +e) — ft.y)dt.

The integrand is bounded by 2F(t). By the dominated convergence theorem, the
integral goes to 0 as € — 0. Thus fR f(t,y)dt is a continuous function of y € I. O

PROPOSITION 8.3. Let I be an interval. Suppose f(t,y) is a measurable function
on R x I such that for a.e. t € R the partial derivative fy(t,y) exists and is
continuous in y. Suppose further that |f(t,y)| < Fo(t) a.e. and |f,(t,y)] < Fi(t)
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a.e. for some Fy, Fy € L'(R). Then [g f(t,y)dy and [g f,(t,y)dt are continuous

functions of y € I and
d/
ol RGO WA
o | rea= [ ey

(Here, we may view fy,(t,y) as a function on R by prescribing arbitrary values on
the measure 0 set of t for which the derivative is undefined.)

PROOF. The continuity of the integrals follows from the previous proposition.
Let yo € I be fixed. Because the following double integral is absolutely convergent,
we can apply Fubini’s theorem:

//fytfdtdf—/ yfy(tx)d:cdt
:/(f(ty) f(t,y0))dt = /ftydt—/ftyo

Differentiating with respect to y, the assertion follows by the fundamental theorem
of calculus. O

By induction, we have the following.
COROLLARY 8.4. Let I be an interval. Suppose f(t,y) is a measurable function

on R x I such that for k=0,1,...,¢:
(i) o f (¢ y exists and is continuous in y for a.e. t € R,

(i) there exists Fj, € L'(R) such that |m| < Fi(t) a.e.
Then d 2 fR f(t,y)dt is a continuous function of y € I, and

/f )dt = Aaggy)dt.

(We may view the integrand %yt;y) as a function on R by assigning artibarary

values on the measure O set for which the derivative is undefined.)

PROPOSITION 8.5. Let a,b and c be positive real numbers. Suppose f is a
continuous function on R satisfying f(x) <ap |x|™* for |z| > b. Then f(z) Kap,c
(c+ |z])~ for all x.

PROOF. It is easy to show that |z|~* < (c+]|z|)~® for |z| > b. By the continuity
of f, f(z) <1< (b4 )%+ |z|)~* for |z] < b. The proposition follows. O

PROPOSITION 8.6. Suppose f is a continuous function on an interval |a,b)
with a continuous derivative on (a,b). Suppose lim,_,,+ f'(x) = A. Then f has a
continuous deriative on [a,b) with f'(a) = A.

PROOF. By definition, f'(a) = lim M Since f is continuous at a, we
:E~>a
can apply L’Hospital’s rule, giving f'(a) = hm+ f'(z), as needed. O
r—a

PROPOSITION 8.7. Let £ > 1 be an integer, let I be an interval, and let g € C*(I)
be real-valued. Let J be an interval containing the image of g. Let f € C*(J). Then

f Z > Aaa £ g0)g (@) gl (1),

r=1 aj+ag+--+ap=~
£2a1>>ap>1

té
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where Aq, ... q,. are nonnegative integers independent of f,g.

r

ProoOF. Induction. O

PROPOSITION 8.8. Suppose ¢ is a function on R which is £-times continuously
differentiable, with ¢®) (£o00) = 0 and ¢*) € L*(R) fork =1,...,L. Then for such
k and real t # 0,

A 1
30)1 < g [ 169 @l

where ¢(t) = Jr ¢(y)e~*™ " dy is the Fourier transform of ¢.

PROOF. See Lemma 19.11 and Proposition 8.15 of [KL2]. O

V' revisited. We now re-examine the integral transforms of Section 3, without
the hypothesis of compact support. Let C"(G"//K) denote the set of bi-K -
invariant complex-valued functions with continuous m-th derivative. Let C™(R™*)Y
be the set of a : RT — C with continuous m-th derivative, satisfying a(y) =
a(y™').

For f € C"™(G"//Ks) and u > 0, we define

) yl/?
(32) R L G )
In the other direction,

a b a? + 0%+ + d?
(53 (e )=

PROPOSITION 8.9. For y € R*, the substitution
_ -1
u=y+y  —2

defines a linear injection: C™(RT)Y — O™ ([0,00)) when 3m’ < m + 1. Any
function in the image of the map is C™ on (0, 00).

PROOF. See Proposition 3.1. The proof given there does not actually use the
hypothesis of compact support. [l

The Harish-Chandra transform revisited. Given f € C™(G"//K ), its Harish-
Chandra transform is the function on R* defined by

i = [ ) ()

provided the integral is absolutely convergent. If V € C™ ([0, 00)) is the function
associated to f as above, then

Hf(y)z/RV(y—i—y_l—Q—&—xQ)dx.
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The Mellin transform revisited. Let ® be a measurable complex-valued function
on R*. Its Mellin transform is the function of C defined by

(M) = M2 = [~ ()

provided the integral is absolutely convergent. For example, starting with f €
C™(G"//Kw) with compact support or just sufficient decay, one can define ® =
Hf and h(t) = M ®. However, our interest here is to go in the other direction,
starting from h. Thus we shall need to consider conditions under which the in-
verse Mellin transform exists. Throughout this section, n denotes a complex-valued
function satisfying:

(8.4) {n(s) is a holomorphic function in A; < Res < A,

n(s) < (1+ |s|)~F in the same strip,
for some real numbers A; < Ay and B > 0.

ProPOSITION 8.10. Suppose B > 1 and o is a real number satisfying A1 < o <
Ag. Fory > 0, define

1 —s

(.5) Pol) = 5 [ sl s
T JRe s=c

The integral is absolutely convergent and independent of o. Therefore we can define
1

8.6 P(y) = — ~%ds.

(8.6) v) =5 - n(s)y *ds

Furthermore if Ay = —Ay and 1 is an even function, then ®(y) = ®(y~1).

PRrOOF. The absolute convergence of (8.5) follows from B > 1 and (8.4). Let
oo < o1 be two real numbers in the open interval (A1, A3). For o > 0, let T',, be
the rectangle with vertices o9 + «i, o1 &+ a, and counterclockwise orientation. By
Cauchy’s theorem, [ 7(s)yds = 0. By (8.4), f:gl n(o +ia)y~("Fds — 0 as
a — oo. It follows that ®, is independent of o.

Finally, suppose 7 is an even function. Letting o = 0 in (8.6),

1 1
-1y — B — 8 = — — = — - =
P(y )—2m. /iRn(S)y ds = 5— iRn( s)y / ds = ®(y).
0

PROPOSITION 8.11. Suppose B > 1 and fir s = 0 + i1 with Ay < 0 < Ay. Let
D be the function defined by (8.6). Then M®(s) is absolutely convergent and equal

to n(s).
PROOF. Write y = €*™. Then by (8.6),

1 . —2nvo ,—2mivt 1 —
(87 B =5 /R No -+ it)e eI = i (0),
where 7,(t) = n(o + it). Because B > 1, (8.4) shows that 7, € L'(R). Let
0 <r <min(As — 0,0 — A;). Then by Cauchy’s integral formula,

k! n(z)dz |dz| 1
(k) _R\=)PE
)= 0 /HH syt & /HH P+ 2B S T+ ]s])P

In order to remove the dependence on r in the estimates that follow, we take

r = fmin(4; — 0,0 — Ay).
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From the above, we see that ngk)(t) =n®) (o +it) € L' (R) and ngk)(ioo) =0.
By Proposition 8.8,

(.8) T (v) < Jo] 2 /R n(Oldt <o 02 (v £ 0).

Thus 7, € L'(R), so given s = o + it with o € (A1, A3), (8.7) gives

oo d e
/ By Y = / T ()ldv < co.
0 Yy R

This shows that M®(s) is absolutely convergent.
Because 1, is continuous and integrable, and 7, € L*(R), we may apply Fourier
inversion, giving:

’17(8) — 770(7—) — / ﬁ;(v)e%iwdv _ 271_/ q)(eQTrv)eZ‘/rvae%rim—dv
R R

:27r/ @(62”)62”(”+”)dv:/ @(y)ySd—y. O
R 0 Y

Relationship between h and V. Throughout this section we assume that h sat-
isfies (8.1). We take

n(s) = h(—is),
which satisfies (8.4) with A; = —A and A, = A.

PROPOSITION 8.12. Suppose B > 1, and o is a real number with |o| < A. For
y > 0, define
1
8.9 D(y) = — h(—is)y *ds.
(89) )= g7 [ hlisyds
Then ® belongs to C(RT)Y, is independent of o, and
M;:® = h(t)

for all complex numbers t with |Im(t)| < A. If we also define ®(0) = 0, then ® is
continuous on [0,00).

PrROOF. In view of Proposition 8.11, it only remains to verify the continuity of
® at y = 0. This will be done in greater generality in the next proposition. O

PROPOSITION 8.13. Suppose 0 < £ < min(B — 1, A) is an integer, and o is a
real number with |o| < A. Then the function ® defined in (8.9) has a continuous
(-th derivative on [0,00). In fact, fory > 0,

-1
1
8.10 %) :_/ ey ) it
(8.10) W) =50 e oes kl;[O( s — k) | h(—is)y E
The above integral is absolutely convergent and independent of o. For y = 0,
1 (0) = 0. Lastly,
(8.11) @(l)(y) <o (1+y)~At

PROOF. Suppose 0 < j < /¢ < B —1, and write s = o + it. We have

(ﬁ(_s . k)> h(—is) olsl + k) _ , THZG(A+ 1 +R)

1
o SOETEE SS9 e

(8.12)
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Letting &;(s) = (Hi;é(—s - k)) h(—is), we see from the first inequality in (8.12)
that &;(s) < W, so it satisfies (8.1) with B replaced by B —j > 1. By
Proposition 8.10, the right-hand side of (8.10) is absolutely convergent and inde-
pendent of o.

Given y > 0, let yo = y/2, y1 = 2y. Then y € I = [yo,y1]. Define Y = yo
ifo+5>0Y =y if c+j <0. Then by (8.12), & (s)y* 7| < Fj(t), where

F;(t) = CJWY =7 < (1 4+ |t|)~B=9) is integrable since B — j > 1.

Thus by Corollary 8.4,

d’ 1 dly=s
dy* ) 2mi /Res=ah( is) dy* as,

where the integral is continuous in y > 0. This proves (8.10). Furthermore, taking
27
y=e-,

1 67271' o+0)v )
— Eo(s)y s = 7/ E(o + it)e 2™ ¢,
2T R

2mi Re s=0

Choose ¢ such that —A < ¢ < —£. Then
dt 727r(a+é
lim —®(y) = lim 7/ &0 +it)e 2™t =

y—0+ dye v——00

The ¢-differentiability of ®(y) and the continuity of the ¢-th derivative at y = 0
now follow by Proposition 8.6.
To obtain the bound (8.11), first suppose y > 0. Then

-1
(—s— k)> h(—is)y ¢
AGS:U (]CH—O

since B—/ > 1. The implied constant is independent of o, so we can let 0 — A~ to
obtain ®®)(y) <« y~4~¢. The desired bound then follows by Proposition 8.5. [

dt
—o—/4 —o—4
|ds| <ey / A+ B~ <ey )

For u > 0, define

(8.13) Q(u) = 2(y),

where y = y(u) = 2Hut/dutu V24“+“2 > 0. Note that in the other direction, u = y+y~!—
PROPOSITION 8.14. For y(u) as above, and any nonnegative integer £,

yOw) < ut foru>1.

, 1 2+u
w==[14+ ——— | <1,
v 2 uw(4 + u)

PRrROOF. We have

2
" _ -3 -1
Y (u) = (u(4+u))3/2<<u <Lu
For ¢ > 3,
-2 ; ;
0 —2\ diu=3/? d' =2 (u 4 4)~3/2 e _
y(Z)(u) - _22< i ) du’ dut—2-1 <uTh T,

1=0

where (’Z) is the binomial coefficient. O



90 A. KNIGHTLY AND C. LI

PROPOSITION 8.15. The function Q(u) is continuous on [0,00). Suppose 0 <
¢ < min(B —1,A). Then Q(u) is £-times continuously differentiable on the open
interval (0,00), where it satisfies

(8.14) QU (u) < (1+u)~ 7

Remark: In Corollary 8.18 below, we will show that if £ < min(B — 2, A — 1), then
the above assertions also hold at the endpoint v = 0.

PROOF. The continuity of @Q(u) = ®(y) is immediate from that of ® and y(u).
Because ¢ < min(B —1, A), ® has a continuous ¢-th derivative by Proposition 8.13.
By Proposition 8.9, @ has a continuous ¢-th derivative on (0, 00).

When ¢ = 0, the bound (8.14) is immediate from (8.11) and the fact that
y(u) ~ u. Suppose £ > 0. By Proposition 8.7, (8.11), and Proposition 8.14, for
u > 1 we have

dZ dZ ¢
Q) = 20 < Y 3 D)y () y ()

du dut B
r=1 aj+tag+---Far=~£
>ar> o >ar>1
¢
<X X byl AT A
r=1 ajtag+-+ar=~£
>ar>>ar>1
since y(u) ~ u. The bound (8.14) follows for all v > 0 by Proposition 8.5. O

PROPOSITION 8.16. Suppose B > 2 and A > 1. Then the function

1
(8.15) V(u) = ——/ Q' (u+ w?)dw

TJR
is absolutely convergent and continuous for uw > 0. In fact, for any nonnegative
integer £ < min(B — 2, A — 1), V(u) has a continuous £-th derivative given by

(8.16) VO @) = -1 / QU (u + w?)dw,
R

T
the integral converging absolutely. Furthermore, for all u > 0,
(8.17) VO ) <, (1+u) A3,

Remark: When u = 0, the integrands of (8.15) and (8.16) may be undefined at
w = 0, but the integrals still make sense.

PROOF. Suppose 0 < k < min(B —2,A —1). Then k+ 1 < min(B — 1, A), so
by Proposition 8.15, @ is (k + 1)-times continuously differentiable on (0, c0), and

(818) QMY (u+w?)| < Cp(1 +u+w?)~AF 1 < O (1 + w?) AR

for u > 0, where C}, is a positive constant. Now apply Corollary 8.4 with y = u,
t=w, f(t,y) = Q' (u+w?), and Fj(w) equal to the right-hand side of (8.18). The
equality (8.16) and its continuity and absolute convergence follow.
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To obtain the bound (8.17), we observe that
1
|V(‘f)(u)| < _/ |Q(£+l)(U—|—w2)\dw <y / (1+u+w2)_A‘e‘1dw

TJR R

= @+ [ (@)

R
— (1) At / (14 w?) A=l < (14 )443, 0
R

PROPOSITION 8.17. Suppose B > 2 and A > 1. Then for all u > 0,

(8.19) / V(u+22)dz = Q(u),
R
the integral converging absolutely.

ProoOF. Under the given hypothesis, we can take £ =1 in (8.14) to give

//|Q’(u+x2+w2)|dwdx <<4/ /(1+“+$2+w2)_‘4_1dwdx
RJR RJR

oo 2m e
:/ / (1+u+7r2) A"y dodr = 27r/ (1+u+r?) " lrdr < 0.
o Jo 0

(The bound for the integrand we applied is valid whenever u + 22 +w? > 0, i.e. for
almost all z,w.) Therefore the integral in (8.19) is absolutely convergent. It defines

a continuous function of u > 0 by Proposition 8.2, since V (u+22) < (1422)~ 42
by (8.17), the latter function being integrable. Furthermore, assuming u > 0,

/V(u+x2)dx=—l/ / Q' (u+ z* + w?)dwdz
R TJrJ/R

(8.20) _ 9 /Om Q (u+r)rdr = —Qu+1?)|/— = Qu).

In the last step we used (8.14) with £ = 0. This proves (8.19) for u > 0. Our use of
the fundamental theorem of calculus in (8.20) may not be valid when v = 0, due to
a possible discontinuity of the integrand at » = 0 in that case. However, because
both sides of the proposed equality (8.19) are continuous functions of u > 0 which
agree for all u > 0, they are equal when u = 0 as well. (]

COROLLARY 8.18. If ¢ < min(B — 2, A — 1), then Q € C*([0,00)), and (8.14)
holds for all u > 0.

PROOF. By (8.17), VIO(1 + u + 2?) < (1 +2?)~4~*=3. Since the latter is
integrable over R, we can differentiate (8.19) under the integral sign (cf. Corollary
8.4) to obtain the result. O

PROPOSITION 8.19. Suppose B > 2 and A > 1. Let f be the function on G(RT)
corresponding to V as in (8.3). Then for |Imt| < A, the Selberg transform of f is
absolutely convergent and equal to h:

(SH(it) = MuHf = h(t).

PrOOF. By Proposition 8.17, (3.10), and (8.13), (Hf)(y) = Q(u) = ®(y). By
Proposition 8.12, M;;® = h(t). O
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8.2. Smooth truncation. In this section, we suppose h(t) satisfies (8.1) for
some B > 2 and A > 1, and continue with the same notation from the previous
section. We will need to truncate V in a way that preserves its differentiability.
This requires a smooth bump function.

Let p: R — [0,1] be a smooth function such that:

(i) p(x) =0 for z <0,
(ii) p(z) =1 for x > 1.

For T > 0, define

1 if 2| < T,
pr() =S p(T+1—|z|) T <|z|<T+1,
0 if 2| > T + 1.

Then pr is a smooth bump function with support in [—(T 4+ 1), T + 1]. Letting
pr = 1 — pr, the graphs of pr and pr are given below:

y = pr(z) y = pr(z)

/ N ~N___ 7

—(T +1) T+1 —T T

For j > 1, pgf)(:n) =0 unless T < |z| < T+ 1. Thus p(jf) <5 Xir,r+1) on Rxo,
where x; denotes the characteristic function of the set I, and by construction the
implied constant is independent of T'.

For u > 0, define

Vr(u) = V(u)pr(log(1 + u)).
Define
Vip(u) = V(u) = Vip(u) = V(u)pr (log(1 + u)).

Let fr (resp. fT) be the bi-K-invariant function on G(R)™ corresponding to Vr
(resp. ‘N/T) as in (8.3). Because Vp is compactly supported, the support of fr is
compact modulo the center.

Given the functions ®(y) = Q(u) attached to h as in the previous section, we
let ®7(y), (resp. ®r(y)) be the Harish-Chandra transform of fr (resp. fr), and
set Qr(u) = ®r(y) and Qr(u) = Br(y), where u = y + y~ ! — 2. Lastly, we define
hr(t) (resp. hp(t)) to be the Selberg transform of fr (resp. fr) as in Proposition
8.19. By the linearity of the various integral transforms, in each case we have the
relation ﬁT =0 —0Op.

Suppose ¢ < min(B — 2, A — 1), so that by Proposition 8.16, V € C*([0, 00)).
Then Vi € C%(]0,)), so by Proposition 3.2, fr € C4{(G*//K), and by Proposi-
tion 3.6, hy € PW*(C)even,

PROPOSITION 8.20. Suppose B > 2, A > 1, and 0 < { < min(B — 2,4 —1).
Then for u > 0,

(8.21) V9 (u) <o (14 0) =473 x 700y (log(1 + w)).
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Proor. For j > 1, Proposition 8.7 gives

d r —@1—Ga——an
s pr(log(1 + ) DY X Aot w1y

r=1 ajtag+---+ar=j
rzaj>ag---2ar>1

< (14 u) 7 x a1 (log(1 + w)).
By the bound (8.17), for u > 0 we have
- d’ :
V70 = GV 07 og(1 ) = 32 () i ot )
e j
<y (1+“)_A_é_%X[T,oo)(log(1+u))+Z(1+U)_A_é+j_% (14u) X711y (log(14u))
=1

A—l—

<o (1+u) ™ 3y o) (log(1 + ). O

ProPOSITION 8.21. Suppose B > 2, A > 1. Then for u >0,

@T(u):/RVT(u—i—wz)dw.

In fact, if 0 <4 < min(B —2,A— 1), then @T has a continuous £-th derivative on
[0,00) given by

(8.22) 0¥ (u / VA9 (u 4 w?)

the integral being absolutely convergent and continuous. Further,
‘ By (u)

(8.23) 0F () = = aer

where By r(u) <, 1 is a nonzero measurable function with %in%) Eyr(u) = 0.
—

PROOF. Let Cy > 0 be the implied constant in (8.21). Then for 0 < k < ¢,
V(w4 w?) < Cr(1 +u+w?) 4753 < Cp(1 4 w?) A7k 3,

Letting Fy(w) denote the latter expression, we apply Corollary 8.4 to conclude that
(8.22) holds and is absolutely convergent and continuous.
It remains to establish the bound (8.23). By the previous proposition,

‘/ vqge)(quwz)dw‘ S/ C’zx[Tm)(log(l+u+w2))(1+u+w2)*‘4*f*%dw

R R

= (1 +U)_A_€_%Ce/ X(700) (08(1 + 1+ w?)) (1 + (1 +u) " 3w)?) =4~ 5 du
R

— (14w, / Xty (l0g(1 4w + (1 + wpw?))(1 + w?) A~ dw.
R

Let
Eer(u) = Cé/ ooy (log(1 + u+ (1 + ww?)) (1 +w?) A~ Hdu,

Note that

|EZ,T(u>\§cg/<1+w> A3 gy < oo
R
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By the dominated convergence theorem, Tlim E;r(u) = 0. This completes the
—00
proof. O

COROLLARY 8.22. Suppose B > 2, A > 1, and 0 < ¢ < min(B — 2, A — 1).
Then for v € R we have

A 5 om 27 Eor(lv))
T —2mv _ 9)| <« )
d’UZQT(e te ) — (627'r'u+6727'r’v)14’

where Epp(Jv]) < 1 is a nonzero measurable function with Tlim Err(jv)) =0
—00

PROOF. When £ = 0, the assertion is immediate from (8.23), taking Eo 7(|v|) =
CoEor(e*™ + e=2™ — 2) for a sufficiently large constant Cj. Suppose now that
¢ > 0. Using Proposition 8.7 and the fact that dd;i (2™ +e 20 _2) &; €2V e 2T,
we have

TQT(QQTU"’G <<£ Z Q(T) 27rv+67277v 72) Z (627rv +6727r'u)r.

a1+ag+ - tar=t
£2a1>>ap>1

By the bound (8.23), this is

rT 27rv + 672771) _ 2)(62771) + 6727rv)r ZT 1Er7 ( 27mv + 6—271'11 _ 2)
< Z 6271'11 + e—2mv _ 1)A+r (62771) + e—27rv)A :

Thus we can take Ep7(|v]) = Cp S20_, Epp(€2™ +e72™ —2) for a sufficiently large
constant Cj. O

PROPOSITION 8.23. Suppose B >2, A>1, and 0 <{ < min(B—2,A—1). Let
0 < A" < A. Then there exists a positive real number g1 such that for | Imt| < A',

\hp(t)| < and lim & = 0.
T—o0

(1+ |t\)
Proor. Write t = x + 48 with |3| < A’. Then

ET(t) = Mit‘f)T = 277/ @T(eQ’”’ 42T _ 2)627Titvdv
R

— 271./ @T(EQﬂ'v + 6—2771) _ 2)6_2ﬂv662ﬂmmd’0.
R
Since this is a Fourier transform, we can bound it using Proposition 8.8. First, by
the above Corollary,

dl A v —27Tv —27v
W(QT(GQ +€ 2 —2)6 2 ﬁ)

14
— Z ( ) 27Tﬂ e i —27rv[3ddZQT(627r'u +e—27rv _ 2)

=

é ~
/ E; d
<y eQTrAUZ ( 7T(|v|) v )

— 627rv+6—27'rv)A
i=

Let Cy be the implied constant in the above inequality.
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By Proposition 8.8, for || = |Re(t)| > 1,

d[

W(@T(GQTH) + 6—271"0 _ 2)6—271'1)ﬁ) d’l).

|hT()|—W/R

Since 1|+—||t‘ < W |z| 71 4+ 1 + || 7Y 8] < 2 + A, the above is

< (2+A Z/ 27rA UEZT |'U|)
( + ‘t| 27‘[’ 9. \0 6271'11 + e—2‘n’v)A ’

which converges since A’ < A. On the other hand, if |z| = |Re(t)| < 1, then

T+t <1+z|+]8 <2+ A, s01 < AL

)
(trjyer and

‘?LT(t)‘ S 271'/ |éT(e27T'U + 6*27\'1) _ 2)|€72ﬂ-vﬂd’l}
R

2m(2 4 A)¢ / e B 1 (|o])dv

- (1 + ‘t|)£ R (6271'1) +e—27rv)A :
Hence if we define
T /’U 7 Z iy v
Eor = 27r(2+A)Z/ e Eyr(lohdv 2+A ‘ Z/ ™A By ([v])do
) R (62ﬂv+e—2w1))A R e2wv+e—27rv)A’

1=

then |hr(t)| < (1+W

Using E; 7(Jv]) <¢ 1, by the dominated convergence theorem we have

for all ¢ in the strip |Im(¢)| < A’, as needed.

2w A'v

. lim Eor(|v))dv
1 — 97(2 A ¢ € T—oo 40, T
TI_I;I;O 8Z’T 7T( + ) /R (627r'u + 672771))14

G2+ A) ¢ /eQﬂA/vhmT%@E"’T(M)dv:0. 0
R

(271')2 — (6271'1) + 6727rv)A

8.3. Comparing the KTF for i and hp. We set the following notation for
the various terms in the KTF, together with their absolute value counterparts (see
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Theorem 7.14 for notation):

Specy (h) = Z (1) am, (u)am, (u;) b))

cF [ cosh(7t;)
An () G, (W), (ug)  h(t5)
S eca h — n\*j mi J ma J J
pect(h) = 3 s 2 cosh(rt;)
u]‘G}-
Aa(X1X5,0) 05t (X1, X5m1)0ie (X X5, m2) (k) h(t)
Specy(h Z Z Toop P LT 20T P dt,
X17X2 (Zp)
‘)\n(Xlllezvit)o'it(X’17X/27m1)0'it(X/1:X/zsm2)(::;)”h(t)l
Specs (h Z Z DI L1206 5155 D2 dt,
X17X2 (ip)

Geoy (h) = T(my, ma, n)p(N)w' (/22 7”1“ 7r2 / h(t) tanh(rt) t dt,

(/5

1

Geof (h) = T'(m1, ma,n)i(N) —[ |h(t) tanh(mt) t| dt,

)

o 211/)(N) Sw/(mQ,ml;n; C) o Am/amims h(t) t
Geoa(h) = Z c [oo Jase ( ¢ ) cosh(rt) at,
ceENZ+

apy  20(N) |Sw (m2, m1;n; )| [ anyammg | h(t) 1

Geoa(h) = Z c . Jait ( c ) cosh(rt) dt.

ceENZ+
PROPOSITION 8.24. Suppose h satisfies (8.1) for some A > } and B > 2

Then: (i) Specs(h) < oo, (ii) Geo‘f(h) < 00, and (i) Geog(h) < 00.

Remarks: (1) Allowing + < A < 1 rather than A > 1 comes at a price, namely,
the Kloosterman term may no longer be O(N¢) (which holds when A > 1) but

2
instead only O(Nz~9) for any 0 < § < 2(A — ).

(2) Tt is known that Specj(h) < oo under the above conditions as well. See the
remark after Proposition 7.5, where we explain why B > 3 suffices.

PRrOOF. The proof of assertion (i) follows the same outline as that of Prop
7.6, although Lemma 7.5 is not needed since Specj(h) does not involve Bessel
functions. One obtains an estimate like (7.16), but without the factor of (1 +2|t])?,
so that B > 1 suffices. The holomorphy of h is not needed here, so any value of
A is allowable. Assertion (ii) is trivial since h(t) is integrable and |tanh(wt)| < 1.
Assertion (iii) follows from the proof of Prop 7.11. It requires A > i and B > 2.
At the end of the proof, one can take oo = } +& < min(4, 3) to obtain an exponent
of 1 + 2¢ in place of 1 — ¢ in (7.28). Then in place of (7.29), for any & > 0 we can
obtain the bound

; () N@ENINT 7(c)
< YP(N)e, Z clt2e < N1t2e Z cl+2e
ceNZ+ cEZT

= O(Nzte'~2),

This proves the proposition. The bound asserted in the remark follows upon ob-

serving that § = 2¢ — &’ can assume any positive number less than 2(A — ;) when

A<l O
2
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PROPOSITION 8.25. Suppose £ > 12 is an integer for which
(8.24) Spec{(r¢) < oo,
where 7¢(t) = L7, Let B> (+2 and A > {+1 be real constants. Then for any

(1+[N)*
function h satisfying (8.1) with these values, the KTF is valid:

Spec, (h) + Specy(h) = Geoy (h) + Geoa(h).

Proor. Using the fact (Proposition 4.7) that all of the spectral parameters of
L3(N,w') satisfy | Im(t;)| < %, we apply Proposition 8.23 with § < A’ < A, giving
(8.25) Spec (h — hr) = Spec (hr) < &1 Spect (r¢)
for ry as in (8.24). Noting that hp(iz) € PW*(C)®Ve" with £ > 12 (see the discussion
just before Proposition 8.20), Proposition 7.5 gives Spec{ (hr) < oco. Thus by (8.25),

Spec?(h) = Spect(hr + hr) < Spect (hr) + Spect (hr) < oo.

Hence Spec, (h) exists. Because Tlim & — 0, using (8.25) we have
—00

lim | Spec, (h) — Spec, (hr)| = lim |Spec,(hr)| < lim Speci(hr) = 0.
T— o0 T—o0 T—o0
Hence
lim Spec, (hr) = Spec, (h).
T—o00
Now let X denote Specs, Geo{, or Geoj. Then by Proposition 8.23,
X(ET) S ELTX(Tz).

Noting that r, < hy, where the function hy = W satisfies (8.1) with A =1
and B = ¢ > 2, we conclude from Proposition 8.24 that the above expression is

finite. By the same reasoning as for Spec,, we see that X (h) exists, and is equal to
Tlim X (hr). Because the KTF is valid for hr, it follows that
— 00

Geoq (h) + Geoa(h) = Tlim (Geoy (hr) + Geoa(hr))
—00
= Tlgn (Specy (hr) + Specy(h1)) = Specy (h) + Specy (h).
This completes the proof. O

PrROOF OF THEOREM 8.1. The theorem follows immediately by the fact that
one can take £ = 12 in Proposition 8.25. See the remark after Proposition 7.5, or
for a self-contained proof of this fact, see Proposition 8.34 below. (]

8.4. Ro(f) for f not smooth or compactly supported. In this section
and the next, f will denote a function on G(A), rather than on G(R)". The
purpose of these sections is to prove that Ry(f) is a Hilbert-Schmidt operator
under certain mild assumptions on f. See Proposition 8.31. The discussion that
follows is independent of the material in the previous sections. In particular, we do
not assume (8.1) or equivalent bounds unless explicitly stated.

Throughout this section let f = f, X fan be a complex-valued function on
G(A), with fo bi-K-invariant, supported on G(R)*, and satisfying

a b (ad — be)*/?
(8.26) foo((c d))<< (a2 + b2 + c2 + d? + 2(ad — bc))/?
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for some a > 2. Here a plays the role of the weight k in §18-19 of [KL2]. The
above is equivalent to

1
(u+4)a/2’
where V is the function attached to f in (8.2). We do not assume that fu
is smooth, although eventually we will require it to be twice differentiable. We
assume that fg, is locally constant and compactly supported modulo Z(Agy), and

that f(zg9) = w(z)f(g) for all z € Z(A) and g € G(A). In fact, we shall assume
that

(828) Supp(fﬁn) - Z(Aﬁn)K,(sK/

(8.27) V(u) <«

~

for some & € M>(Z) and some open compact subgroup K’ C Kg, under which fg,
is bi-invariant. This entails no loss of generality, since any function fg, as described
above (8.28) is a finite linear combination of functions as in (8.28).

PROPOSITION 8.26. For f as above, f € LY(G(A),w) for all ¢ > 1.

PROOF. Let fo((2Y) denote the right-hand side of (8.26). As a function of
G(R), it is bi-K-invariant. Indeed, the right or left action of K on the space
of matrices M>(R) = R* is unitary, so it preserves the norm a? + b + ¢ + d2.
Therefore it is convenient to integrate using the Cartan decomposition (3.2). For
p=14> %,wehave

L Aoy < [ A@Prag < [ ("7 ) - e
G(A) G(R) 1
(see e.g. the integration formulas (7.27) and (7.23) of [KL2]). The latter integral

is
oo 1—t2 > 1
= / —( ) dt = / —du < o0,
1 (T4 2)pe 4 UPY
sincepz%anda>2. (]

By the above proposition, f € L*(G(A),w). Therefore it defines an operator
R(f) on L?(w), given by the kernel

K(g1,92) = Z F(91 'v92)-
7€G(Q)

We will work with Arthur’s truncated kernel K7 (gy,g2), defined as follows. For
T >0, let 7 : G(A) — {0, 1} be the characteristic function of the set of g € G(A)
with height H(g) > T. Then

(8.29)
K'(g1,90) = K(g1,92) — Y, Y, ( f(gflumng)dn) 72(0g2)
N(A)

SEB(Q\G(Q) neM(Q)
_ -1
= E flg1 vg2) — E E (
VETQ(Q) 5€B(Q\G(Q) eM(Q)

This is a function on G(A) x G(A), but it is not hard to see that it is well-defined
on (B(Q\G(A)) x (G(Q\G(A)).

flor 1un592)dn) 77(3g2).

N(A)



8. VALIDITY OF THE KTF FOR A BROADER CLASS OF h 99

PROPOSITION 8.27. For all g1,g2 € G(A), KT (g1, 92) is absolutely convergent,
i.€.

S el Y S u/}A)UTgllunﬁggﬂdnﬁ&(5g2)<100

V€T (Q) SEB(Q\G(Q) neM(Q)
Furthermore, the above is bounded on compact subsets of G(A) x G(A).

ProoF. By Proposition 18.4 of [KL2] and the discussion following its proof,
the sum over « is convergent, and in fact continuous as a function of (g1, g2), so the
assertions hold for this piece of the function. For the same reason,
the sum }° >, cn(q) |f (g7 ' um/ndgs)| converges to a continuous function of n €
N(Q)\N(A). Therefore it is integrable over the compact set N(Q)\N(A), i.e.

/ Z Z |f (g7 tun/ndgs)|dn = Z |f (g7t umdge)|dn < oo.
N w

(Q\N(A) b n'eN(Q) N(A)

By Lemma 17.1 of [KL2], 74(dg2) # 0 for at most one 6 € B(Q)\G(Q). In fact,
since KT is left G(Q)-invariant as a function of g, we can assume that go lies in
a fixed fundamental domain for G(Q)\G(A), so the set of § that contribute to the
sum is finite and independent of go ([KL2], Proposition 17.2). The first assertion
of the proposition now follows immediately. From the fact that the expression is
a finite sum of functions of (g1, ¢2) € G(Q) x G(A), each of which is a product of
a continuous function with a characteristic function, we see that it is bounded on
compact subsets. ([l

Let Ko ) denote the set of matrices ( %% $9) with 6 € [0, 7). Then

—sinf cos 6

det | (1 =z 1/2
F:{(O 1><y y1/2>k|xe[—%,%]7y>0,m2+y221,k€K[O),T)}

is a fundamental domain in SLy(R) for the quotient SLy(Z)\ SLa(R). This means
that the projection F' — SLy(Z)\ SLo(R) is surjective, and injective except on a set
of measure zero. The set Z(R)™" F is then a fundamental domain for SLy(Z)\G(R)™",
and it follows (from strong approximation for G(A) and the “divorce theorem” on
page 101 of [KL2]) that the set
§=ZR)"F x Kg,
is a fundamental domain in G(A) for G(Q)\G(A). The subset
§ =Fx Kﬁn

contains a fundamental domain for Z(A)G(Q)\G(A), and can be used as a domain
of integration for the latter quotient ([KL2], Corollary 7.44). Let L?(F,w) be the
Hilbert space of measurable functions ¢ : § — C such that

o ¢(z9) = w(z)p(g) for all g € F and z € Z(A)NF = Z(R)T x Z*,
o 19l = [ lolo)Pdg < .

LEMMA 8.28. Let § € My(Z) be as in (8.28), and define D € ZT by DZ =
(det 0)Z. Suppose
Flor'n(§1)g2) #0

for some g1,92 € §, un € M(Q), and t € A. Then ta, € %2 and | € Z(Q)(a d)
for integers a,d > 0 with ad = D.
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Proor. Consider the finite part fa,(ky 'p() = )ks) # 0. By (8.28), there
exists B € Af, such that
det 1 € B>DZ*.
By strong approximation for the ideles ([KL2], Prop. 5.10), A}, = Q*i*, SO
B =rB for some r € Q* and B’ € Z*. Therefore
r~2detpu € DZ* N Q*={D,-D}.
Writing 7'y = (* ) € M(Q), we have ad = £D. Replacing r by —r if necessary,
we can assume that a > 0. Now k:fl(“ d)((l) tfli" )k‘g € Supp(fsn), and since its
determinant belongs to Dz*7 we see that its Z(Ag,) component as in (8.28) must
belong to Z*. It follows that eyt (@t Yy € M;(Z), and hence (gatin) e My (Z).
This means that a,d € Z and tg, € %2 - %2 Finally, the fact that f. is
supported in G(R)* implies ad > 0, so ad = D. O

PROPOSITION 8.29. Let f be as described at the beginning of this section, and
suppose in addition that f is twice continuously differentiable. Let V' be the func-
tion on [0,00) attached to foo as in (8.2). Suppose there exists € > 0 such that for
all u> 0,

(8'30) V”(u) < (1 +u)73/275.

(The bound on V (u) is already a consequence of (8.27).) Then

(8'31) HKTH§><G(Q)\G(A) = /_/_ _ |KT(glag2)‘2d92d91 < 00,
§ JGQI\G(A)

or equivalently,

{V(u), V'(u) < (1+u)"1¢

K72 = [ 1K @10 Pdgaden < .
$JT
Remark: We do not assume that V' is differentiable at the endpoint u = 0.

PROOF. The proof is somewhat involved and will be given in the next subsec-
tion. It basically follows §19 of [KL2]. O

Under the hypotheses of the above proposition, we can define a map Tk :
L?(w) — L%(F,w) by

Trrd(g1) = / K" (g1, 92)¢(g2)dgo.

GQ\G(A)

Let r: L?(F,w) — L?(w) be the map defined by 7¢(G(Q)g) = ¢(g) for a.e. g € .
(The set of points g € § for which ¢(g) is not uniquely determined by G(Q)g has
measure 0.) Because § is a fundamental domain for G(Q)\G(A), the map r is an
isomorphism. By identifying the two spaces in this way, we can abuse terminology
and refer to Txr as an operator on L?(w). For future reference, we let L2(F,w) be
the preimage of L3(w) under 7.

COROLLARY 8.30. The map Tgr : L*(w) — L*(F,w) = L*(w) is a Hilbert-
Schmidt operator. The Hilbert-Schmidt norm || Tr||% g is equal to (8.31).

PRrROOF. This is a consequence of (8.31). (See [RS] Theorem VI1.23). O
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The next proposition shows that Txr coincides with R(f) on the cuspidal
subspace, and it then follows from Corollary 8.30 that Ry (f) is Hilbert-Schmidt.

ProprosITION 8.31. Suppose the hypotheses of Proposition 8.29 are satisfied.
Then Trr|p2(w) = R(f)|r2w) = Ro(f). As a result, the operator Ro(f) is Hilbert-
Schmidt.

PROOF. Let ¢ € L3(w) and g; € §. Then
R(Polo) = [ Klo192)0(02)doe
G(QN\G(A)

where the integral converges absolutely since f € L'(@) (cf. (10.7) of [KL2]). Thus
by the linearity of integration, Txr¢(g1) is equal to

ripw) - [ X % ([ it 7 Gmd
N(A)

Q1 Ga) SEBQ\G(Q) ke (Q)

It suffices to show that the second term vanishes. At the end of the proof, we will
verify that it is absolutely convergent, so we can rearrange the sums and integrals.
Granting this for the moment, by the left G(Q)-invariance of ¢, the second term is

(8.32) / > > (g1 undgs)dn ¢(3gs) T+ (892)dgs

GANGA) s5cB(QN\G(Q) nerr(Q) Y VA

/ £(97 png2)dn ¢ (g2) e (g2)dg
BQ\T(A) , a7 Y V@A)

flg1 " unn’g2)dn ¢(n/g2) 7 (0’ g2)dn/ dgs

/E(Q)N(A)\a(A) /N(Q)\N(A) wedr(Q) Y N@&)

- / / Z f(g;lﬂngg)dn ¢(n/gg)TT(92)dn/dg2
B(Q)N(A)\G(A) J N(Q)\N(A)

peM(Q) ¥ NA)
/B(Q)N(A)\G(A)

This vanishes because ¢ is cuspidal, and hence Txr$ = R(f)¢ as needed.
It remains to prove the absolute convergence. By Proposition 8.27,

Tp(02) = > > /N (A)If(gf tpmégs)|dnTr(8g2)

SEB(Q\G(Q) neM(Q)

F (g7 pmga)dn ( / ¢(n’gQ>dn’) - (02)dgs.
N(A) N(Q)\N(A)

neM(Q)

is convergent, and bounded on compact sets. We will show that it is square-
integrable (and in fact bounded) as a function of go € G(Q)\G(A). Partition
the fundamental domain § as

(8.33) §=3r USr
where §r = {g € §|H(g) > T}, and Fr is its complement. Correspondingly, we
set §=Fru %T. Clearly %T is compact. In particular, ®,, is square integrable

over §r.
For g € §1, 77(dg2) # 0 only for 6 =1 (see e.g. [KL2], Lemma 17.1), so

Dyr(g) = / S meldn (92 € 5)

nEM(Q)
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1/2
For i = 1,2, write ¢g; = (1 f”l’)(y ,1/2)7"1- X k; for x; € R,y; > 0,r; € Ko, and
Y;

k; € Kgn. By Lemma 8.28,

Dy, (92) Z /N

a|D,a>0, (R)
ad=D

ol ("o Dl [ k7 (% 4 ko),
N(2)
where N(%Z) = {(§ )|t € %2} The finite part is obviously bounded by

meas(]lJZ) D. For the infinite part, we refer ahead to the bound (8.38) in
the next section (the proof there for f works just as well for |f|), by which for any
given € > 0,

(dy1y2)% (ylyg)%
Dy, (92) < : 1 e e
adz=:D (G2 +oi -1zt (248 —1)ste

It follows that ®,, is square-integrable on the finite measure space &1, and hence
®,, € L*(3), or equivalently, ®, € L*(G(Q)\G(A)).
Therefore by Cauchy-Schwarz, for any ¢ € L?(w),

/ <I>g1(g)|¢(g)|dgg( / %1(9)2@)1/2( / |¢(9)|2d9)1/2<oo.

G(Q\G(A) G(Q\G(A)

This proves that (8.32) is absolutely convergent. O

COROLLARY 8.32 (Theorem 6.4). Suppose f = foo X fan € CI"(G(A),w) for
m > 2 and foo bi-K-invariant. Then Ro(f) is a Hilbert-Schmidt operator.

PROOF. Because m > 2, V is twice differentiable on the open interval (0, c0)
(Proposition 8.9). Since it also has compact support, it trivially satisfies (8.30).
Hence the result follows from Proposition 8.31. (]

COROLLARY 8.33. Suppose h satisfies (8.1) with A > 3 and B > 4. Let f =
foo X ftin for foo corresponding to h, and fan as described below (8.27). Then Ry(f)
is a Hilbert-Schmidt operator.

ProoOF. By Proposition 8.16, V satisfies (8.30). Therefore the result follows
by Proposition 8.31. (]

PROPOSITION 8.34. Let rp, =
Spec{(re) < oo if £ > 9.

W Then in the notation of Proposition 8.25,

PROOF. (See also the remark after Proposition 7.5.) Given ¢ > 9, fix any A > 3,
and let h(t) = m. (The purpose of 4A? is to ensure that h is holomorphic on
|Im(t)| < A.) Let f = foo x f! for fo corresponding to ho(t) = (4A2% +¢2)~(¢=1)/4
and f! the identity Hecke operator on G(Ag,) (corresponding to n = 1). Then
Ro(f)pu; = ho(ts)pu; for all Maass cusp forms u;. It is not hard to show that hg
satisfies (8.1) with B = 5% > 4. By equation (7.9),

(1+It;)) 1
Specl (Tg) < Specl << Z m < Z m
U J

=" |ho( tj = ||Ro(f)|I3;5 < oo
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The last step follows from Corollary 8.33. O
8.5. Proof of Proposition 8.29. Here we assume that (8.30) holds. Set
(8.34) Ki(g1,92) = Y flor 'v92),
~€B(Q)
and
(8.35)
5 (91, 92) Z (97 '792) Z Z (/ fo1 1/m592)dn> Tr(8g2).
€B(Q seB@\G(@) perr(@) \Y V(A
Then

K" (91,92) = K1(g1,92) + K3 (91, 92)-
We will show that each of these terms is square integrable over § x 3.
For g; € SLo(R) X Kgn, € G(A), we write

1z (v
(8.36) 9i = ( 1) ! _1y2 | Ti X K,
Yi

where z; € R,y; > 0,r; € Koo, k; € Kg,. Note that if g; € F, then z; € [—%, %}
and Yi > @

LEMMA 8.35. Given o > 2 as in (8.26), then with notation as above, for
g1, 92 € § we have

1 1
-1
Z [f(917192) <o o + et
~v¢B(Q) Y1 Yo Y Y2
PROOF. In view of (18.7) of [KL2], the result holds by (18.3) and (18.4) of
[KL2] Lemma 18.3 with Cy = {g1}, Ca = {g2}, L1 = (v2/11)"/?, La = (y1/y2)"/?,

and L = (y1y2)"/2. O
PROPOSITION 8.36.
[K1l[sxs < o0
PROOF. The square ||K1H7X~g of the L2-norm is
// > flortvge)| dgidgs < // ( > 1f (o1 vg2) ) dg1dga.
v€B(Q) Y€B(Q)

By the above lemma, the latter expression is

2
<</ /1/2 /00/1/2 1 N 1 da1dyy dzadys
B S22 J 12 yf‘ﬂ_lyg/?_l yf‘/ng/Q_l Y1 5

<</ y; Z2<oo. O
V3 M3 Y1 Yo

It remains to treat K (g1, g2), for which v € B(Q). When g1, g2 € §, we can
assume that dety > 0, since otherwise f,, vanishes. Thus, for p € M(Q)" we
define

FM»91792 (t) = f(gflﬂ (1 i) 92) (t S A)
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Given g1, g2 € §, we will require bounds for the Fourier transform

(8.37) Fy, 91,92 / 915 92 O(rt)dt < DFM 91,92, o (To0)-

I,-I\ere we have bounded the finite part by D as in the proof of Proposition 8.31, and
Fgirge.00(Too) = [ Foo(91omit(§ 1) g200)e(—Toct)dt is the archimedean part.
LEMMA 8.37. Let g1, g2 € SLa(R) be of the form of (8.36) (but of course with

no G(Agn) component), and let p = (* ;) € M(Q)*. Suppose V satisfies (8.30)
foru>0. Then

1
= dy1ys (aye  dy: B
8.38 F, (0 —_— =+ —==-1 .
(839 nnoe(0) 2022 (02 1

If, in addition, ays # dy1, then for real v # 0 we have

-~ a
8.39 F ol(r) < r72,/ )
( ) H,91,92, ( ) dylyQ

If V satisfies (8.30) also at the endpoint u = 0, then (8.39) holds even when ays =
dyl.

Proor. We have
1 (1t _ Yp 1/2y;/2a yfl/zygl/z(—dm + azxs + at)
foo(g1oott 1 9200) = fool 1/2 —1/2 )
0 vy, d
d —dzy + azxy + at)?
ay:  dyn | (—dwi +azs + at)

8.40 =V —2).
( ) (dy1 ays ady1ys )
The Fourier transform is thus given by
~ ayo dyy  (—dxy + axy + at)?
I3 r:/V—+—+ — 2)e(—rt)dt
H791,92700( ) (dy1 ayo ady1y2 ) ( )

ayz  dy at? dx,
= v = 2)e(—r(t - w2 + 1))t
/R (dyl ay2  dy1yo Je(=r( ? )

d d 2
= e(r(zs — ﬂ))/ V(sz + ayl + d;yz — 2)e(—rt)dt

d d
(8.41) = e(r xrﬂ "/ ylyz/ Ay o +12)e(—r/ B2tz )it
>0

_ ays dy1
where A, ., = d T ays —-2>

If 7 = 0, the estimate V (u) < (1+u)~17¢ (of (8.30)) implies that ﬁﬂygl’%oo(O)

/d
- dylyz / dt _ ylyz /
V. a r (1 + Ay, yo + t2)i+e (1+ Ay1 yz +e (1+
= dy1y2 (1 + Ay1,y2)1/2 / dt
Voo (14 Ay, )0 e Jg (T+2)1Fe

The estimate (8.38) follows. If r # 0, then by Proposition 8.8, (8.41) is

d d
<<\/ YLy ( \/ yly2> / ‘dtQ ylvy2 +t2)

)1+5
1+Ay1 o

dt.
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In order to prove (8.39), it suffices to show that the above integral is bounded
independently of a,d, y1,y2. Using the bounds (8.30), we have

/ ‘dtQ yl,y2 + t2)

<</ 2(1+ Ay, 40 —|—t2)_1_5dt+/ 42 (1+ Ay, oy, +12) 7324t
R R

dt = / 2V (Ayy o+ 12) + 422V (A, + 1) dt
R

g/ 2(1—|—t2)_1_5dt+/ 42 (14 12)73/272dt < oo,
R R

as needed. Notice that when ays # dyi, Ay, 4, > 0 and the above involves only
derivatives of V' on the open interval (0, 00). O

Recall the partition § = STU§T from (8.33). It will be convenient to decompose
the norm of K1 accordingly as

IKT lsxs = (1ET 125, + KT 112,5,)"2,
and consider each piece separately.
ProroOsSITION 8.38. Under the hypotheses of Proposition 8.29,
HKQTH?MT < 0.

PROOF. Suppose g2 € §pr. Then 7,(dg2) # 0 only if 6 = 1 (cf. Lemma 17.1 of
[KL2]). Hence

(91,02) = Y flortvee) — Y f(gy  png2)dn

~€B(Q) peM(Q) N
=) (Z Fgy img2) — f(gflungg)dn>-
neM(Q) \neEN(Q) N(A)

The rearrangement is justified by Proposition 8.27.

We would like to apply the Poisson summation formula to the sum over 7. To
justify this, note that by (8.40) and (8.30), F}, g, g,,00(t) < t72, while F, g, g, fin iS
a Schwartz-Bruhat function on Ag, (see the proof of Proposition 19.10 of [KL2]).
On the other hand, write 4= (), take 91,92 in the form of (8.36), and suppose
ays # dy,. Then by the above lemma, Fu gr.ge00(t) < t72 for t # 0. Hence by
[KL2] Theorem 8.17, the adelic Poisson summation formula can be applied to the
global function F), 4, 4,-

Therefore for fixed g7, using Lemma 8.28 we see that for almost all go € §r,

El(g,0)= > Y Fuge®

diag(a, d) teQ*
naley 1€Q

(Poisson sumation may fail to hold on the set of go with yy € {dﬂ|ad = D}, but
this is of measure 0.) Because F}, 4, 4, 6n is a Schwartz-Bruhat function, Fu g1.92,fin

is as well (cf. [KL2], Proposition 8.13). Therefore its support is contained in MZ
for some integer M > 0. By (8.37) and (8.39),

R 3 1
(8.42) Yo D Fupe®) < Y >, 7 dy?yg < Vi

di ( d)t * diag(a,d) 17
e 1€Q st ve 2 {0)
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for a.e. go € §1. Therefore

dzodysdrid
HK2 Hm:eT // |K2 91,92 | dgadgi <</ / / / 20Y2dxy yl’
ST % y1y2

which is clearly finite. O
LEMMA 8.39. Let C = Cy x Cqn be a compact subset of G(A). Then for any

neMQ),
//| N91792 |dg1dgg<oo

PRrOOF. The above integral factorizes as

(8.43) / / 10000000 Plgn oo dgane / 1B g i (0) 2K g,
Ctin ¥ Kfin

where F' is the archimedean part of §, defined on page 99. Observe that by (8.28),
fan(ky e (§ 1) g26n) # 0 only if

<é i) S Z(Aﬁn),u_lKﬁnaKﬁnCﬁ_nl-

Since u’lKﬁn(;KﬁnC’gnl is compact, taking the determinant of both sides we see
that the Z(Agy)-part of ((1) {) is also restricted to a compact set, i.e.

1 t _
(O 1) € ZO U_lKﬁnéKﬁnOﬁn1~

for some compact subset Zy C Z(Ag,). The above set is compact, so it follows
that ¢ is restricted to some compact subset B C Ag,, and hence

1Byt n.n (0)] < /B [ fon (K7 (3 4) o) |dt < meas(B).

Therefore, the non-archimedean double integral in (8.43) is finite.
For the infinite part, without loss of generality we can assume that C,, C

SL2(R), so it consists of elements ((1) ﬂf)(\/g i )koo with —L <z < L and 0 <
Ty <y < T for some constants L, T}, T>. By (8.38),

= dy1y2 Y12
| Frisg1,92,00 (0) < :
14,91 ,92,00 e (ZZ; T ZZ? - 1)1+5 (% + Z._Z?)l—&-s

where the latter bound holds by the fact that dyl + “y2 > 2. Hence

/ / |Fgy.92.1,00 (0) [ dg100dg20c

1/2 d d
<</ / / / d ylgz yl y2d$1d$2
1/2 vz (24 + 3 y2 )ite y1y2

ay2

<</ 1 dy, dy2_/T2 /OO 1 dy \ dya
(gt g )y Jrny \Jpa vty )y ) oy

ay2

The inner integral is absolutely convergent, and defines a continuous function of ys.
Therefore the outer integral converges as well. O
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LEMMA 8.40. Given 6 € B(Q)\G(Q), there exists a finite subset As C M(Q)
such that Fy, g, 54,(0) is identically 0 as a function of (g1,92) € § X § for all p €
M (Q) which are not in As.

PROOF. Write g;in = k; € Kgn. The lemma follows by looking at the finite
part

Frgnsonin(®) = [ Fanlh (%) (1) k)t
By the Bruhat decomposition G(Q) = B(Q) U B(Q)(l 1 )N(Q), we can take
se{1bu{(?})lreQ}.

When § = 1, the assertion follows from Lemma 8.28. Hence, we may suppose that
§=(91). Suppose

Fan (ki (“ ) (§£) (1) k2) #0.
Taking the determinant and arguing as in the proof of Proposition 8.28, we can
assume that a > 0, ad = +D, and

(D6 D ) emn

In particular, d € Z and at € Z. From the fact that the upper right-hand entry
also belongs to Z, it then follows that

d

if r = % for a, 5 € Z relatively prime. It follows that d|SD. In particular, the set
of such d is finite. O

B::taE(TZJrZ)ﬂQ:%Z

PROPOSITION 8.41.
K3 llsxzz < 00

PROOF. By definition, for g1, g2 € §, we have

Kz g1, 92) Z ZFu,gl,gz t) — Z Z Fli91,692(0)77(892).

peM(Q) t€Q SeB(QN\G(Q) neM(Q)

As in the proof of Proposition 8.38, for fixed g1, we can apply Poisson summation
to the sum over t for a.e. gs, so KI (g1, g2) is equal almost everywhere to the sum
of the following three functions:

o > > Fugige®

olinae ). te 4 Z— (0}

2 D> Fupe©)

p=diag(a,d),
ad=D,a>0

(3) - Z Z 191,692 (0)77(092),

S€EB(Q)\G(Q) nEAs

where Aj is the finite subset of M(Q) given by Lemma 8.40. By Minkowski’s
inequality, it suffices to show that each of these three functions is square integrable

over (g1,92) € T x §T~
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y (8.42), the integral of the square of first function over § x Fr is

T
< / dyl dy2 < o0
33 yi Y3
The square integrability of each summand of the second function was proven in
Lemma 8.39 above, and it follows by Minkowski’s inequality that the second func-
tion itself is square integrable over the given set. For the third function, by [KL2]
Proposition 17.2, there are only finitely many § € B(Q )\G( ) such that 7,.(dg) # 0

for some g € Fr. Therefore it suffices to show that || 191,892 (0)7r(092) || 5, 5, 18

finite for fixed 6 and p. We have
2 A~
o < L o 0 daady
FXIT Fr

Hﬁua91,592 (O)TT(égQ)

// | M91,<72 ‘d92d91,
08

which is finite by Lemma 8.39, since 5%’T is compact and factorizable. (]

Proof of Proposition 8.29. Since KT = K; + K7, it suffices by Minkowski’s in-
equality to show that the latter two functions are square integrable over § X §. By
Proposition 8.36, ||K1||3x5 < co. By Proposition 8.38 and Proposition 8.41,

1B 13 s = 153 3 sy + 1ES If505, < o0
This completes the proof. O



CHAPTER 9

Kloosterman sums

Fix a modulus N € Z™, and let x be a Dirichlet character modulo N of
conductor ¢,. We have defined the following generalized Kloosterman sum for any
¢ € NZ* and nonzero n € Z:

— axr+bx’

(9.1) Sy(a,bnie) = > x(@)e(———)-
z,x' €Z/cZ,
za’'=n

Although ged(n, N) = 1 elsewhere in this paper, we make no such restriction in this
section. Note that when n > 1, x need not be invertible in Z/cZ. Furthermore, x
is not generally a Dirichlet character modulo ¢, and should be viewed simply as a
multiplicative function on Z/cZ. In particular it can happen that x(z) # 0 when
(z,c) > 1.

In the special case where n = 1, we obtain the usual twisted Kloosterman sum
with character y defined by

9.2) Siabia= S x@e(XrE)

C
z€(Z/cZ)*

where T = 1 mod c. If x is the principal character modulo N, then we simply
write S(a, b; ¢), which is the classical Kloosterman sum.
Suppose n = nyjny where (nj,c¢) = 1. Then replacing z’ by ma’, we have

(9-3) Sy(a,bin;c) = Sy(a,bni;ng;c).
In particular, if (n,c) = 1 we have
Sy (a,b;n;c) = Sy (a,bn;c).

This holds in other situations as well; see (9.24) below. In his Ph.D. thesis, J.
Andersson discusses the generalized Kloosterman sums (9.1), which were apparently
first defined by Bykovsky, Kuznetsov and Vinogradov ([A], [BKV]). He gives
elementary proofs of the following identities, special cases of which were given by
[BKV] and Selberg [Sell].

PROPOSITION 9.1. If either (N,n) =1 or (N,b) =1, then
(9-4) Sy(a,bin;c) = x(d)dSy(a, &: §)-
d|(n,b,c)

The identity also holds if x is taken to be the principal character modulo ¢ (resp.
¢/d) on the left (resp. right). In the case where X is principal, we have

(9.5) S(ay,az;a3;¢) = S(aa(l)aaa(Q); g (3)5 c)
for any permutation o € Ss.

109
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See [A] for the proofs. In his proof of (9.4) (Theorem 1 on page 109 of [A]),
some hypothesis on N (such as (N,n) =1 or (IV,b) = 1) is used implicitly in order
for x to be well-defined modulo ¢/d in Sy(a, %, <).

The purpose of this section is to prove the following Weil bound for the sum
(9.1).
THEOREM 9.2. For integers ¢ € NZ and a,b,n € Z with ¢,n nonzero, we have
the bounds
Sy (a,bin; )] < 7(m) 7(c) (am, bn, )/ /2 c1/?
and
|Sy(a,b;m; )| < 7(n) 7(c) (am, bn, ¢)'/2 /2 /* T p*/*
plex
for the divisor function 7.

Remark: Bruggeman and Miatello produce a bound when n = 1, which is valid
over any totally real field (cf. Section 2.4 of [BM]). They use the trivial bound at
primes p|N, which results in the estimate

Sy (a,b;c)] = O(cz = T [ pr/?).

p|N

This is somewhat weaker than the estimates in Theorem 9.2, whose full strength
was required in the proof of Proposition 7.12.

9.1. A bound for twisted Kloosterman sums. The proof of Theorem 9.2
follows three steps: express (9.1) as a product of local factors, relate the local factors
to twisted Kloosterman sums (9.2), and apply a Weil bound to the latter. The
present section establishes the Weil bound needed for the last step. The classical
Kloosterman sums satisfy the Weil/Salié bound

(9.6) |S(a, b; ¢)| < 7(c)(a,b,c)/?c/?

(cf. [IK], Corollary 11.12). It should be noted that the above bound does not
hold for S, (a,b;c). See Example 9.9 below. In general, one must account for the
conductor of x as well.

THEOREM 9.3. Let p be any prime. Suppose ¢ = p° and x is a Dirichlet
character of conductor ¢, = p¥ for v < L. Then for any integers a,b,

(9.7) Sy (a,b;¢)| < 7(c) (a,b,c)/? /2 )2
and
(9.8) Sy (a,b;0)| < 7(c) (a,b,c) /2 M /? X/ Apt/L,

Remarks: The proof will occupy the remainder of this section. The methods are
standard and in large part elementary, but because there seems to be no proof in
the literature, we will include the details. The general case (for ¢ not necessarily a
prime power) is contained in Theorem 9.2, whose proof will follow later.

The case £ = 1 is the most difficult, but it is well-known.

PROPOSITION 9.4. Suppose ¢ = p is prime. Then |Sy(a,b;p)| < 2(a, b,p)/?pl/2,
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PROOF. When p = 2, the proposition is trivial. If p is odd and p { ab, this was
proven by Weil for principal x, and extended to non-principal x by Chowla ([We],
[Ch]; see also [Col). These sources deal only with the case b = 1, but the general
case follows easily by a change of variables.

If pla and p { b (or vice versa), then S, (a,b;p) is a character sum precisely of
the kind discussed in Section 5.8. In this case, if y is the principal character modulo
p, the value of the sum is —1. If x is non-principal, then |Sy (a, b;p)| = p'/? ([Hua],
Theorem 7.4.4).

Lastly, if pla and p|b, then by the triangle inequality, |Sy(a,b;p)] < p =
(a,0,p)"/?p'/2. O

The case p = ¢’ with £ > 2 is elementary, as first shown for the case of principal
X by Salié [Sal], whose work was later refined by Estermann [Es]. We will follow
the presentation in Section 12.3 of [IK]. It requires a knowledge of the number of
solutions to certain quadratic congruences, given as Lemma 9.6 below. Although
this is standard, we include the proof because of its central importance in what
follows.

LEMMA 9.5. Let n,D > 0, with p{ D. Let M be the number of solutions of

(9.9) 22 = D mod p™.
Then
1 ifp=2n=1
0 ifp=2,n=2,D=3 mod 4
M= 2 ifp=2,n=2,D=1 mod 4
o ifp=2,n>2,D%#1 mod8
4 ifp=2n>2,D=1 mod8
L+ () ifp>2.
PROOF. See e.g. [Land], Theorem 87. O

LEMMA 9.6. Let a be an integer and p t a a prime. Consider the congruence
(9.10) azx® 4+ Bz + ¢ =0 mod p"

forn > 0. Write A = B?> —4ac = p°A’, where p{ A’. Let M denote the number of
solutions to (9.10). Then if p # 2,

plsl ifé>n,
M=S2p" if6=2<nand (L) =1,
0 otherwise, i.e. § <n and (§ is odd or (%) =-1).
When 6 > 0, all solutions are prime to p if p 4 B, and divisible by p otherwise.
Suppose § = 0 and (%) = 1. Then both solutions are prime to p if p 1 ¢ (in
particular if p|B), but if p|c then exactly one of the two solutions is divisible by p.

If p=2 and B is even, then 6 > 2 and
2Lz if6>n+2,
M = { gmin(n=3+1.2)96"=1 4t 9 < § = 2§ < n+2 and A’ =1 mod 2™ (n—5+2.3)

0 otherwise.
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By (9.10), all solutions have the same parity as c. Furthermore, when § > 2, all
solutions are odd if 41 B, and even otherwise. When 6 = 2, all solutions are even
if 41 B, and odd otherwise.

2 if A=1mod8

0 otherwise.
Note that A =1 mod 8 if and only if ¢ is even. In this case, exactly one of the two
solutions is even.

If p=2 and B is odd, then M =

PROOF. First, suppose p # 2. Then (9.10) is equivalent to
(9.11) (2ax + B)?> = A mod p".

If 6 > n, the solutions of (9.11) are given by 2az + B = 0 mod p/31. There is a
unique solution z modulo p/21, so there are p"~[21 = pl3] solutions modulo p".
The solutions z are coprime to p if and only if p{ B.

Suppose & < n. If § is odd, it is easy to see that (9.11) has no solution.
Suppose § is even and write 6 = 26’. Then the solutions of the congruence are
given by 2ax + B = p5'X mod p™, where

X2 = A" mod p"°.

By Lemma 9.5, this congruence has solutions (necessarily two) if and only if A’ is
a quadratic residue modulo p. So if (%’) = —1, (9.11) has no solution. Otherwise,
the solutions of (9.11) are given by

2az + B = p* (X +p"°a) mod p",

where a ranges through (Z/ p5/Z). Therefore, in this case the number of solutions is
2p’ (two choices for X, and p® choices for «). If § > 0, then a solution z is divisible
by p if and only if p|B. Now suppose § = 0. Then z = (2a)~*(X — B) mod p",
where X2 = A mod p™. If p { ¢ (which is the case if p|B), then (X — B), and hence
x, is prime to p since

(X = B)(X 4+ B) = X? — B?> = —4ac mod p.

When p|e (so that p{ B), then exactly one of the solutions is divisible by p, as can
be seen by considering az? + Bz + ¢ = z(ax + B) = 0 mod p.
Now consider p = 2. The congruence (9.10) is equivalent to

(9.12) (2ax + B)? = A mod 2" 2.

Suppose B = 2B’ is even. Then (9.12) has a solution only if § > 2. In that case,
the congruence is equivalent to

(9.13) (azx 4+ B')?> = 2°72A" mod 2".

If § — 2 > n, then az + B’ = 0 mod 2[%1. So as before, the congruence (9.13) has
2L2] solutions. These solutions x are prime to 2 if and only if 2 1 B’, or equivalently,
4 1 B. Now suppose § — 2 < n. Then (9.13) is possible only if § = 24’ is even, in
which case we can write az + B’ = 29 ~1X mod 2" where X2 = A’ mod 2" 9+2,
By Lemma 9.5, such X exists if and only if A’ = 1 mod 2™*(»=0+2.3) " and the
number of solutions X modulo 27~9+2 jg 2min(n=0+1.2) Tp this case we can take

ar + B' =25 "1 X +2"7%%20) mod 2"
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for any o € Z/2%~1Z. Therefore (9.13) has 2™in(?=3+1.2)90"~1 golutions. If § > 2,
then we see that 2|z <= 2|B’ <= 4|B. If § = 2, then A’ = (B’)? — ac is odd,
and we see that

B even = codd = =z odd,
B odd = ceven = z even.

(The fact that « and ¢ have the same parity when 2|B is immediate from (9.10)).

Lastly, suppose p = 2 and B is odd. Then (9.12) is solvable only if § = 0. In that
case, the congruence X2 = A mod 2"*2 is solvable if and only if A = 1 mod 8. The
solutions to the latter congruence can be denoted X, X + 27*1, —X, —X 4 27+l
Therefore 2ax + B = +X mod 2", This means x = (jEXQ—_B)cf1 mod 2" has
exactly two solutions. Because 22 + z = 0 mod 2, we see that one solution is odd
and one is even. (]

PROPOSITION 9.7. Let ¢ = p*® with o > 1. Let x be a Dirichlet character
modulo ¢, of conductor p¥ (v < 2a). Suppose (a,¢) =1 and ctb. Then:
(1) If p is odd, then |S(a,b;c)| < 2p3/2.
(2) If p=2, then |Sy(a,b;c)| < 4p3*/2.
(3) Ifpis odd and v < 2« — 1, then |Sy(a,b;c)| < 2p*. If further (i) p|b or
(it) p1 b and ab is not a quadratic residue mod p, then Sy (a,b;c) = 0.
(4) If p =2 and v < 2o — 2, then |Sy(a, b;c)| < 2minla=1.2)pa < gpo,

PRrROOF. We apply Lemma 12.2 of [IK] with f(y) = y and g(y) = “=2 +b , which
gives
—— ay+by

(9.14) Se(a,bie)=p* > x(yel

ye(Z/pr2Z)*
h(y)=0 mod pe

);

Cc

the summand being independent of the choice of representative for y, where
(9.15) h(y) =a—by 2+ By !
for B determined by

_ B
This immediately gives |Sy (a,b;c)| < p*M, where M is the number of solutions to

(9.17) ay’ + By —b=0mod p*, (y,p)=1.

By Lemma 9.6, M < 2ged(2,p)p®/?. This proves 1 and 2.

Now suppose p is odd and v < 2a — 1. If v < @, then B = 0 by (9.16). If
e < v < 2a — 1, then taking z = p?~* in (9.16) we have e( —B ) = 1. Hence
pm,v € Z. So we see that p|B whenever v < 2« — 1. Therefore by Lemma 9.6,
(9.17) has no solutions y which are prime to p, unless p ¥ b and 4ab (and hence
ab) is a quadratic residue modulo p. In the latter case, there are exactly two such
solutions, so that |Sy (a,b;c)| < 2p®. This proves 3.

Next, assume p = 2 and v < 2a — 2. If v < @, then B = 0 by (9.16). If
a < v < 2a — 2, then taking z = p?~% in (9.16) gives e( 25 —2 ) = 1. Hence
pm,w € Z, so that 4|B whenever v < 2a — 2. By Lemma 9.6, (9.17) has solutions
y only if b is odd (and so 6 = 2 in the notation of the lemma). The number of
solutions is at most 2™*(@=12) = Agsertion 4 follows. O
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PROPOSITION 9.8. Let ¢ = p?**1 with a > 1. Let x be a Dirichlet character
modulo ¢, of conductor p¥ (v < 2a+1). Suppose (a,c) =1 and c¢tb. Then:
(1) If p is odd, then |S,(a,b;c)| < 2p>*/?+1,
(2) If p =2, then |Sy(a,b;c)| < 4p3a/2+1,
(3) If p is odd and v < 2a, then |Sy(a,b;c)| < 2p**+Y/2. Furthermore, if (i)
plb or (i) pt b and ab is a quadratic residue modulo p, then Sy (a,b;c) = 0.
(4) Ifp=2 and v < 2a — 1, then |Sy(a,b;c)| < omin(3,0) pa < gpar,

PROOF. We apply Lemma 12.3 of [IK] with f(y) =y and g(y) = #, which
gives

o — ay+ by
(9.18) Selabie)=p > X(yel )Gp(y)-
yE(Z/p*2)*, ¢
h(y)=0 mod p™

Here h(y) is given by (9.15) as before, but this time B is defined by

_— Bz Bz?
(9.19) x(1 4 zp%) e(WJr(pl)%) ,
and Gp(y) is the Gauss sum
d(y)z? + h(y)p~z
(920) Gl = Y oMM
z mod p p

for

-3 B
(9.21) dly) =by"+ -5y "

Because |G,(y)| < p, we have
(9.22) 1Sy (a,b;c)| < p*ttM,

where M is the number of solutions to (9.17). As before, M < 2 ged(2, p)p®/2, so 1
and 2 follow.

Suppose p is odd and v < 2a. If v < a, then B =0 by (9.19). If a < v < 2¢,
then setting z = p?"~* in (9.19) gives

B (P—1) , 2y—a)-1 B
l=ce¢ (pQDH’l"/ + 5 Bp (v ) =€ Zm .

Thus p|B whenever v < 2. As in the previous proof, the congruence (9.17) has
solutions (necessarily two in number) only if p 1 b and ab is a quadratic residue
modulo p. Because p|B, d(y) = by~ # 0mod p. Hence by (12.37) of [IK],
|G, (y)| = p'/2. Tt now follows that |S, (a,b;c)| < 2p*p'/2, which proves 3.

Now suppose p = 2 and v < 2a — 1. If v < «, then then B = 0 by (9.19). If
a < v < 2a—1, then setting z = p?~% in (9.19) gives

B Bp*(r=) B
lL=el g T = ) = ¢\ jooris )

Because 2a+ 1 — v > 2, we see that 4|B. As in the previous proof, the number of
solutions to (9.17) is M < 2min(@=12) < 4 Assertion 4 now follows immediately by
(9.22). O
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EXAMPLE 9.9. Let p be an odd prime, and let x be a primitive Dirichlet char-
acter of modulus p3. Then there exist a,b € (Z/p3Z)* such that

Sy(a,b;p%) = p*.
In particular, if c = p® for p > 17,
1Sy (a,b;¢)| > 7(c)(a,b,c) /22,
PROOF. We apply the above proposition with @ = 1. If, in (9.19), p|B, then

_ _ B
X(1+2p) = e(7);

which implies that X(1 + zp?) = 1, and hence ¢, |p?. Thus assuming ¥ is primitive,
pt B. Take a = ”2;13 and b = —p%lB, and consider S, (a, b; p*) for x primitive.
In the notation of the previous proof,

h(y) = p;QlB + p—nggf2 + By ' =0mod p
— 9> -2y +1=0mod p < y=1mod p.
Therefore since a + b =0, (9.18) gives
Sy(a,b;p°) = pGy(1).
In the notation of (9.21), we have
d(1) = -2 B+ 1B =0.

Since h(1) = 0 as well, we have G,(1) = p. Thus S, (a,b;p?) = p*. O

PROPOSITION 9.10. Suppose ¢ = p* and ¢y, = p7 for v < L. If (a,c) = 1 and

£/2 =
clb, then |Sy (a,b;c)| = b i 7
0 otherwise.
then the Gauss sum vanishes ([Hua|, Theorem 7.4.2). If v = /£, then the absolute
value of the Gauss sum is p%/2. O

ProOF. When c|b, Sy(a,b;¢) = > 1c(z/02) x(d)e(4) is a Gauss sum. If y < £,

COROLLARY 9.11. Suppose ¢ = p* for £ > 1, ¢, =p” for v < ¢, and (a,c) = 1.
Then:

e |5, (a,b;c)] < 2ged(2,p)? 01/2p1/4c;/4,
o [Syla,bie)| < T(e)et2pt/ie/",

e |5, (a,b;c)| < 2ged(2,p)? cl/Qc;/Q,

o |5y (a,b;c)| < T(c)ct /2.

PrOOF. This follows directly from what we have proven above. We just need
to examine each case. In view of Proposition 9.10, we can assume that c¢{b. First,
suppose p is odd and ¢ = 2« is even. If v = 2«, then by Proposition 9.7 (1),

Sy (a,b; 0)| < 2p°p®/? = 212/,

If v < 2a — 1, then by Proposition 9.7 (3), we have |S,(a,b;c)| < 2¢'/2. Now
consider ¢ odd. If £ = 1, then the bounds hold by Proposition 9.4. Suppose
¢=2a+1for a>1. If v =2a+ 1, then by Proposition 9.8 (1),

|Sy(a,bye)| < 2p°F2pTtE = op!/Act /et < 9c1/26) /2,
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The last step holds since v > 1. If v < 2a, then [Sy(a,b;c)| < 2otz = 2c1/2 by
Proposition 9.8 (3). This establishes the bounds when p is odd.

Now consider the case p = 2, and suppose ¢ = 2« is even. When a = 1, the
bounds are trivial because Sy (a, b;c) is a sum over (Z/4Z)* and is hence bounded
by 2. So we can assume that o > 1. If v = 2«, then by Proposition 9.7 (2),

1Sy (a,b;c)| < 4p°p®/? = 401/2@(/4 < (2a+ 1)01/2@(/4 = T(C)CI/QC;M.
If v =2a — 1, then
[Sy(a, b )| < 4pp?/2 = 4cM 20N/ < 7 (e)pt/ et 2 L/ < 7 (c)e 22,
The last step holds because v > 1. If v < 2a — 2, then by Proposition 9.7 (4),
1Sy (a,b;¢)| < 4p™ = 4ct/? < (2a 4 1)c'/? = 7(c)c!/?,

since a > 1. Now consider ¢ odd. If £ = 1, then the bounds are obvious since the
summation only has one term. Suppose ¢ = 2a+ 1 with a > 1. If y = 2a+ 1, then
by Proposition 9.8 (2),
ISy (a, b;c)| < 4p°‘+%p%+% = 4p1/4cl/2c§</4 < 401/2@/2 < 7(0)01/2@/2,
since v > 1 and 7(¢) = 2a+ 2 > 4. If v = 2q, then by Proposition 9.8 (2),
1

|Sy (a,b;¢)| < Aptapsts = 4p1/401/2p1/4c;/4.

If o > 2, then 4p'/* < 2042 = 7(¢), and the first two inequalities follow. That the
remaining ones also hold follows from pits < po = c;/2. If a =1, then Sy (a,b;c)
is a sum over (Z/8Z)*, so it is bounded by 4, and the inequalities clearly hold in
this case as well. Finally, if v < 2a — 1, then by Proposition 9.8 (4),

Sy (a, b )] < 2mE2p < (20 4 2)p°tE = r(e)c!/2. O

ProrosSITION 9.12. The results of Propositions 9.7, 9.8 and Corollary 9.11
hold if we exchange the roles of a and b.

ProoF. This follows from the fact that Sy (a,b;c) = Sx(b, a; ¢). O
We now have all of the pieces in place to prove Theorem 9.3.

PROOF OF THEOREM 9.3. Suppose ¢ = p, and ¢, = p? for v < L. We need to
show first that for any a, b,

[Sx(a, b e)| < 7(c) (a,b,e)/2eH e/,

If c|a and c|b, this is trivial. Suppose (a,b,c) = p*» for a, = ord,(a), and write
a' =p~%aqand V' = p~®b. Then by Corollary 9.11,

[Sx(a, b, ¢)| = p#|Sy(a, b/, p~)| < 7(c)pep )/ 2/
= 7(c)(a,b, 6)1/261/2Ci/2.

If (a,b,¢) = p°rdr(®) the inequality can be proven in the same way after applying
Proposition 9.12.
The second assertion, that

Sy (a,b;0)| < 7(c) (a,b,c) /22 e/ *pt/4,

follows in the same manner. O
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9.2. Factorization. Now we turn our attention back to the generalized Kloost-
erman sum Sy (a,b;n;c) (9.1), expressing it as a product of local factors. These
factors will in turn be expressed in terms of the sums S, (a,b;c) studied in the
previous section.

Let x be any multiplicative function Z/c¢Z — C. Suppose ¢ = gr with (g,r) =
1. Then using

Z/cZ = (Z/qZ) x (Z)rZ),
we see that x has a canonical factorization x(z) = x4(z)xr(z), where x4 and x,
are multiplicative functions on Z/qZ and Z/rZ respectively. If x is a Dirichlet
character modulo N, viewed as a function on Z/cZ, and if (r, N) = 1, then x, =1
is the constant function 1 on Z/rZ (not to be confused with the principal character
modulo 7).

PROPOSITION 9.13. Suppose x is a multiplicative function modulo N, and q,r €
Z" with (q,7) =1 and gr € NZ. Write x(x) = xq()xr(x) as above. Then

Sy(a,b;n;qr) = Sy, (aT, b7 n; q) Sy, (ag, bg;n; 1),
where Tr =1 mod q and gg =1 mod r.

PrOOF. By the Chinese reminder theorem, x = 77t 4+ ¢gd runs through a
complete residue system mod ¢r when t and d run through complete residue systems
mod ¢ and r respectively.

For fixed & = r7t + ¢qd, an integer z’ satisfies xx’ = n mod g¢r if and only if

tr’ =nmodq and dz’ =nmodr.

Again by the Chinese reminder theorem, the set of all such z’ is parametrized
by 2/ = r7t’ + qqd’, as t’ and d’ run through all solutions of ¢#/ = n mod ¢ and
dd’ = n mod r, respectively.

Therefore

Tt + qqd) + b(r7t’ qd’
S(abnqr Z Z T'Tt+qqd) ( (TT +QQ)‘(§T(TT +C]q ))

tt/=n dd'=n
mod ¢ mod 7

— (X @) (3 @ @) 0

r
tt/=n q dd’ =n

mod ¢ mod r

For p|c, write ¢ = p°»¢c®) and n = p®n®), where p t ¢?n®). Then by successive
applications of the proposition and (9.3), we obtain the following.

COROLLARY 9.14. With notation as above,
(9.23) Sy (a,b;n;c) HS C(P) be@n(®- PP ptr).

If p|N, then x, is the Dirichlet chamcter mod p° defined as in (5.35), so that
Xp(d) =0 if p|ld. If pt N, then x, = 1 is the constant function 1 on Z/p*Z.

Each local factor in (9.23) can be expressed in terms of the familiar twisted
Kloosterman sums (9.2), as the next proposition shows.

PROPOSITION 9.15. Fiz integers k > 0 and ¢ > 1, and let x, be a Dirichlet
character modulo p*. Then

(9.24) Sy, (a,b; phiph) = Sy, (a, bp®: pt),
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If instead of a Dirichlet character, x, = 1 is the constant function 1 on Z/p‘Z,
then when k < £,

min(by,k)
k a b
P E S(——,—;p ifk<a,+b
(9.25)  Sa(a,biphp) =47 LS. G ? ) v
0 otherwise,

where as usual a, = ordy(a) and b, = ord,(b). For the k > ¢ case, the sum is
evaluated in (9.27) below. It vanishes unless £ < a, + b, + 1.

PROOF. The left-hand side of (9.24) is a sum over xx’ = p¥ in (Z/p‘Z). If p|z,
then y,(z) = 0. Therefore we can take z € (Z/p'Z)*, and 2’ = Tp*. Eq. (9.24)
follows.

For the case X, = 1, suppose first that k& < £. Group the sum in S (a, b; p*; p°)
according to i = ord,(z) < k. Suppose

(9.26) zz’ = p* mod p*.

Then = = pt and 2’/ = pF~'t for some tf = 1 mod p’~*. For given ¢, , we have
solutions x = p*(t+p*~*d) and 2’ = pF=i{(t' +p*~*d’). As d, d’ and t range through
Z/p*=Z,Z/p'Z and (Z /p*~'Z)* respectively, x and x’ give all incongruent solutions
to (9.26) modulo p’. Thus

A {—k k—1i 0—Fk 1
Si(a, b;p*;p") Z 3 ZZ p(t+p ngp (t+p d))

i=0 te(Z/pt=—*Z)* d=1 d'=1 p

pki

B SR S aa iy o

=0 te(Z/pt—kZ)* p d=1

/

The i*" summand is non-zero only if p*~?|a and p?|b. In this situation, write a =
p*~%a’ and b = p’b’. Then the above is

=" > Z at+b/)=pk > S Vipth).

0<i<k, 0<i<k,
k—ap<i<bp mod pz k k—ap<i<bp

This proves (9.25).
Now suppose k > ¢. Then zz’ = 0 mod p’, and we write z = p't, 2’ = p*~t/,
for t € (Z/p*~'Z)* and t' € Z/p'Z. Thus

14

ai O—iq!
Sifabipip) = 3030 e T
=0 t t/
‘ at bt!
(9.27) =S Y ) > el

pkz

l—i
i=0 te(Z/pt—iZ)* p t'eZ/piZ p
The sum over t can be evaluated explicitly using
o Pt . pr—p ! if0<r<a,
at a
DRTCR SRCIE S SR R S

p’(‘

Pos 0 if r > a,+ 1,

tG(Z/p“"Z)* t=1
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and the sum over ¢’ is p’ or 0 according to whether or not i < b,. In particular, the
it term of (9.27) vanishes unless £ —i < ap, +1 and i < by, ie. L—a,—1<i<b,.
Thus the whole expression vanishes unless ¢ < a, + b, + 1. O

9.3. Proof of Theorem 9.2. We will bound each term of (9.23). Suppose
p|N. Then by Proposition 9.15,

Sy, (ac®), bePnP); pir: por) = Sy, (ac®) bePn; per).
Applying Theorem 9.3 to the latter sum,
Sy, (ac®), beP)n®); pPe; pe )| < 7(p°) (a, bn, p© )/ 2pe/2c}/2
(9.28) < 7(p%) (an, bn, pr )/ 2pr/2cl/2.
Now suppose p|c but p{ N. Then x, =1, and if n, < ¢, by (9.25) we have
min(np,by)

S1(ac®), be@nl); prv; per) = >

i=max(0,n,—ap)

Therefore applying the Weil bound |S(a, b; ¢)| < 7(c)(a, b, c)'/?c'/? to each term in
the sum, we find (still assuming n, < ¢,)

ac(_i”) be®P)n(P)

pnpfi ’ pi

Cp 7111,)
?

pr» =i p
(9.29) < (np +1)(cp + 1) (an, bn, p) '/ 2per/2,

since the sum has at most (n, + 1) terms. If n, > ¢,, the bound (9.29) also holds,
since from (9.27),

181 (ac, ben®); e, )| < 3 (e ypn (< D penme 1720 22

C.
1S3 (0, beP®) oo )] < 3 iyt
i=0
< (np, + )p® = 7(p™)(an, bn, p°r )/ 2per/2,
Multiplying the local bounds (9.28) and (9.29) together, by (9.23) we have
ISy (a, b;n;c)| < 7(n)7(c)(an, bn, 0)1/261/2c§</2,

which proves the first inequality in Theorem 9.2. The proof of the second inequality
is identical, using the second inequality of Theorem 9.3 for (9.28) in the case that

pley, and using the classical Weil bound (9.6) in place of (9.28) in the case that
p|N but x, is principal, i.e. p{cy.






CHAPTER 10

Equidistribution of Hecke eigenvalues

The Hecke eigenvalues attached to cusp forms have many interesting statistical
properties. On one hand, there is the “horizontal” Sato-Tate problem of fixing
a newform u(z) and determining the distribution of the Hecke eigenvalues at all
primes away from the level. If u is non-dihedral, then conjecturally the normalized

eigenvalues v, are equidistributed relative to the Sato-Tate measure

1 /1 _z2 T
(10.1) d,uoo(ﬂf){” 1-% de if —2<x<2
0

otherwise.

This problem is very deep, being tied to the analytic properties of the symmetric
power L-functions of u. It has now been proven if u is holomorphic of weight k > 2
by Barnet-Lamb, Geraghty, Harris, and Taylor, [ BLGHT)].

Another point of view is the “vertical” problem of fixing the prime p and deter-
mining the distribution of the eigenvalues of T}, on a parametric family of cusp forms,
as the parameter (level, weight) tends to infinity. This question has been addressed
independently by several authors: for Maass forms by Bruggeman [Brug] and Sar-
nak [Sar2|, and for holomorphic forms by Serre [Ser] and Conrey/Duke/Farmer
[CDF]. Strikingly, the relevant measure in this case is not the Sato-Tate measure,
but the p-adic measure

p+1
dﬂp(ﬂf) = (p1/2 +p_1/2)2 _ 1'2 d,LLOO(l')

Serre’s article discusses many interesting applications of this result. Effective ver-
sions have been given by Murty and Sinha ([MS]) and Lau and Wang ([LW]).

In the holomorphic case, one obtains a different vertical result using Petersson’s
trace formula in which each Hecke eigenvalue has an analytic weight coming from
Fourier coeflicients and the Petersson norm of the cusp form. When weighted in
this way, the eigenvalues of T}, become equidistributed relative to the Sato-Tate
measure itself (independent of p), as the level N — oo ([LiC], [KL3)).

In this section we treat the case of Maass forms from the latter perspective,
using the Kuznetsov trace formula. We will prove that for a fixed prime p t N,
the eigenvalues of 7}, on the Maass eigenforms, when given the weights that arise
naturally in the Kuznetsov formula, become equidistributed relative to the Sato-
Tate measure as the level goes to infinity. An interesting feature is that the weights
depend on the choice of f, (or equivalently, its Selberg transform h(t)), while the
measure is independent of this choice.

Fix an integer m > 0 and a function h(t) as in Theorem 8.1. We will apply the
Kuznetsov formula with m; = mg = m. Fix a prime p{ N and an exponent ¢ > 0.

121
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For a Maass eigenform u € F, define the normalized Hecke eigenvalue

Vye = W (p)“2 N (u) € R.

The value is real because w’(p)*/2T, »t is self-adjoint, and it is bounded in absolute
value by a number depending only on p’ (see p. 68). For all £ > 0,
vye = Xo(vy),
where
sin((¢+1)0)
sin 0
is the Chebyshev polynomial of degree ¢ (see e.g. Proposition 29.8 of [KL2]).
Now for each u; € F, define a weight

2
(10.2) w, = lam (u)|”  h(t;) |
! lujl|2  cosh(mt;)

X¢(2cosf) = it Gi(e-2)0 |y —ilh

where t; is the spectral parameter of u;. Note that at this point, w,; may be a
complex number. However, in the equidistribution result below (Theorem 10.2), we
shall impose an extra hypothesis to ensure that w,; is a nonnegative real number
for all j.

PROPOSITION 10.1. With h(t) as in Theorem 8.1, we have

S X JY(N) +O(N=te) if £ =20 with 0 < ¢ < ord,(m)
= AT O(Nz+e) otherwise

as N — oo, where
1 > 4 4

(10.3) J= —2/ h(t) tanh(rt) Lt = SV (0) = 2 £.0(1).
2 J_ T T

Here, V and fs are the functions attached to h in (8.15) and (8.3) respectively,
and the equalities in (10.3) are from (3.17).

Remark: This demonstrates the existence of cusp forms with nonvanishing mt™

Fourier coefficient for all sufficiently large V.

PrOOF. Taking m; = mg = m and n = p® in Theorem 7.14, the cuspidal term
is
oo u
(10.4) Z Ape (w)wy, = w'(p) ZXg(up)wu,
ueF u
the sum converging absolutely. This is equal to the first geometric term

T(m,m,pe)i/)(N)w’(pf/Q)% /R h(t) tanh(rt) tdt = T(m, m, p')Yb(N)a? (p/2)J

plus the remaining geometric terms and minus the continuous term. By Proposition
7.8 and Proposition 7.12, the latter terms are both O(N/2%2).1 It is easy to see
that T'(m,m,p?) = 1 if and only if £ = 2¢' for some 0 < ¢’ < ord,(m). Multiplying
through by «’(p)*/2, the result follows. O

THEOREM 10.2. Fix a prime p and let m > 0 be an integer. For each n =
1,2,...,

!These bounds were proven for h € PW12(C)eve®, but they hold as well for h as in Theorem
8.1 so long as A > % and B > 2, as shown in the proof of Proposition 8.24.
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e et N, be a positive integer coprime to p, such that lim N,, = co
n—oo

e let w), be a Dirichlet character modulo N,
e let F,, be an orthogonal basis for L3(N,,w!) consisting of Maass eigen-
forms.

Define weights w,, as in (10.2). Suppose h(t) is chosen as in Theorem 8.1 so that
J in (10.3) is nonzero, and h(t;) > 0 for all spectral parameters t;. (The latter
condition will be discussed afterwards.) For each n, define the multiset

Sp=A{vylu e Fp}.
Then the sequence {S,} is w,-equidistributed with respect to the measure

ord,

(10.5) Z Xopr () dpioo (),

where dps () is the Sato-Tate measure (10.1). This means that for any continuous
function f on R, we have

(10.6) lim Luer, [0 /f )dp(x

n—o0 Zue}‘ Wy,

Remarks: (1) If we choose m so that p ¥ m, then du = dpo is the Sato-Tate measure
itself. In this case, the measure is independent of p, m and h.

(2) The theorem illustrates in particular the fact that the normalized Hecke eigen-
values v, are dense in the interval [—2,2]. Thus the Ramanujan Conjecture, if true,
is optimal. In the other direction, the theorem provides evidence for the conjecture,
by virtue of the fact that the measure is supported on [—2, 2]. Any counterexamples
to the Ramanujan conjecture are sparse enough to be undetectable in (10.6).

PROOF. Setting £ = 0 in Proposition 10.1 gives
(10.7) > wy = J(N) + o(N).
ueF

In particular, the denominator in (10.6) is nonzero when n is sufficiently large. We
may assume that this is the case for all n. By (10.7), for all £ > 0 we have

lim
n— oo

Duer, Xe(Wp)w, |1 if £=20, with 0 < ¢ < ordy(m)
" 10 otherwise

- / Xo(z)dp(x)
R

The latter equality holds because the polynomials X,(x) are orthonormal with
respect to the Sato-Tate measure (see e.g. [KL2], Proposition 29.7). By linearity,
(10.6) holds for all polynomials. Let I D [-2,2] be a compact interval containing
vy for all u. (According to the Ramanujan conjecture, we can take I = [~2,2], but
we do not assume this here. See [Ro] Proposition 2.9 for an elementary proof of
the existence of I.) As one can show, both sides of (10.6) define continuous linear
functionals on C(I), relative to the sup-norm topology. Since the set of polynomials
is dense, it follows that (10.6) holds for all continuous functions, as required.

ueF, Wu
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In more detail, suppose f is any continuous function on I. Given ¢ > 0, let P
be a polynomial approximating f to within € on the interval I. Then for any n,

Zue]—' f wu Zue]:n (f(l/;f) - P(Vg))wu
Zue}‘ Wy, /f Zue]—' Wy,

+‘Z”€fnp(” o / P(2)dp(z ‘ / 2)du(z)

> uer, Wu
S/Rdu(:r).

Zue]-‘np(l/g)wu /de T
S w - (z)dp(z)| +

In the first term of (10.8), we have used the fact that w, > 0 for all u, which
holds because of the hypotheses imposed on h and the fact that cosh(nt;) > 0 for
all t;. The latter assertion is clear when t; € R by the definition of cosh. The
hypothetical exceptional parameters are of the form ¢; = ix; for z; € (—%, %), SO
that cosh(nt;) = cosh(imz;) = cos(mz;) > 0 as well.

As shown in the first part of the proof, the middle term of (10.8) has the limit
0 as n — oco. Therefore

(10.8) <e+

2
w
imoup | =B )| <+ [ auto),
n—00 Zue]—' Wy, _
Letting € — 0, we obtain (10.6) as needed. O

In the theorem we assumed that h(t;) > 0 for all spectral parameters ¢;. Since
t; € RUi(— 2, 2) the condition holds if /& is nonnegative on the real and imaginary

axes. Examples of allowable h include the Gaussian h(t) = e~ #* and the function
hr(t) = e ("B,

R ‘ R

¥ =Chg(t)

The latter detects just those Maass forms with spectral parameter close to +R.
When we apply the theorem to hpg, the fact that the result is independent of R
shows that the equidistribution holds even when we restrict to a small piece of the
spectrum.

Other functions h satisfying the hypotheses of the theorem may be constructed
as follows. Let h be the Selberg transform of a function f,, = F* x F, where
F € C(Gt//Ky) for m > 12. Let f' : G(Agn) — C be the identity Hecke
operator, corresponding to n = 1. Then if u is a Maass cusp form with spectral
parameter ¢, by Proposition 4.8 we have

(R(N)eupu) _ (RE X fpu RIF X Do)

e P N Tl =
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Notation index

1 (constant function 1), 48, 117

xp = ordy(z), Np = ord,(N), etc., 7

dn,idele (z,), z, = d for p|N, z, =1
otherwise, 7

cP) = p=cre, n®) = p~oen, 117

[ (g)=f(g71), 22

[l Petersson norm 23

axb(z) = [Fa(y)b(y 'z)dy, 27

X *f rARR exp(—tX)-)7 60

(a8)z=2515

A adeles, 7

Ag, finite adeles, 7

am (1), m-th Fourier coefficient of u(z),
25, 66

am,5(u,y), m-th Fourier coefficient of
us(z), 23

am(s,y) = a,(s,y), m-th Fourier co-
efficient of Ey(s, z), 43, 44,

69
B ={(&}%)} Borel subgroup, 7
B, 41
B,, 40

bm(s7 y)7 44» 45

Ciy,) = 1_[;;|N1 le(pTMp)v 42
C™(G"//Kx), 86
C(GT//K), 13
Ce(GT//K), 13
CT(R*T)¥, 13
C"(G(A),w), 55
¢, conductor of x, 9
X
= x(e1,€2, 51, 52), 19
character on B(Q,), 26
character on B(R), 19
Hecke character, 9
X" = xy Dirichlet character mod N
attached to y, 9
X}, Dirichlet character modulo Ny, 42
X4, Dirichlet character modulo M, 42
x1(0), 43
Xp» local component of a Dirichlet char-
acter, 48

Xp, local component of a Hecke char-
acter, 9

D(x1 x2. V), 38

DP(XlaXQaN)v 39

A
Casimir element, 20
Laplacian, 23
eigenvalue I + 2, 24

dz = dz# measure on H, 18

E($,5,9) =" s Ps(79), 35

E(¢s,9) = E(d,5,9), 35

Ey(s,z +1iy) = E(¢,s, (g
46

Ey(s,x +iy) = E(¢,s, (§
36

e(r) = e*™* 8

?) X 1ﬁn)7

910) X 1ﬁn)a

F, 31

5.5, 99
S1,87, 101
Fa, 30
Fﬂvglygz’ 103
I*, 26

n. 26

r (Lie algebra of GLy(R)), 60
e

©

G/Z,7
+(m), Gauss sum, 48

QQlC)

O(N)a
1(N)7

I'(N), 8

H, height function, 34

H, complex upper half-plane, 15
H(x1,x2) = H(x1, x2,0), 34
H(Xla X2 8)3 33

Hs, 72

H(5) = B, H (X1, X2:5), 52
h(t), Selberg transform, 18, 30

1,65

Icont7 70
Teusp, 65, 67
Is, 72
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(ip),ip, 41, 78, 79
Lies, 69

Js, J-Bessel function, 74, 76

5
cont(xyy)a 56) 69
(z,y), 56, 66
Kdisc(xay), 62
K¢(z,y), kernel function of R(f), 55
Kies(z,y), 56
Ken, 7
Ko, 7
K(N), 7
K, 7
K, 7
K,(z), Bessel function, 25, 47, 68, 70
KT(x,y), 98
k& — ( cos 6 sinG)7 7

—sin 6 cos 6

k(Zl,ZQ), 15

L, 53
Ln(s,x), 9
L(s,x'), 9
LY(@), 27
L*(w), 2
L3(w), 2
L*(N, )
LQ(N w'), 23
LzOIlt( )’ 52
Lglbc( )7 52

Lies(w), 52

An, Hecke eigenvalue of Ty, 25
An(XlaX?vs)v 27, 34

An(u), 30

Aa(¢), 30

diagonal subgroup, 7

=11 lel,) 42

Mi(n, N), 2

Ml( )pv 26

./\/l,./\/ls (Mellin transform), 17, 87
1, Mobius function, 48

:u’OO) 121

fp, 121

M,
M =

N, unipotent subgroup, 7

H pNe, 42

p|N,
ip<Np

= ] ", 42

pIN,
ip>0

P,(z) (Legendre function), 18
Peont, projection onto L2 . (w), 54
Puise, projection onto L3, (w), 54
PW(C), Paley-Wiener space, 17
PW(C)even, 18

PW™(C), 17

oy, adelic Maass form, 28

¢y = x odet, 51

Gi = Gpin. s 39, 41

b,y = Upw ¢4, 43

%'p) =Ly 93,0 41

on (g fN(Q)\N A) ¢(ng)dn, 27
</5s(9) = e*19¢(g), 34

Ty, 19, 26

Ty = 71'(81,62781,82), 19

w(f), 21

Ts, 33

P(N), 8

wp(N)v 8

R, right regular representation, 8, 27

Ry, 27, 101

R(f), 20, 27

R*, the set of positive real numbers,
7

.53
c(a,bimic), 74 109
(a,b;¢) = Sy(a,b;1;5¢), 109
(m )=Z|md 48

s(X15 x5, m), 45

QQUJCQCQ

t (spectral parameter), 20, 24
T(CLl, as, ag), 79

Ty, 54

T., Hecke operator, 25

7, divisor function, 41

T(x), Gauss sum, 48

0, character of Q\A, 8

eﬁnv 8
Om =0(—m-), 8



NOTATION INDEX

0,, 8

V, 14, 18, 86

w, central character attached to w’, 27
w', nebentypus, 23
Weyl’s Law, 24

Xy, Chebyshev polynomial, 122

Z, the center of G, 7

Z(t) = Zk(1,t), 74

Z, 74

Z=T11%,, 7

Z*, the set of positive integers, 7
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Subject index

Bessel function
J-, 74, 76
K-, 25, 47, 68, 70

Cartan decomposition, 13
Casimir element, 20
Chebyshev polynomial, 122
conductor

of Dirichlet character, 9

of Hecke character, 9
constant term, 23, 27

of Eisenstein series, 47
convolution, 27
cuspidal function, 23

Dirichlet L-function, 9

Dirichlet character, 8
induced, 9
primitive, 9
principal, 8

distribution, 24

Eisenstein series, 35
exceptional parameter, 66

Fourier expansion, 23, 25
of Eisenstein series, 43
Fourier transform, 86

Gauss sum, 48

Harish-Chandra transform, 15, 86
Hecke L-function, 9
Hecke character, 9

conductor, 9
Hecke operator, 25
height function, 34
Hilbert space isomorphism, 53
Hilbert-Schmidt norm, 55
Hilbert-Schmidt operator, 55

Induced character, 9

kernel function, 54
truncated, 98

Kloosterman sum
classical, 1, 109

generalized, 74, 109
Weil bound, 1, 110

Laplacian, 23
Legendre function, 18

Maass cusp forms, 23
Maass eigenform, 25
Mellin transform, 17, 87
Mboébius function, 48

Paley-Wiener function, 17
Parseval’s identity, 53
principal series

of GL2(Q,), 26

of GLy(R), 19, 33

Ramanujan conjecture, 29, 68

right regular action, 8

Sato-Tate measure, 121
Selberg transform, 18, 91
Selberg’s conjecture, 24, 29
spectral parameter
exceptional, 66
of my, 20
of u, 24
spherical transform, 18
strong approximation, 7
for A%, 100
for B(A), 37

truncation, 98

weak kernel function, 54
Weyl’s Law, 66

Zagier transform, 74
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