Complex Analysis

Spring 2025

MAT 452
Krishnendu Khan
Office: 323 Neville Hall
krishnendu.khan@maine.edu
MWF 10:00 AM to 10:50 AM $$
Neville Hall 208
A First Course in Complex Analysis
-Beck, Marchesi, Pixton, Sabalka - (free)
Grading
Homework-40%
Exams- 60%
$\mathbf{Midterm} \ 1 \ (\mathrm{TBD})$
Midterm 2(TBD)
Final Exam (TBD)

• Residues

Description: We'll go through functions over complex numbers, define the notion of derivatives and integrals. We'll see a proof of the fundamental theorem of algebra along the way. Using complex analysis, we'll be computing sums of many interesting infinite series such as:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \quad \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}.$$

f(z)