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Calculus Students’ Deductive Reasoning and
Strategies when Working with Abstract

Propositions and Calculus Theorems

Joshua Case and Natasha Speer

Abstract: In undergraduate mathematics, deductive reasoning plays important roles
in teaching and learning various ideas, and is primarily characterized by the concept
of logical implication. This comes up whenever conditional statements are applied,
i.e., one checks if a statement’s hypotheses are satisfied and then makes inferences.
In calculus, students must learn to work with such statements; however, most have
not studied propositional logic. How do these students comprehend the abstract notion
of logical implication, and how do they reason conditionally with calculus theorems?
Study results indicate that students struggle with logical implication in abstract con-
texts, but perform better when working in calculus contexts. Findings indicate that
some students use “example generating” strategies to successfully determine the valid-
ity of calculus implications. We discuss ways instructors might support students’ use
of such strategies, as well as further avenues of inquiry.

Keywords: Student thinking, logic, implication, calculus, theorems, conditionals

1. INTRODUCTION

In a typical calculus course, students are often presented with definitions, lem-
mas, propositions, and theorems. Often, these statements are conditional, that
is, they are sentences of the if -then form. For example, the differentiability
implies continuity theorem is the following conditional statement:

If f is differentiable at x = c, then it is continuous at x = c.
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Calculus students must be able to make proper inferences from these state-
ments in order to build their calculus knowledge, and they must then know
when it is or is not appropriate to apply this theorem, such as when they are
given a function that is differentiable or when they are given a function that
is continuous. This deductive process, characterized by logical implication, is
a hallmark of mathematical thinking. To apply a theorem correctly, a student
must comprehend logical implication. This requires understanding conditional
statements and their standard conditional variations: inverse, contrapositive
and converse. Applying this reasoning can enable a student to know, for exam-
ple, that a function being continuous at a point does not necessarily imply
that it is differentiable at that point. As calculus is a major aspect of science,
technology, engineering and mathematics (STEM) undergraduate programs,
the goal of improving STEM enrollment and retention rates [4] can be well-
served by improving the teaching and learning of calculus. One component of
this effort can involve investigating how students think about calculus theo-
rems and about logical implication itself to inform instructional materials and
approaches. In particular, in the study reported on here, we examined calcu-
lus students’ understanding of logical implication and the extent to which that
understanding played a role in their abilities to make sense of calculus theo-
rems. Knowing more about this kind of student thinking allows instructors to
be able to serve the needs of their calculus students and thus to contribute to
efforts to address STEM enrollment and retention rates.

2. STUDENT UNDERSTANDING OF LOGICAL IMPLICATION AND
CALCULUS

It is well-established that both children and adults may struggle with certain
logical reasoning tasks [6, 14, 15]. For example, participants in Wason’s study
[14] were asked to carry out the following abstract reasoning task (popularly
known as the “Wason Selection Task”):

Given four cards (one with a vowel shown face up, one with a consonant shown
face up, one with an even number shown face up, and one with an odd number
shown face up), the assumption that each card has a letter on one side and a number
on the other, and the rule “if there is a vowel on one side of a card, then there is
an even number on the other side” ([15, p. 273], turn over only the cards needed
to find out if the rule has actually been followed.

The solution: Turn over the card with a vowel shown face up and the card with
an odd number shown face up. The vast majority of participants were unable to
carry out the task successfully. Mistakes often involved turning over the card
with an even number shown face up (assuming the converse is true) and not
turning over the card with an odd number shown face up (not recognizing the
truth of the contrapositive).
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Although individuals seem to struggle with abstract logical tasks, it also
appears that people are more successful when the tasks are posed in a familiar
context. For example, in [13], the authors found that education majors rea-
soned about contraposition better in a verbal, syllogistic environment than
in a purely mathematical environment with abstract symbols and sentences.
Wason and Shapiro [16] also found that participants performed better on the
Wason Selection Task when given a rule with familiar content, as opposed
to an abstract rule. For example, a rule such as “every time I go to Manch-
ester, I travel by car” [16, p. 68] would be considered “familiar” whereas the
rule “every card which has a D on one side has a 3 on the other side” [16, p.
68] would be considered “abstract.” It is important to note that although these
studies do seem to suggest that familiar contexts can help students to reason
correctly, Stylianides et al. [13, pp. 155–156] state that

research, however, provides a weak basis on which to formulate hypotheses about
the relation between students’ performance in tasks with non-meaningful words
and symbolic tasks that investigate the same logical principles

and that research tends to favor logical reasoning in “meaningful verbal con-
texts.” For additional work regarding the teaching and learning of logical
implication, see Yopp [17] for a study related to eighth grade learning of the
contrapositive and Attridge, et al. [1] for undergraduate understanding of con-
ditionals given previous logic experience. Also, see [7] and [10] for recent
work related to the Wason Selection Task.

Findings from decades of research have provided insights into student
thinking and the challenges that students encounter with calculus ideas such
as limit, differentiation, and integration. For a history of this work, see [8], and
for more detailed reviews of the literature and findings specific to sub-topics
in calculus, see [2] and [3], and SIGMAA on RUME conference proceedings
(http://sigmaa.maa.org/rume/). The instruction students receive about key cal-
culus ideas often includes theorem or theorem-like statements and students are
expected to reason logically from them. However, the vast majority of research
into student understanding of this kind of logical reasoning has occurred in the
context of introduction to proof or other proof-focused courses [11] and has
not focused on students in introductory calculus.

Although much work has been done separately on both the issues of
logical implication and calculus learning, we know little about how students
understand and work with ideas of logical implication that appear in theorems
and theorem-like statements in a calculus context. Researchers have exam-
ined related ideas through studies of student thinking about sequences and
series (see, for example, [9]) and some work (e.g., [11]) has examined calcu-
lus students’ meanings for quantifiers found in calculus theorems. However,
the focus in that work was specifically on quantifiers appearing in complex
theorems. To date, beginning calculus student understanding of conditionals
in the form of if-then statements that occur in introductory calculus has not
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been closely examined. To explore this, we were interested in whether calcu-
lus students had the same kinds of difficulties with calculus-based conditional
statement tasks as they did with the purely abstract tasks. In other words, we
wondered if calculus theorems provided enough of a “context” to support stu-
dents’ productive reasoning or whether those tasks were treated in the same
way as the classic, abstract tasks.

To examine this, we focused on particular types of tasks set in abstract
and calculus contexts that are characteristic of one kind of reasoning expected
of students. In particular, in calculus, students are told to take for granted the
truth of a particular theorem and then asked to draw conclusions given a true
or false antecedent or consequent. It is important to note that we did not ask
students to consider the truth or falseness of an entire conditional statement.
Below are the tasks, in the abstract, that students were asked to consider:

• Inverse Task: Suppose that p ⇒ q is true and you know that p is false. Is q
true, false, or is it not possible to tell? Explain.

• Converse Task: Suppose that p ⇒ q is true and you know that q is true. Is
p true, false, or is it not possible to tell? Explain.

• Contrapositive Task: Suppose p ⇒ q is true and you know that q is false. Is
p true, false, or is it not possible to tell? Explain.

• Modus-ponens Task: Suppose that p ⇒ q is true and you know that p is
true. Is q true, false, or is it not possible to tell? Explain.

In abstract terms, they are given that p ⇒ q for a particular p and q as well as
a situation in which p (or q) is either true or false. An inference may then be
made by reasoning with these two pieces of information.

As an example of such a task, students may be told to assume that the
following theorem is true:

For all functions f, if f is differentiable at a point x = c, then f is also continuous
at the point x = c.

Then, given a particular function and point such as f (x) = x2 at x = 0, the
student is then expected to investigate whether f (x) = x2 at the point x = 0 is
differentiable. If the student determines that the antecedent is met, the student
may then use the theorem to infer that f (x) = x2 is continuous at the point
x = 0. Given the importance of this kind of reasoning, we focus on student
reasoning involving the inference of q (or p) given a true implication statement
p ⇒ q and true or false p (or q).

Note that we are not concerned with students’ abilities to validate the
truth or falseness of an entire conditional statement given an antecedent and
consequent. Rather, we are interested in how students infer the status of an
antecedent or consequent given a true conditional statement and a true or false
antecedent or consequent. This connects to the use of truth tables, such as the
one in Table 1 that characterizes logical implication. In this table, conditions
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Table 1. Truth table for a
conditional statement

p q p ⇒ q

T T T
T F F
F T T
F F T

are placed on the antecedent p and the consequent q that allow for a true con-
ditional statement or a false conditional statement. In the case of our study, we
are interested in students’ abilities to evaluate the truth status of a particular p
or q.

We designed our study to examine how calculus students engage with
logic tasks. In particular, we sought answers to the following questions:

• How successful are calculus students with logical implication tasks set in
calculus and abstract contexts?

• What, if any, relationship exists between success on one type of task and
success on the other?

• What strategies do students use when engaged in calculus theorem tasks
involving logical implications?

Our answers to these questions provide insights into how students make sense
of problems that can be used to inform instructional design aimed at improving
student understanding of theorems and definitions in calculus.

3. RESEARCH DESIGN

Similar to much of the prior work on student thinking about calculus, this study
was performed from a cognitive theoretical perspective, and thus, students’
written and spoken statements were used as data regarding their thinking and
understanding of the ideas. Surveys were given in a first semester differen-
tial Calculus I class at a university in New England near the end of the fall
semester. In total, there were 52 participants. The surveys consisted of two
parts. Part I consisted of a well-known calculus theorem and four tasks that
were modeled after the theorem and its standard conditional variations. In
Part II, the same four tasks were given, but presented in an abstract manner.
Many of these tasks resembled syllogisms (e.g., All men are mortal. Socrates
is a man. Therefore, Socrates is mortal), but were stated in a formal context
using letters and symbols to represent statements. See Figure 1 for sample
tasks.
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Figure 1. (Left) A sample calculus task (converse reasoning) from Part I. (Right) A
sample abstract task (converse reasoning) from Part II.

We note that students are not determining whether a full conditional
statement is true or false given a premise and a conclusion. Rather, given a
conditional statement and an antecedent (or consequent), students are asked
to determine if the corresponding consequent (or antecedent) is true, false, or
if there is not enough information to decide. Although other researchers have
established the difficulties students have with these kinds of abstract tasks (see
beginning of previous section), we sought to examine the extent to which these
difficulties were apparent in the (relatively) less abstract context of calculus
theorems.

As our focus was on whether (and how) students reason about the various
conclusions drawn from a calculus theorem and a premise, our data collec-
tion occurred after the calculus theorems used on our instruments had been
introduced in the course. As a result, students were likely familiar with those
theorems and had used them in various ways, but were unlikely to have been
asked to reason in the manner presented on the survey. Although some students
may have had instruction in formal logic in a high school course, that topic is
not addressed explicitly in the calculus course from which study participants
were recruited. This design enables us to examine student thinking as it is
apt to occur post-instruction in a calculus course. Investigating the extent to
which that thinking may have changed from pre-instruction to post-instruction
is beyond the scope of the present study.

Two versions of the survey were distributed, each consisting of a different,
well-known calculus theorem, as well as a different abstract conditional state-
ment (see Figure 1). Each student received one version of the survey. There
was no statistically significant difference in student performance between the
two versions.

To learn about student strategies for solving the survey tasks, 10 students
were interviewed. During these clinical interviews [5], participants were asked
to work through a version of the survey and prompted to explain their reason-
ing. Various follow-up and probe questions were used to generate further data
on student thinking and solution strategies. Interviews were recorded using
LiveScribe technology to capture both their written work and spoken answers.
Interviews lasted approximately 20–40 minutes each.
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4. DATA ANALYSIS

Survey responses were coded as “correct” or “incorrect.” For example, con-
sider the calculus task given in Figure 1. If a student believed that the correct
choice was “h is differentiable at x = 7” or “h is not differentiable at x = 7,”
then the response was coded as “incorrect” since, according to the truth table
given in Table 1, the conclusion might be either true or false. Thus, the correct
answer for this task would be “not enough information.” To compare per-
formance on the abstract and calculus versions of the tasks and to examine
potential relationships between performances on the two types of tasks, we
carried out several kinds of statistical tests (described below in conjunction
with the presentation of the results). For the interview data, in addition to cod-
ing interviewees’ responses as correct or incorrect, analysis centered on the
manner in which interviewees explained their answers. In particular, the focus
was on the kinds of strategies participants used when working through the
problems. This phase of the analysis was informed, in part, by prior research
(e.g., [6]) on student thinking about implication and by the use of Grounded
Theory ([12]) to further characterize student strategies beyond the general
characterizations previously documented in the literature. Categories and
sub-categories were developed to describe these strategies in detail.

5. STUDENT PERFORMANCE ON TASKS

Consistent with prior research [13, 16] and as Figure 2 shows, students were
more successful on the contextual tasks (in this case, the calculus tasks) than
on the abstract tasks. On the calculus tasks, 63% of the 52 survey participants
answered at least three of the four tasks correctly and 33% answered all four
correctly. In contrast, only 8% of students produced correct answers for at least
three of the abstract tasks, and none had all four correct. These differences
between the calculus and abstract consistency percentages were statistically
significant, suggesting that the calculus context prompts students to engage
differently with the calculus tasks than with the abstract tasks.

We were also interested in potential relationships between success on
one type of task and success on the other. For example, given that a stu-
dent identified the correct answer to an abstract task, what is the conditional
probability that they also answered the calculus version of that same task cor-
rectly? Given that a student did not correctly answer an abstract task, how
likely are they to answer the calculus version of that same task correctly?
The results show that, for the modus ponens, converse, and inverse reasoning
tasks, using a 2-proportion z-test, there was no statistically significant advan-
tage when answering the calculus version of a task given a correct answer
on the abstract version (see Table 2). However, for the contrapositive task,
students who answered the abstract version correctly did have an advantage
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Figure 2. Student performance on calculus and abstract tasks from survey data.

Table 2. Conditional probabilities of answering calculus tasks correctly (* indicates
statistical significance with α = 0.05)

Probability of correct
calculus answer given a
correct abstract answer

Probability of correct
calculus answer given an
incorrect abstract answer p-value

Modus Ponens 0.89 0.88 p > 0.05
Converse 0.89 0.65 p > 0.05
Contrapositive 0.85 0.56 0.01 < p < 0.05*
Inverse 0.56 0.63 p > 0.05

when answering the calculus version (more will be discussed about this in
Section 6 of this article). Thus, overall, we found that students who were not
able to answer the abstract tasks correctly were still able to make sense of
calculus theorems and definitions.

6. STUDENTS’ REASONING STRATEGIES

Although analyses of the survey data provided some insights (e.g., the calculus
context seems to make some of the reasoning easier for students, the abstractly
stated tasks are generally much more difficult for students, etc.), we wanted
to understand more about student thinking concerning the inferences, to gain
further insight into the findings from the survey data analyses. From analysis
of the interview data, we identified several different ways in which students
approached the tasks. As displayed in Figure 3, there were three main ways of
thinking (plus “other’), some of which had sub-categories that characterized
the thinking at even finer levels of detail. The “other” category was used for
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Figure 3. Types of reasoning exhibited by interviewees.

responses that were difficult to categorize and/or did not seem to fit the main
categories. Characteristics of the three main categories are discussed here.

6.1. Child’s Logic and Knowledge of Conditonals

We first consider the strategies located on the two left-most branches in
Figure 3. Interviewees who responded with “Child’s Logic” (a common log-
ical misunderstanding) tended to match truth-values (that is, they responded
with “True” when given a true premise and responded with “False” when given
a false premise). This strategy, when applied with complete consistency, gen-
erates correct answers to two of the four tasks. While interviewees sometimes
exhibited “Child’s Logic” [6] on the calculus portion of the interview, they
appeared more apt to consistently apply this kind of thinking on the abstract
section. For example, 5 of the 10 interviewees responded to all four abstract
tasks with Child’s Logic whereas only one responded to all four calculus tasks
with Child’s Logic.

Interview responses based on some knowledge of conditionals were also
given a category. Here, participants explained their work by following some
rule or rules that they appear to have already internalized prior to their
response. For example, at least one student explained that if you are given
a conditional statement, only the modus ponens and contrapositive inferences
could be made conclusively. This approach is correct, however, it appeared to
be based primarily on knowledge students had about conditionals and not on
any reasoning actions that they performed during the interview. Some believed
that, given a conditional statement, it was only possible to make the modus
ponens inference because the given conditional does not allow for any other
possibilities. Thus, these students believe, incorrectly, that a conclusive deduc-
tion cannot be made regarding the task requiring contrapositive reasoning.
This kind of partially correct thinking does provide correct responses for the
inverse and converse tasks, since a conclusive inference cannot be made for
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them. However, this reasoning does not represent a complete understanding of
how rules of logic apply to conditionals. In contrast with responses described
below, these interviewees seemed to be recalling a rule to apply to the situation
and were not engaged in extensive reasoning about the situations themselves.
This strategy seemed to be the least prominent of the strategies used by the
interviewees.

6.2. Reasoning with Examples

Many interviewees engaged with the tasks in a different way by generating an
example or examples (via a graph or a verbalized scenario) to illustrate their
thinking on at least one of the eight tasks. Although this occurred mostly with
the calculus tasks, one student also used the example generating strategy when
working on the abstract versions of the tasks. Two forms of this strategy were
evident in the data: one utilized a single example to provide a justification and
the other involved multiple examples. Interviewees used both forms of this
strategy in their explanations of correct answers; however, they did not appear
to be equally useful for reaching a correct conclusion.

6.2.1. Reasoning with a Single Example

In the single example approach, students generate an example graph or verbal-
ize a relationship to explain the thinking behind their answer. Some students
used this approach when providing explanations for why the contrapositive
reasoning task is true. For example, Jordan was working with the theorem

For all functions f, if f has a local maximum value at x = c, then c is a critical
point of f

and was asked to explain his answer to the associated contrapositive reasoning
task. Jordan drew a graph and tried to explain that if point c on the graph was
not a critical point, then the function would not have a local maximum at that
point. Although Jordan referred to various features of his graph as he tried
to explain the thinking behind his correct response, he was unable to provide
clear and convincing justification. After being asked to explain his answer,
Jordan’s response included quite a bit of hesitation and did not provide a clear
chain of reasoning. He said:

Jordan: Um, well when you’re um . . . when you see a graph . . . and you’re try-
ing . . . and you take the [pauses for a moment]. Well, let me think about [pauses
again for a moment]. Oh, oh okay, well from a graph the two critical points are
your local max and min and if its not a critical point than it can’t be [inaudible]
max or min.

Then the interviewer asked: “is there a way you could illustrate maybe what
you’re saying . . . ?”
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Figure 4. Jordan’s example for the calculus contrapositive reasoning task.

This prompted Jordan to generate the graph he used to illustrate his rea-
soning (see Figure 4). During the discussion, Jordan was unable to provide
a more compelling answer and eventually suggested the use of an equation
to illustrate what was going on. A similar type of conversation also occurred
when another student tried to use a single example as part of his explanation
for his answer to the calculus contrapositive task.

When taking the single example approach to answering the calculus
contrapositive task, students’ struggles to explain their reasoning are not sur-
prising. Visualizing one example in this situation is not going to provide the
kind of solid evidence needed to obtain the appropriate conclusion for contra-
positive reasoning. The two-example strategy described below was effective
for students as they reasoned to obtain the correct answer for the converse
and inverse reasoning tasks. This appears to be effective because it involves
generating two examples and then noting that they provide contradictory infor-
mation about the truth status of the conclusion. This generates evidence that
there is not enough information to decide whether the conclusion is true or
false. We refer to this as the “contradictory examples” approach. Generating
single examples to explore and explain the truth of the contrapositive vari-
ations to the theorems may have resulted in correct answers. However, they
were not productive approaches in the sense that students did not appear able
to provide a complete explanation for their response. In large part, this is due
to the nature of the contrapositive tasks. Here, contradictory examples cannot
be obtained to properly infer the correct solution.

In contrast with the example-generating approaches used by intervie-
wees on the converse and inverse reasoning tasks, interviewees who gave
correct answers to the abstract contrapositive reasoning tasks sometimes jus-
tified their answers by appealing to logic or by deriving the contrapositive
rule itself via a contradiction argument. Findings from the survey data analy-
sis support the notion that the pure, logical understanding exhibited by some
of these students when answering the abstract contrapositive reasoning task
may be useful even as they consider the calculus version of the same task.
More specifically, for the surveys, performance on the contrapositive calculus
task was the only task variation that was correlated with performance on the
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abstractly presented version (see Table 2). In other words, having some for-
mal (or abstract) understanding of contrapositives makes it more likely that
students would answer the calculus contrapositive task correctly. These find-
ings suggest that, for the calculus contrapositive task, the example generating
strategy may not be as effective compared to knowing and applying rules of
logic.

6.2.2. Reasoning with Two Contradictory Examples

As mentioned above, the power of the two-example generating strategy was
evident when interviewees worked with tasks where there was not enough
information to decide whether the antecedent or consequent was true or false
(and thus showing that both the converse and inverse are invalid). In this
approach, some interviewees utilized two, contradictory examples in order to
logically deduce the correct answer. These discussions generated rich data on
student thinking and potentially useful instructional implications.

We now present a transcript that illustrates this kind thinking. Here, the
student (Jack) provides an explanation for his answer to the calculus inverse
task that involved the following theorem:

For all functions f, if f is differentiable at a point x = c, then f is also continuous
at the point x = c.

While drawing the graphs shown in Figure 5, he says the following:

Jack: So, it’s just like [pauses to draw axes and says something inaudible] and
something goes like . . . this [draws a continuous function with a sharp corner].
And I mean you could define it as maybe two different line segments and try to do
it that way, but the function itself isn’t continuous [we suspect, from the context,
that he meant “differentiable”] because at that point there’s no specific, um, rate
of change. However, for “b”, um . . . a function . . . very well could be not contin-
uous and not differentiable. Say the function just [draws a linear function with a
hole] . . . so you have some function that just has a hole in it. It’s not continuous
and it’s not differentiable.

Jack produced two function graphs that invalidate two of the multiple-choice
options (“f is continuous at the point” and “f is not continuous at the point”)
in order to infer the correct answer (not enough information to decide). This
strategy allowed Jack (and others who used this strategy) to take advantage of
the calculus ideas presented in the problem and create a scenario so that the
correct answer became clear. Five interviewees used examples at some point
during the calculus portion of the interview. Four out of these five interviewees
used contradictory examples.

To illustrate this productive strategy further, we provide another transcript
excerpt involving contradictory examples. Here Ryan used two contradictory
examples to deduce the correct answer (“not enough information to decide”)
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Figure 5. Jack’s contradictory examples to the calculus inverse task.

Figure 6. Ryan’s contradictory example for the calculus converse task.

for one of the calculus converse tasks. In particular, Ryan worked with the
theorem:

For all functions f, if f has a local maximum value at x = c, then c is a critical
point of f.

Interviewer: So if you could explain to me again how do you go from c is a critical
point to deducing that . . . we don’t know if it’s a . . . if there’s a maximum there.

Ryan: So, the, the c is a critical point . . . of the function k, but we don’t know if
c is a local maximum or local minimum . . . or is undefined. But, the answer “a”
it’s a local maximum . . . we don’t know much about it and c does not have a local
minimum value at x = c we also don’t know it. So it should be “c” not enough
information.

In the above excerpt, Ryan explained that just because we are told that a critical
point exists, that does not imply that it is a maximum. After all, the point
could be a minimum or have a vertical tangent line. Therefore, the correct
answer is “not enough information to decide.” After some more discussion,
Ryan illustrated his explanation with a graph (Figure 6).

As we have seen, contradictory examples seem to provide a logical
foothold for calculus students thinking on calculus converse and inverse rea-
soning tasks. Students’ use of this method allowed them to answer these
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tasks correctly with sound logical reasoning. On the abstract portion, how-
ever, only one student tried to answer a task with a generated example. As
discussed above, survey participants did not perform as well on the abstract
tasks. This may be in part because they were unable to create scenarios
based on the task with which they could work and reason about. Note also
that although the single example approach may have led students to correct
answers, it did not mean that the answer explanation was always satisfactory or
valid.

7. DISCUSSION AND IMPLICATIONS

Consistent with other researchers’ findings (e.g., [14]), participants in this
study encountered difficulties when asked to complete tasks based on state-
ments presented in abstract ways. Other researchers have found that success
is higher when people are asked to engage in the same kinds of reasoning but
with familiar language-based examples (e.g., [13]). Findings from the present
study suggest that whatever cognitive supports that familiar English-language
statements provide also seems to be provided by mathematical statements
(i.e., lemmas and theorems) involving calculus. In other words, overall, stu-
dents reason more successfully with conditional statements about calculus
ideas than they do with purely abstract statements. However, patterns in the
data suggest that this is not the case for tasks involving contrapositive state-
ments. That is, students who possess a purely logical understanding of the
contrapositive reasoning appear to have an advantage when approaching tasks
involving the same conditional variation in the calculus context. It was also
found that students could engage in example-generating strategies to success-
fully explore and explain the validity of calculus statements and to demonstrate
an understanding of the inverse and converse reasoning tasks in calculus
contexts.

These findings suggest a variety of learning opportunities instructors can
provide to strengthen understanding of and fluency with logical implication.
Here we provide four specific instructional suggestions using the theorem:

If a function is differentiable at point x, then it is continuous at point x.

Analogous examples can, of course, be generated based on other statements
that have if–then structures (e.g., extrema-critical point definitions, Mean
Value Theorem, Intermediate Value Theorem, etc.). We envision students
doing these kinds of tasks as part of their first encounter with a calculus
theorem, lemma or definition and then again throughout the course as they
are exposed to more and more conditional statements.

Instructional strategy #1: Generate versions of a statement. The first
type of instructional task is designed to give students opportunities to generate
versions of statements based on the standard conditional variations. The goals
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here are to introduce (or reinforce) the structure of a conditional and its varia-
tions and, as a result, increase students’ abilities to recognize the variations of
statements they may encounter or generate themselves. For example:

A) Using the theorem:

If a function is differentiable at point x, then it is continuous at point x,

as a starting point, write the converse, inverse and contrapositive variations of
this statement. Recall that if you start with a statement of the form A implies
B, the converse is B implies A, the inverse is not A implies not B, and the
contrapositive is not B implies not A.

Instructional strategy #2: Use the contrapositive. Our findings suggest
that in drawing conclusions related to the contrapositive of a statement, stu-
dents are successful when they understand this variation in abstract, formal
ways. Recall that students who correctly answered the abstractly presented
contrapositive tasks were more likely to be successful in their reasoning about
the contrapositive task of the given calculus theorem. This suggests that there
is value in providing students with opportunities to develop (or strengthen)
their understanding of why the contrapositive of a true statement is also true.
We suggest that students be given opportunities to see and work with the proof
for the contrapositive. For example:

B) Theorem:

For all functions f, if f is differentiable at x = c, then it is continuous at
x = c.
What we know: g is not continuous at x = c.
Show that g must not be differentiable at x = c by first assuming that g is
differentiable at x = c and deriving a contradiction.

By assuming that g is differentiable at x = c, the given theorem would allow
the student to find that g is continuous at x = c. However, this contradicts the
given fact that g is not continuous at x = c. Therefore, g is not differentiable
at x = c.

These next two strategies are extensions of the previous activity in the
sense that we are having students evaluate an entire conditional statement, as
opposed to simply the antecedent or consequent. Here the focus is on develop-
ing students’ abilities to draw conclusions based on examples and in this case,
we have students make judgements about a complete statement of the sort they
encounter in their work in calculus.

Instructional strategy #3: Generate examples. Students in the study
who were successful in determining the conclusions of statements given a
particular premise often did so by generating examples. This allowed them
to examine whether there were instances when a consequent of a statement
could be true and other instances when it could be false. If contradictory
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observations were made, they were able to determine that the truth or falsity
of the statement’s conclusion could not be decided.

We suggest that instructors raise students’ awareness about the value of
this approach so that all students are armed with this productive strategy. One
way to provide these learning opportunities is to have students work on tasks
that scaffold the process (extensively at first and then less so) used successfully
by students in our study. Two versions of this approach are described here. In
the first version, students are presented with a true statement and a variation
of it based on either the inverse or converse of the statement. For scaffolding
purposes, they are told that the variant of the statement is NOT true in general
and instructed to generate two examples to illustrate this. For example:

C) Consider this theorem:

If a function is differentiable at point x, then it is continuous at point x.

The following statement is NOT true in general:

If a function is continuous at point x, then it is differentiable at point x.

You are now going to produce a pair of examples to show that this state-
ment may be true in certain instances, but not true in general. Create an
example of a function that is continuous at point x and is also differentiable
at point x. Now create another example of a function that is continuous at
point x but is NOT differential at point x.

Another version of this type of task entails presenting students with an
initial true statement as well as a variant of the statement, prompting them to
generate examples, and having them determine what those examples mean for
the general truth of the variant statement. For example:

D) Consider this theorem:

If a function is differentiable at x = a, then it is continuous at x = a.

Here is a variation of this statement:

If a function is NOT differentiable at x = a, then it is NOT continuous at x = a.

Create an example of a function that is NOT differentiable at x = a but
IS continuous at x = a. Then create a second example function that is NOT
differential at x = a and is NOT continuous at x = a. What can you conclude
about the statement:

If a function is NOT differentiable at x = a, then it is NOT continuous at x = a

based on your two examples?
Instructional strategy #4: Draw conclusions based on examples. A

final type of task instructors can use to support student reasoning also follows
from our finding about the prevalence of example generating as a strategy
students used productively.
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Figure 7. Contradictory examples for the converse task involving the differentiability
implies continuity theorem

In these tasks, students are given a statement and a set of examples, and
asked to determine whether the examples provide evidence that the statement
is true in general or false. For example:

E) This problem makes use of this theorem:

If a function is differentiable at point x, then it is continuous at point x.

A friend of yours says the following is also true:

If a function is continuous at point x, then it is differentiable at point x.

Examine the graphs of function g and function h. Taken together, do the graphs
in Figure 7 provide evidence that your friend is correct or incorrect? In other
words, what can you conclude based on the graphs of g and h?

Findings from the present investigation provided insights into student per-
formance and thinking about conditional statements, but examining additional
research questions could enhance our understanding of these issues further.
Here we provide a few suggestions for future research.

The fact that students who were successful with calculus-based reasoning
tasks often used an “example-generating” strategy gives us hope that providing
all students with opportunities to learn about these strategies will be valuable.
However, determining the extent to which this is effective would be a valuable
next step. In particular, do students’ theorem-reasoning abilities improve if
they engage in the type of tasks listed above?

Conditional reasoning situations are pervasive throughout mathematics
but it remains to be seen if what we found in terms of performance and reason-
ing strategies with calculus students would also be apparent in other student
populations. For example, would we find similar performance and reason-
ing strategies if we presented abstract and context-specific tasks to students
in number theory, differential equations, abstract algebra or other courses?
At what point during the sequence of mathematics major courses do stu-
dents become able to reason equally well with abstract and context-specific
statements and what supports that learning?
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As noted earlier, findings from the contrapositive-structured tasks were
different from the others. Although we hypothesize that this is because the
nature of the contrapositive structure makes the example-generating strategy
unproductive, investigations to reveal more about student thinking in these
situations would be useful to further inform design of instructional tasks to
help strengthen student understanding of contrapositive reasoning.

We also wonder what relationships, if any, exist among students’ abili-
ties to reason when the task is set in a non-calculus (but “real life”) context,
in a calculus context, and in the abstract. In this study, we examined rela-
tionships between student thinking in calculus contexts and the abstract.
Other researchers have examined relationships between the “real life” and
abstract contexts, but further insights might be gained from a study designed
to examine all three simultaneously and the relationships among them.

A fruitful follow-up study might involve investigating how the teaching
of logical reasoning in calculus affects students’ ability to reason in abstract
and calculus contexts. Is it true that students are better at reasoning in either
the abstract or the calculus tasks (or both) if they are given explicit instruc-
tion about logical reasoning with theorems in class? Carrying out such a study
might reveal ways in which the teaching of logic in relation to theorems may
or may not affect students’ ability to reason with the tasks given in the present
research.

8. CONCLUSIONS

Logical reasoning is foundational to all of mathematics, and calculus is essen-
tial for students pursuing STEM majors. Unfortunately, not all students have
had rich opportunities to study logical reasoning in secondary school, and
thus may still be developing their understanding when they arrive at their
study of calculus and the theorems they will eventually encounter. This also
highlights the potential challenges for those students who go on to take fur-
ther courses related to proof. Thus, the study of conditional reasoning in
calculus may potentially help lay the groundwork for students who wish
to move beyond calculation-based mathematics. Although these issues are
difficult, from the findings of the research presented here, it appears that
calculus students who struggle with formal, traditional inference tasks may
still be quite able to draw appropriate logical conclusions when the state-
ments are calculus-oriented. This finding provides encouragement to those
who strive to create learning opportunities that build student understand-
ing of calculus and expose students to the ideas of logical reasoning. If we
aim for students to obtain a full, logical understanding of the results found
in calculus, then finding ways to refine their abilities to comprehend and
make sense of calculus theorems and their variants could help them reach
this goal.
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