From seed to settlement: Examining the connections between farmed and 'wild' oyster populations in Maine

Sarah Risley^{1,2,3*}, Heather Leslie^{1,2,3}

¹ UMaine School of Marine Sciences; ² UMaine Darling Marine Center, ³ UMaine Ecology & Environmental Sciences Program

*sarah.risley1@maine.edu

Oysters are reemerging on Maine's coasts

The American oyster (*Crassostrea virginica*) once functionally extinct, is **reemerging along Maine's coast.**¹

These intertidal and subtidal 'wild' oyster populations are **likely the result** of larval spillover from reproductive (diploid) oysters raised on aquaculture farms.^{2,3}

We investigated the connections between the coupled systems of farmed oysters and the wild oyster fishery.

(Pictured: A. Oyster spat on rock. B. Adult 'wild' oysters)

Farm-raised oysters are reproducing

Method: Histological analysis

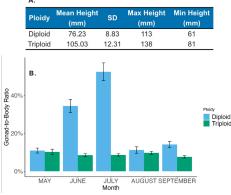


Figure 3: A. Size characteristics (shell height) of farmed oyster samples. B. Gonad-to-body ratio (as %) of triploid (n=74) and diploid (n=74) farmed oysters in the Damariscotta River estuary (DRE).

Yet, 'wild' oysters populations are present

Method: Intertidal walking surveys

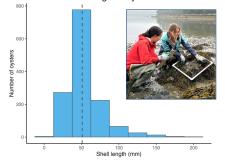


Figure 6: Average size distribution of sampled 'wild' oysters found in the DRE's intertidal zone (n=1,387). Note: Dotted line shows legal harvest size. *Photo inset shows survey methods*.

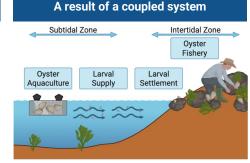


Figure 2: Schema showing the connections between reproductive farmed oysters and harvested intertidal 'wild' oysters in a coupled aquaculture-wild fishery system (*Image created in Biorender*).

Provide a viable larval supply

Method: Histological analysis

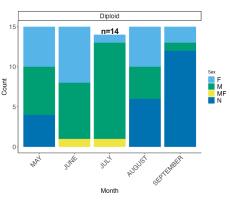


Figure 4: Sex ratio frequency of sampled diploid farmed oysters by month in the DRE (total n = 74, n=15 per month, except in July; male=M, female=F, MF=hermaphrodite, N=indeterminate).

A new fishery under pressure

Overharvest	"I think I had my first [shellfish] license in 2017 and you couldn't even sell what [oysters] you could find. Then the oysters kind of gained in popularity in 2019. Then there were a lot of people out there doing it. And now I would say you can't get much."
	"I would say it's gone down quite a bit. I think [oysters] gained in popularity, and the price went up. So that made a lot of people gather the productit's probably been getting a little overfished."
Farming triploids	"I don't believe the wild oysters are repopulating themselves And now a lot of [aquaculture farms] are also buying the triploids, not the diploids. So they're supposedly not going to reproduce."
	"Now there actually hasn't been as many spawning events with the American oyster, and I don't quite know why. I would say is because [aquaculture farms] went from [raising] diploids to triploids."
Fable 4: Quates from shallfish her leaters on the DDE (n=2)	

Table 1: Quotes from shellfish harvesters on the DRE (n=3)

Acknowledgements

Exploring connections with multiple methods

Guiding questions:

- 1. When and at what size do farmed oysters spawn in the Damariscotta?
- 2. How many potentially reproductive farmed oysters are there in the Damariscotta?
- 3. If farmed oysters are spawning, are the larvae
- contributing to reemerging 'wild' populations and where? Multiple methods:
- 1. <u>Histological analysis</u>: Monthly dissection and histology analysis of farmed oysters (May-September 2024).
- Larval recruitment study: Shell bag collectors deployed May-October (2023-2024) in intertidal zone.
- Intertidal walking surveys: Quadrat sampling (0.25 m²) of wild' oysters within intertidal zone (2023-2024).

Recruitment to the intertidal zone is low

Method: Larval recruitment study

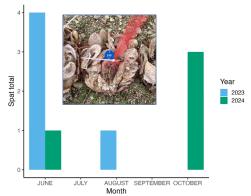


Figure 5: Total *C. virginica* larval recruitment observed at a longterm monitoring site in the upper DRE. Recruitment has been low in the past two years with very few spat observed. *Photo inset shows shell bag larval collectors*.

Conclusions

- American oysters raised on farms are reproductive and may be a viable larval source.
- Although recruitment is low, 'wild' oysters are present in the intertidal zone and are actively targeted by commercial harvesters. These wild oysters represent a new fishery opportunity.
- However, two factors may be limiting the growth of intertidal and subtidal wild oyster populations:
 - Overharvesting of adults.
- Movement towards raising triploids over diploid (reproductive) oysters on farms.
- Oyster aquaculture may facilitate the restoration of wild oyster populations and can be leveraged to enhance restoration efforts, for both ecosystem services and fisheries enhancement.

References: 'Larsen, P., Wilson, K. A., & Morse, D. (2013). Observations on the Expansion of a Relict Population of Eastern Oysters (Crasscellar vignica) in a Maine Estayar: Implications for Climate Change and Resistration. J Delago, D. F. (2021). Investigating Lanal Splitover From Oyster Aquaciture Through Geospatial Habitat Suitability Index Modeling: A Damariscotta Pilver Estayar Case Study-'Relisey, S. C., Britsch, M. L., Sold, J. S., & Leise, H. M. (2025). Mesping local knowledge supports science and

