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Unsupervised category learning with integral-dimension
stimuli

Shawn W. Ell1, F. Gregory Ashby2, and Steven Hutchinson1

1Psychology Department, University of Maine, Orono, ME, USA
2Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara,
CA, USA

Despite the recent surge in research on unsupervised category learning, the majority of studies have
focused on unconstrained tasks in which no instructions are provided about the underlying category
structure. Relatively little research has focused on constrained tasks in which the goal is to learn prede-
fined stimulus clusters in the absence of feedback. The few studies that have addressed this issue have
focused almost exclusively on stimuli for which it is relatively easy to attend selectively to the component
dimensions (i.e., separable dimensions). In the present study, we investigated the ability of participants
to learn categories constructed from stimuli for which it is difficult, if not impossible, to attend selectively
to the component dimensions (i.e., integral dimensions). The experiments demonstrate that individuals
are capable of learning categories constructed from the integral dimensions of brightness and saturation,
but this ability is generally limited to category structures requiring selective attention to brightness. As
might be expected with integral dimensions, participants were often able to integrate brightness and
saturation information in the absence of feedback—an ability not observed in previous studies with
separable dimensions. Even so, there was a bias to weight brightness more heavily than saturation in
the categorization process, suggesting a weak form of selective attention to brightness. These data
present an important challenge for the development of models of unsupervised category learning.

Keywords: Categorization; Implicit/explicit memory; Feedback-based learning.

There has been a recent surge in research on unsu-
pervised category learning—that is, the ability to
learn categories in the absence of corrective feed-
back. Studies focusing on unsupervised learning
provide an important complement to the studies of
supervised learning that have dominated the field

as, arguably, much everyday learning occurs in the
absence of trial-by-trial feedback. Given the ubi-
quity of unsupervised category learning, it is not
that surprising that individuals can spontaneously
construct categories in the absence of feedback
(e.g., Medin, Wattenmaker, & Hampson, 1987).
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Much of the research on unsupervised category
learning, however, has focused on unconstrained
tasks where participants have no knowledge that
there is an optimal categorization strategy, if one
exists at all (Ahn & Medin, 1992; Billman &
Knutson, 1996; Clapper & Bower, 1994;
Colreavy & Lewandowsky, 2008; Diaz & Ross,
2006; Handel & Imai, 1972; Love, 2002; Medin
et al., 1987; Milton, Longmore, & Wills, 2008;
Milton & Wills, 2004; Pothos & Chater, 2005;
Pothos & Close, 2008; Regehr & Brooks, 1995).
In unconstrained tasks, the primary focus is on
how participants prefer to construct categories.
For instance, in the typical free-sorting task, par-
ticipants are presented with a number of stimuli
(either simultaneously or sequentially) and are
asked to place the stimuli into a number of cat-
egories in any way they like. The participants are
not informed that there is an underlying category
structure (if one exists). Therefore, using a
common performance measure such as accuracy is
problematic because there is no objectively correct
response.

Although unconstrained tasks have been impor-
tant for understanding how characteristics of the
stimuli and task influence categorization strategy,
it is also important to investigate unsupervised cat-
egory learning in more constrained tasks in which
participants are attempting to learn the optimal cat-
egorization strategy (Ashby, Queller, & Berretty,
1999; Zeithamova & Maddox, 2009).1 In con-
strained tasks, the primary focus is on what types
of category structure individuals are capable of
learning. With the exception of feedback, the
methodology in constrained tasks closely parallels
most supervised category-learning paradigms as

participants know that their goal is to learn an
underlying category structure. Therefore, accuracy
is an appropriate performance measure because
there is an objectively correct response.

To our knowledge, all constrained tasks and the
majority of unconstrained tasks have used stimuli
for which it is relatively easy to attend selectively
to the component dimensions (i.e., separable
dimensions). Two dimensions are said to be separ-
able if it is possible to attend to one dimension and
ignore the other (e.g., hue and shape; Garner, 1974;
Imai &Garner, 1965). Conversely, two dimensions
are said to be integral if it is impossible to attend
to one and ignore irrelevant variations in the
other (e.g., brightness and saturation; Garner &
Felfoldy, 1970; Torgerson, 1958).2

Under supervised conditions, participants can
readily learn categories constructed from integral
dimensions (Grau & Kemler-Nelson, 1988;
McKinley & Nosofsky, 1996; Mounts & Melara,
1995; Nosofsky & Palmeri, 1996; Shepard &
Chang, 1963). There is, however, an extensive lit-
erature documenting differences in the processing
of separable and integral dimensions (Foard &
Kemler-Nelson, 1984; Lockhead, 1972). In the
context of supervised category learning, selective
attention mechanisms operate less efficiently
when learning categories constructed from integral,
rather than separable, dimensions (Maddox, 2001;
Maddox & Dodd, 2003; Nosofsky, 1986, 1987).

A number of studies using unconstrained tasks
have shown that the preferred decision strategy
varies as a function of whether the stimuli are con-
structed from separable or integral dimensions
(Handel & Imai, 1972; Handel, Imai, &
Spottswood, 1980; Imai & Garner, 1965).3 For

1 See a recent paper by Pothos and colleagues (Pothos, Edwards, & Perlman, 2011) for a related distinction between constrained

and unconstrained unsupervised category learning tasks.
2 More specifically, the observation of (a) a Euclidean metric in multidimensional scaling, (b) interference when the stimuli vary

orthogonally, and (c) a redundancy gain when the stimuli are correlated in the speeded classification paradigm are often considered as

evidence for dimensional integrality (Garner, 1974), but see Ashby and Maddox (1994).
3 Colour-naming tasks are a special case of the free-sorting paradigm and have frequently been used to assess people’s ability to

identify colour categories in a variety of colour spaces (Boynton & Olson, 1987; Sturges &Whitfield, 1995). Data from this paradigm

indicate that participants are quite capable of sorting colour stimuli into various categories without feedback. While these studies have

explored how variations along the colour dimensions affect the preferred classifications of participants, they have been primarily inter-

ested in variations along hue and do not provide strong predictions for stimuli varying along the integral dimensions of brightness and

saturation.
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example, Handel and colleagues (Handel & Imai,
1972; Handel et al., 1980) compared the separable
dimensions of shape and colour with the integral
dimensions of brightness and saturation. Separable
dimension stimuli were sorted using a one-dimen-
sional strategy, whereas integral dimension stimuli
were sorted using a similarity-based strategy. A
similar bias to use one-dimensional strategies
with separable dimensions has been reported with
other unconstrained tasks (e.g., Colreavy &
Lewandowsky, 2008; Medin et al., 1987).
Importantly, however, research from unconstrained
tasks suggests that the bias to use one-dimensional
strategies is critically dependent upon the particular
category structures (Ahn & Medin, 1992; Pothos &
Chater, 2005; Pothos & Close, 2008), spatial con-
figuration of the stimuli (Milton & Wills, 2004),
and experimental procedure (Milton et al., 2008;
Regehr & Brooks, 1995). For example, simply
informing participants of the number of categories
has been argued to instil a one-dimensional bias
(e.g., Murphy, 2002).

Although the separable-integral distinction is
often described as being discrete, such a characteriz-
ation is likely to be an oversimplification (Ashby &
Townsend, 1986). Studies using constrained tasks
with stimuli that are strongly separable have consist-
ently demonstrated a bias to use one-dimensional
strategies (Ashby et al., 1999; Zeithamova &
Maddox, 2009). There are at least two studies
using constrained tasks with stimuli that fall some-
where in the middle of the separable-integral conti-
nuum (10× 10 grids of randomly distributed light
and dark squares, Fried&Holyoak, 1984; lines con-
necting nine randomly located dots, Homa &
Cultice, 1984). Although learning was evident in
both studies, there are several limitations with
respect to the question of what individuals are
capable of learning under unsupervised conditions
on constrained tasks. For instance, the stimuli in
the Fried and Holyoak (1984) study varied on 100
physical dimensions, while the Homa and Cultice
(1984) stimuli varied along 18 physical dimensions.
The dimensionality of the psychological represen-
tation of these stimuli is not known, and it is likely
that there is no straightforward mapping between
the psychological and physical dimensions (Shin

& Nosofsky, 1992). Without knowing the psycho-
logical representation of the stimuli, it is impossible
to obtain an accurate estimate of the decision strat-
egy that participants were using to perform the task.

To summarize, with separable stimulus dimen-
sions, unsupervised category learning is possible,
and, in some cases, there is a bias to use one-dimen-
sional strategies. With integral dimensions, the
picture is more complicated. On unconstrained
tasks, individuals do not demonstrate a strong pre-
ference for one-dimensional strategies. On con-
strained tasks using stimuli that are likely to have
some degree of integrality, unsupervised category
learning is possible. We know, however, very little
about what types of strategies individuals are
capable of learning under unsupervised conditions
when the categories are constructed from integral
dimensions and whether the bias to use one-
dimensional strategies that has been demonstrated
on constrained tasks with separable dimensions
extends to integral dimensions.

We investigate these questions in the present
experiment using a constrained task with stimuli
constructed from the integral dimensions of bright-
ness and saturation defined in the Munsell colour
system (Figure 1). The structure of the Munsell
colour system is such that variations along the
value dimension correspond to changes in bright-
ness, whereas differences in chroma reflect
changes in saturation (Munsell, 1915). For simpli-
city, the physical dimensions of value and chroma
will be referred to by the perceptual labels of bright-
ness and saturation, respectively. Two one-dimen-
sional (vertical and horizontal conditions in the top
panels) and two diagonal conditions (positive and
negative conditions in the bottom panels) were
constructed by randomly sampling from a bivariate
uniform distribution defined on the brightness
and saturation dimensions. Each of the category
structures differs only in the orientation of the
optimal decision strategy. As the name implies, to
learn the one-dimensional structures, participants
should attend to the relevant stimulus dimension
(while ignoring the other, irrelevant dimension).
To learn the diagonal structures, participants
should integrate information from the brightness
and saturation dimensions.
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The unsupervised category learning literature
makes conflicting predictions for the Figure 1 cat-
egory structures. Data from constrained tasks with
separable dimensions would predict a bias to use
one-dimensional decision strategies regardless of
the task. As a result, participants should be able to
learn the one-dimensional categories, but have diffi-
culty with the diagonal categories. Alternatively, data
from unconstrained tasks with integral dimensions
would not predict a bias to use one-dimensional
decision strategies. For example, similarity-based
strategies may be preferred (e.g., Handel & Imai,

1972). This would predict similar performance
across the one-dimensional and diagonal category
structures because similarity is generally invariant to
rotation (Shepard, 1964).

EXPERIMENT 1

Method

Participants and design
Forty participants were recruited from the
University of California, Santa Barbara student

Figure 1. Scatterplots of the stimuli used in the present Experiments 1 and 2. Each point represents a rectangular, iso-hue colour patch that

varied continuously on Munsell value and chroma. Category A and B exemplars are depicted as black plus signs (“+ ”) and grey circles (“o”),

respectively. The solid lines are examples of decision strategies that maximize accuracy (i.e., the optimal decision strategies).
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community and received partial course credit for
participation. Ten participants were randomly
assigned to each of four experimental conditions:
vertical, horizontal, positive, and negative. No one
participated in more than one experimental con-
dition. All participants had normal (20/20) or cor-
rected-to-normal vision and normal colour vision.
Each participant completed two sessions of
approximately 45 minutes that were separated, on
average, by 24 hours. Participants in any condition
who were more than three standard deviations away
from the average accuracy in that condition during
the second day of training were omitted from all
subsequent analyses. This criterion for the detec-
tion of outliers resulted in the omission of one par-
ticipant from each of the vertical and negative
conditions.

Stimuli and apparatus
The stimuli in all experiments were Munsell colour
patches (Munsell, 1915; Newhall, 1940; Newhall,
Nickerson, & Judd, 1943) of constant purple–
blue hue (10 PB) that varied continuously along
the dimensions of value (i.e., brightness) and
chroma (i.e., saturation). The complete set of
stimuli used in the four different experimental con-
ditions is shown in Figure 1. Each symbol in Figure
1 denotes the value and chroma of a single colour
patch. Category A stimuli are denoted by the
black “+ ” signs, and Category B stimuli are
denoted by the grey circles. The optimal decision
criteria are the vertical and diagonal lines shown
in Figure 1.

The experiment used a variation of the ran-
domization technique introduced by Ashby and
Gott (1988), in which each category was defined
as a bivariate uniform distribution. Each category
distribution was specified by the minimum and
maximum on each dimension. The exact parameter
values for the vertical condition are displayed in
Table 1. On each trial, a random sample (x, y)
was drawn from the Category A or B distribution,
and these values were used to construct a Munsell
colour patch of value x′ = 0.0275x+ 4.1 and
chroma y′ = 0.055y+ 4.3. While one of the goals
of the Munsell system was to equate the perceived
difference between equal steps along the value

and chroma dimensions, in practice the perceived
difference between two steps on the chroma
dimension is approximately perceptually equal to
a single step on the value dimension (Newhall,
1940; Newhall et al., 1943; Nickerson, 1940).
The choice of scale values in the above transform-
ations was designed to preserve the 2:1 relationship
between the dimensions. For each participant, a
new sample of 720 stimuli (360 from each category)
was generated. All stimuli were generated offline,
and a linear transformation was applied to ensure
that the sample statistics matched the population
parameters.

For the horizontal, positive, and negative con-
ditions, the stimuli for each participant were
created by first generating a random sample of
720 stimuli (360 from each category) from the
Table 1 distributions and then rotating the result-
ing stimuli by 90°, –45°, or 45° from vertical
(respectively) about the centre of the stimulus
space (i.e., the point 50, 50). For the positive and
negative category structures, the most accurate
one-dimensional rule (i.e., respond A if the stimu-
lus value is less than some criterion, otherwise
respond B) yields an accuracy of approximately
85% correct. The presentation order of the
stimuli was randomized separately for each partici-
pant in every condition and was divided into nine
blocks of 80 trials each.

Colour monitor calibration was achieved with a
PhotoResearch PR-650 spectral radiometer and
the Psychophysics Toolbox software (Brainard,
1997; Pelli, 1997). The transformation from the
Munsell colour space to RGB values was performed
in three stages. First, the value and chroma coordi-
nates were transformed to CIE xyY chormaticities
using the colour lookup table of Newhall et al.

Table 1. Initial parameters used to generate the vertical category

structure before transforming to the Munsell colour space

Category

Value Chroma

Min Max Min Max

Category A 20 40 7.5 92.5

Category B 60 80 7.5 92.5
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(1943) made available by the Carlson Center for
Imaging Science (http://www.cis.rit.edu/research/
mcsl2/online/munsell_data/real.dat). Those value
and chroma coordinates not given in the table
were converted to CIE xyY chromaticities using
equations given in Wyszecki and Stiles (1982).
Second, xyY coordinates were converted to CIE
XYZ tristimulus coordinates. Finally, XYZ coordi-
nates were converted to RGB coordinates using
the Psychophysics Toolbox software. The exper-
iment was run using the Psychophysics Toolbox
in the Matlab computing environment. Each
colour patch was presented on a grey background,
subtended a visual angle of approximately 6°, and
was displayed on a 15-inch CRT with 832×
624-pixel resolution in a dimly lit room.

Procedure
Each participant was run individually. Participants
were told that rectangular colour patches varying in
brightness and saturation would be presented one
at a time on a monitor, and their task was to
learn to categorize the stimuli into two categories.4

Following Ashby et al. (1999), five response blocks
(Blocks 1, 3, 5, 7, and 9) alternated with four obser-
vation-only blocks (Blocks 2, 4, 6, and 8). During
the observation-only blocks, participants were
instructed to look at 80 sequentially presented
stimuli and to try and learn about the categories.
The stimuli in the observation-only blocks were
presented for 1 s with an interstimulus interval of
0.5 s. The observation-only blocks were included
in an effort to increase the number of stimuli that
the participants were exposed to during an exper-
imental session. The observation-only blocks do
not require a response and, thus, take less time to
complete than the response blocks (Ashby et al.,
1999). During the response blocks, participants
were instructed to select a category for each

stimulus and to press a button labelled “A” or a
button labelled “B” to show which category had
been selected. The participants were told that the
category labels were arbitrary, but were warned to
be consistent with what they called a member of
Category A and what they called a member of
Category B. Given that the category labels were
arbitrary, it was assumed that participants assigned
the stimuli to the two categories in a manner that
resulted in the highest accuracy (percentage
correct) for each block. Therefore, it was impossible
for participants to achieve accuracy below 50%
correct in any given block. The participants were
told that perfect accuracy was possible, but were
never given any feedback about their performance.
The stimuli were response terminated (with 5-s
maximum exposure duration) in the response
blocks, and the response-stimulus interval was 0.5 s.
The break between blocks was participant paced.

Results

Accuracy-based analyses
The average learning curves for each of the four
experimental conditions are shown in Figure 2.
Visual inspection of Figure 2 suggests that accuracy
improved across the two days of training only in the
vertical and positive conditions, and accuracy was
highest in the VERTICAL condition. A 4 (con-
dition)× 10 (response block) mixed analysis of var-
iance (ANOVA; with block as the within-subjects
factor) conducted on the accuracy data revealed sig-
nificant main effects of condition, F(3, 34)= 5.46,
p, .01, MSE= .35, η2p= .33, and block, F(5.88,
199.95)= 2.22, p, .05, MSE= .06, η2p= .06.5

However the Condition× Block interaction was
not significant, F(17.65, 199.95)= 1.41, p= .13,
MSE= .06, η2p= .11. Further analysis of the
main effects revealed that the effect of condition

4 All participants indicated that they understood what brightness was, but several were unfamiliar with saturation. Thus, for all

participants, saturation was described as the amount of white in a colour patch, with low levels of saturation indicating a large

amount of white in the colour patch. As an example, participants were told that pink is a desaturated red. This explanation was effective

(according to verbal report) in eliminating any confusion regarding the saturation dimension.
5 To meet the assumptions of ANOVA, these data were first subjected to an arcsine transformation. For descriptive purposes, the

nontransformed data were presented in all figures and tables. A Huynh–Feldt correction for violation of the sphericity assumption has

been applied. All subsequent analyses of accuracy rates used the same transformation and correction. Post hoc comparisons were eval-

uated using the Student–Newman–Keuls procedure.
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was driven solely by superior performance in the ver-
tical condition relative to the horizontal, positive, and
negative conditions (ps, .05). None of the other
pairwise comparisons was significant (ps≥ .39).
The effect of block was driven by an increasing
linear trend in accuracy across conditions, as evi-
denced by a significant linear contrast, F(1, 34)=
5.75, p, .05, MSE= .09, η2p= .15. In sum, at the
group level, a high level of performance was observed
only in the vertical condition—the category structure
that required participants to attend selectively to
brightness while ignoring variations in saturation.

The superior performance in the vertical con-
dition can be seen at the individual participant
level as well. Table 2 lists the individual average
accuracy rates by block for each participant in
each condition during the second day of training.
All but one participant in the vertical condition
was near optimal (.90%) during the final block
of training. In contrast, only eight participants in
the remaining conditions (three in the horizontal,
four in the positive, and one in the negative)
achieved a similar level of accuracy. Furthermore,

two thirds of the participants from the vertical con-
dition maintained an accuracy level .90% during
the last four response blocks, whereas only two par-
ticipants in the other conditions (one in the hori-
zontal and one in the positive) performed at this
high level. Interestingly, the individual participant
data suggest that while it was certainly more diffi-
cult for participants to improve with training in
the horizontal, positive, and negative conditions
in general, it was not altogether impossible.

In an ideal learning trajectory, accuracy might
steadily improve across trials and peak at the com-
pletion of training. However, it is possible that par-
ticipants may have peaked during some training
block other than the last. In fact this was true for
29 of the 38 participants. Analysing the accuracy
in this way did not change the ordering: vertical
(M= 97.6, SD= 4.1), positive (M= 91.8, SD=
8.5), negative (M= 88.2, SD= 10.8), and hori-
zontal (M= 80.9, SD= 13.1). A one-way
ANOVA using each participant’s best block gener-
ally supported this conclusion. The effect of con-
dition was significant, F(3, 34)= 5.88, p, .01,

Figure 2. Average accuracy in the four conditions of Experiment 1.
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MSE= .06, η2p= .34, with accuracy in the vertical
condition being significantly higher than that in
the horizontal and negative conditions (ps, .05),
but only marginally higher than that in the positive
condition (p= .06). This lack of a significant
difference between the best block for the vertical
and positive conditions may reflect a ceiling effect
in the vertical condition.

Model-based analyses
Analysis of the accuracy data does not directly
address the question of what decision strategies
were used to perform the Figure 1 tasks. For
instance, accuracy for many of the participants in
the positive and negative conditions was consistent
with both a one-dimensional strategy and a strategy
that integrated brightness and saturation (albeit in a
suboptimal manner). The following analyses rep-
resent a quantitative approach to investigating
these questions.

Three different types of decision bound model
were fitted to the data of each individual partici-
pant, each based on a different assumption con-
cerning the participant’s strategy. First, the
unidimensional classifiers assume that the partici-
pant attends selectively to one dimension (e.g., if
the stimulus is bright, respond B; otherwise
respond A). For the vertical and horizontal con-
ditions, there were two versions of the unidimen-
sional classifier (UC), one assuming that
participants used the optimal decision strategy in
the two top panels of Figure 1 (optimal classifier,
OC) and one assuming that participants used a
UC with a suboptimal intercept on one of the
dimensions (UC-brightness and UC-saturation).
Second, the conjunctive classifier (CC) assumes
that participants make independent decisions
about the stimulus on both dimensions (e.g., if
the stimulus is bright and saturated, respond B;
otherwise respond A). Third, the linear classifier

Table 2. Individual participant accuracy during the second day of training in Experiment 1

Condition Block

Participant

1 2 3 4 5 6 7 8 9 10 Avg SEM

Vertical 1 99 58 76 55 53 51 100 95 99 76.1 7.0

3 99 61 83 94 100 100 100 95 98 92.1 4.1

5 96 88 76 78 99 100 100 100 99 92.8 3.1

7 99 71 53 68 99 98 98 96 100 86.6 5.7

9 99 95 76 91 100 100 95 91 100 94.2 2.4

Horizontal 1 55 68 76 68 62 63 81 70 63 85 69.0 2.8

3 73 59 78 73 50 54 93 79 63 85 70.5 4.2

5 70 51 89 81 66 64 98 84 63 90 75.5 4.5

7 58 62 60 84 58 60 96 74 51 88 69.0 4.6

9 51 66 90 55 60 59 95 84 54 90 70.4 5.2

Positive 1 74 98 76 80 68 70 69 80 99 73 78.5 3.5

3 78 100 84 93 71 90 60 78 79 78 80.8 3.6

5 98 99 88 85 71 56 63 58 74 68 75.8 8.0

7 98 100 88 88 79 79 68 66 85 75 82.4 3.6

9 94 100 91 63 60 94 64 74 83 66 78.7 4.8

Negative 1 76 85 51 78 79 51 93 55 88 72.7 4.8

3 91 51 66 53 70 64 93 59 95 71.3 5.2

5 85 71 55 89 83 51 81 53 88 72.8 4.7

7 94 74 70 62 62 51 85 50 91 71.1 4.9

9 80 81 51 51 67 55 85 54 98 69.1 5.2

Note: Accuracy values, in percentages. Avg= average.
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assumes that participants integrate the stimulus
information from both dimensions prior to
making a categorization decision. For the positive
and negative conditions, there were two versions
of the linear classifier, one assuming that partici-
pants used the optimal decision strategy in Figure
1 (optimal classifier, OC) and one assuming that
participants used a linear classifier with a subopti-
mal slope and/or intercept (LC).

Each of these models was fitted separately to the
data from every response block for all participants
using a standard maximum likelihood procedure
for parameter estimation (Ashby, 1992b;
Wickens, 1982) and the Bayes information cri-
terion for goodness-of-fit (Schwarz, 1978; see the
Appendix for a more detailed description of
the models and fitting procedure). The data from
the first day of training are omitted for brevity.

The primary goal of this analysis was to investi-
gate whether one-dimensional decision strategies
dominated under unsupervised training. The distri-
bution of best fitting models in each of the four
conditions is listed in Table 3. First consider the
one-dimensional conditions. In these conditions,
both the optimal and unidimensional classifiers
assumed that participants attended selectively to
the relevant stimulus dimension. In the vertical
condition, 73% were using decision strategies con-
sistent with selective attention to brightness. In
contrast, in the horizontal condition, only 8%
were using decision strategies consistent with selec-
tive attention to saturation. Instead, participants
were either attending selectively to brightness or
integrating brightness and saturation information
to some extent. Given the relatively low accuracy
in the horizontal condition, it is important to
verify that the linear classifier was not simply
better at fitting noisy data. The high percentage
of responses accounted for argue strongly against
this possibility. Thus, the deficit observed in the
horizontal condition was, at least in part, driven
by an inability to attend selectively to saturation
in the absence of feedback, although this expla-
nation does not account for the fact that average
accuracy during blocks where participants were
attending selectively to saturation was far less
than optimal (N= 4, M= 71.3, SD= 17.8).

Instead, the accuracy deficit during these blocks
was due to the use of suboptimal decision criteria.

Next, consider the diagonal conditions. As
expected from the accuracy data, participants in
both the positive and negative conditions were
responding optimally in a relatively small number
of blocks. Participants were not constrained to use
one-dimensional decision strategies, as evidenced
by the relatively small percentage of data sets
accounted for by unidimensional models (34%
and 22% of the data in the positive and negative
conditions, respectively). Instead, as was the case
in the horizontal condition, in the majority of
blocks, participants were integrating brightness
and saturation information, albeit not optimally.

The fact that the linear classifier accounted for a
large percentage of the responses in the horizontal,
positive, and negative conditions may still be con-
sistent with the use of one-dimensional decision
strategies. In some cases, the best fitting linear clas-
sifier may deviate only slightly from one-dimen-
sional (e.g., a decision bound rotated 10° from
horizontal). Such small deviations may suggest a
weak form of selective attention to one of the
stimulus dimensions. Plotted in Figure 3 is the dis-
tribution of slopes (in degrees) for those data sets
that were best accounted for by the linear classifier
in the four conditions. There were a substantial
number of strategies that would be consistent
with a weak form of selective attention to bright-
ness (i.e., near 90°) in the vertical, horizontal, and
negative conditions, but not in the positive con-
dition. In addition, in the horizontal condition,
the best fitting linear bounds were highly variable
and deviated substantially from optimal. In the
positive condition, the linear bounds were also
highly variable with the majority being positively
sloped.

Figure 3 also suggests that when participants
were not attending selectively to brightness or sat-
uration, or using the optimal decision strategy,
they used decision strategies between 0° and 90°.
This preference suggests that there may be some
salient decision rule that is a consequence of the
integral stimulus dimensions. Indeed, inspection
of the entire stimulus space (i.e., plotting all
stimuli simultaneously) suggests a strategy that
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could be best described as a “greyness” rule. More
specifically, the transition from dim, saturated
stimuli to bright, desaturated stimuli could
produce such a rule with a slope between 0° and
90°. If participants were truly using such a strategy,
it is clear from Figure 3 that its application was
highly variable across participants. Consistent
with these data, inspection of written descriptions
of decision strategies (collected postexperimentally)
did not reveal any systematic strategy use or any
mention of the word “grey”.

Recall that the decision bound models not only
provide estimates of the best fitting decision
bounds, but estimates of the combined variance of
criterial and perceptual noise (σ2). A comparison
of σ2 estimates across conditions suggests that
noise was lower in the vertical condition (Mdn=
0.26) than in the horizontal (Mdn= 2.9), positive
(Mdn= 0.91), and negative (Mdn= 1.27) con-
ditions. This observation was supported by an
analysis of the estimates of σ2 between all con-
ditions using six separate t tests (Welch’s t test,
and not ANOVA, was used due to severe violations
in homogeneity of variance). All pairwise compari-
sons were significant (p, .0085, following Sidak
correction for multiple comparisons).

Brief summary

At least two conclusions can be drawn regarding
unsupervised learning of categories constructed
from the integral dimensions of brightness and

saturation. First, participants demonstrate a rela-
tively limited ability to learn such categories. Only
when the category structures required selective
attention to brightness were participants able to
learn without feedback. Second, these data suggest
that participants do not show either the preference
for, or a general ability to learn, one-dimensional
decision strategies under unsupervised conditions.

EXPERIMENT 2

Given the lack of learning in the horizontal, posi-
tive, and negative conditions under unsupervised
conditions, it is necessary to demonstrate that par-
ticipants can, in fact, learn these category structures.
The goal of Experiment 2 was to test the ability of
participants to learn the Figure 1 categories under
supervised conditions. Furthermore, the majority
of research on the ability of people to learn cat-
egories constructed from integral dimension
stimuli has been limited to stimuli constructed
from discrete- or binary-valued rather than con-
tinuous-valued dimensions. Thus, an added contri-
bution of Experiment 2 is that it extends previous
research to continuous-valued dimensions.

Method

Participants and design
Twenty-two participants were recruited from the
University of California, Santa Barbara student

Table 3. Percentage of blocks best accounted for by each model across the four conditions of Experiment 1

Condition

Models

Avg. %RA SDOC UC-B UC-S CC LC

Vertical 46.7 26.7 8.9 0 17.8 95.1 7.3

Horizontal 4.0 26.0 4.0 10.0 56.0 88.2 10.9

Positive 14.0 18.0 16.0 12.0 40.0 91.3 8.2

Negative 11.1 20.0 2.2 2.2 64.4 86.9 9.5

Note: OC= optimal classifier. UC= unidimensional classifier. UC-B= unidimensional classifier on the brightness dimension. UC-

S= unidimensional classifier on the saturation dimension. CC= conjunctive classifier. LC= linear classifier. Avg= average. %

RA= percentage of responses accounted for by the best fitting model. In all conditions, the OC is a special case of one of the

other models in which it is assumed that the participant used the optimal decision strategies plotted in Figure 1 (vertical: The

OC is a special case of the UC-B; horizontal: The OC is a special case of the UC-S; positive and negative: The OC is a special

case of the LC).
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Figure 3. Distribution of the slope (in degrees) for cases where the linear classifier (LC) provided the best account of the data. The percentage of

blocks for which the linear classifier provided the best fit is provided in the figure legends for reference. For descriptive purposes, it was assumed

that the slopes ranged from 0° to 180°. The optimal classifier predicts the following slopes: vertical, 90°; horizontal, 0°/180°; positive, 68°;

negative, 113°. bin-width= 10°.
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community and received partial course credit for
participation. The participants were randomly
assigned to the four experimental conditions in
the following manner: vertical-6, horizontal-5,
positive-6, and negative-5. No one participated in
more than one experimental condition. All partici-
pants had normal (20/20) or corrected-to-normal
vision and normal colour vision. Participants com-
pleted one session of approximately 45 min.

Stimuli and apparatus
Stimuli and apparatus were identical to those in
Experiment 1.

Procedure
The procedure was identical to that in Experiment
1 with the following exceptions. All participants
were presented with nine response blocks compris-
ing 80 trials each. Each stimulus was presented for
1 s followed by a brief (0.5-s) high-pitched tone
(500 Hz) if the response was correct and a low-
pitched tone (200 Hz) if the response was incorrect.
In addition, feedback was given at the end of each
block regarding the participant’s accuracy during
that block.

Results

Accuracy-based analyses
The average learning curves for each of the four
experimental conditions are shown in Figure 4.
Visual inspection of Figure 4 suggests an ordering
of the four conditions by task difficulty early in
training similar to that observed at the end of train-
ing in Experiment 1. Specifically, the participants
in the vertical condition were the most accurate,
followed by the positive, negative, and horizontal
conditions. These accuracy differences, however,
were nonexistent by the end of training. A 4 (con-
dition)× 9 (response block) mixed ANOVA con-
ducted on the accuracy data (with block as the
within-subjects factor) largely supported the visual
inspection of Figure 4. There was a significant
main effect of block, F(8, 152)= 33.68, p, .001,
MSE= .01, η2p= .64, which was qualified by a sig-
nificant Condition× Block interaction, F(24,
152)= 2.19, p, .01, MSE= .01, η2p= .26. The

main effect of condition was not significant, F(3,
19)= 2.50, p= .09, MSE= .14, η2p= .28. A
simple main effects analysis revealed a pattern of
results consistent with the visual analysis of
Figure 4. Specifically, accuracy in the vertical con-
dition during the first response block was higher
than accuracy in both the horizontal (p, .01)
and the negative (p, .05) conditions, but not the
positive condition (p= .17). Accuracy in the verti-
cal condition continued to exceed that of the hori-
zontal condition (p, .05), but not that of the
negative condition (p= .48) during Block 2. The
difference between the vertical and horizontal con-
ditions was no longer present during Block 3
(p= .11). None of the remaining pairwise com-
parisons was significant.

Model-based analyses
The same models as those investigated in
Experiment 1 were fitted to each participant’s
responses separately for every block in
Experiment 2. The distribution of best fitting
models in each of the four conditions is listed in
Table 4. The first thing to note is that, in compari-
son to Experiment 1, the percentage of blocks in
which the optimal classifier was the best fitting
model greatly increased in all conditions with the
addition of feedback. In the one-dimensional con-
ditions, decision strategies assuming participants
attended selectively to brightness and saturation
provided the best account of the data on 91% (ver-
tical) and 69% (horizontal) of the blocks, respect-
ively. In the diagonal conditions, the use of one-
dimensional decision strategies was far less frequent
than that in Experiment 1.

In addition, the linear classifier provided the best
fit to almost 25% of the blocks in the horizontal,
positive, and negative conditions. While this per-
centage is far less than that observed in
Experiment 1, it is still worthwhile to determine
whether or not these bounds were consistent with
a weak form of selective attention or the integration
of brightness and saturation. The distribution of
slopes estimated from the linear classifier for those
blocks in which the linear classifier provided the
best fit is plotted in Figure 5. The results from the
horizontal and negative conditions are quite
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similar to those of Experiment 1. The slopes from
the horizontal condition were highly variable and
not consistent with one-dimensional decision

strategies. In the negative condition, the majority
of the slopes were consistent with a weak form of
selective attention to brightness (i.e., between 90°
and 110°). In contrast to Experiment 1, those
blocks that were best fit by the linear classifier in
the positive condition were consistent with a weak
form of selective attention on brightness.

Brief summary

The results of Experiment 2 indicate that the
Figure 1 category structures can be learned with
feedback and, more generally, that category struc-
tures constructed from continuous-valued, integral
(i.e., brightness and saturation) dimensions are
easily learned. In all conditions, participants were
more accurate, and there was an increase in the per-
centage of participants using optimal decision strat-
egies with the addition of feedback. Perhaps not
surprisingly, the ordering by task difficulty early
in training mimicked that observed when feedback
was omitted.

Figure 4. Average accuracy in the four conditions of Experiment 2.

Table 4. Percentage of blocks best accounted for by each

model across the four conditions of Experiment 2.

Condition

Models

OC UC-B UC-S CC LC

Vertical 77.8 13.0 0.0 1.9 7.4

Horizontal 62.2 2.2 6.7 6.6 22.2

Positive 59.3 14.8 0.0 0.0 25.9

Negative 60.0 13.3 0.0 6.7 20.0

Note: OC= optimal classifier. UC= unidimensional classifier.

UC-B= unidimensional classifier on the brightness

dimension. UC-S= unidimensional classifier on the

saturation dimension. CC= conjunctive classifier. LC=
linear classifier. In all conditions, the OC is a special case of

one of the other models in which it is assumed that the

participant used the optimal decision strategies plotted in

Figure 1 (vertical: The OC is a special case of the UC-B;

horizontal: The OC is a special case of the UC-S; positive

and negative: The OC is a special case of the LC).
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Figure 5. Distribution of the slope (in degrees) for cases where the linear classifier (LC) provided the best account of the data in Experiment

2. The percentage of blocks for which the linear classifier provided the best fit is provided in the figure legends for reference. For descriptive

purposes, it was assumed that the slopes ranged from 0° to 180°. The optimal classifier predicts the following slopes: vertical, 90°;

horizontal, 0°/180°; positive, 68°; negative, 113°. bin-width= 10°.
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EXPERIMENT 3

The category structures used in Experiments 1 and 2
were designed to equate discriminability across
brightness and saturation. Even so, in both exper-
iments, participants were better when the categoriz-
ation judgement required selective attention to
brightness (the vertical condition) than when it
required selective attention to saturation (the hori-
zontal condition).This leaves open the possibility
that the categories in the horizontal condition were
less discriminable than the categories in the vertical
condition. To address this question, we ran an
unsupervised version of the horizontal condition in
which we varied category discriminability along the
saturation dimension by increasing the intercategory
distance (Figure 6A). If the ability to learn one-
dimensional strategies on saturation is dependent
upon category discriminability, then accuracy should
be higher, and one-dimensional strategies should be
used more frequently, in the high discriminability
condition than in the low discriminability condition.

One consequence of increasing the intercategory
distance is that there is also an increase in the
number of qualitatively different decision strategies
that predict high accuracy. For example, in the high
discriminability condition, a one-dimensional strat-
egy on saturation would be indistinguishable from
many strategies that integrate saturation and bright-
ness. To address this issue, we replaced the final
response block with a test block using a uniform
grid of stimuli that spanned the range of the training
stimuli (Figure 6B). Fitting the models to the categ-
orization responses from the test block will provide a
stronger test of the use of one-dimensional strategies.

Method

Participants and design
Twenty-six participants were recruited from the
University of Maine student community and
received partial course credit for participation.
Thirteen participants were randomly assigned to
each of the two experimental conditions. No one
participated in more than one experimental con-
dition. All participants had normal (20/20) or cor-
rected to normal vision and normal colour vision.

Participants completed one session of approxi-
mately 45 min.

Stimuli and apparatus
The stimulus generation procedures were identical
to those in Experiments 1 and 2, with two excep-
tions. First, the parameters in Table 5 were used to
generate the training stimuli (see Figure 6A).
Second, to facilitate the identification of decision
strategies in the model-based analyses, the stimuli
from the final response block were replaced with a
test block that included a uniform grid of stimuli
selected to match the range of the training stimuli.
In the low discriminability condition, the test
stimuli were generated by all possible combinations
of 8 equally spaced points on brightness (from 7.5 to
92.5) and 10 equally spaced points on saturation
(low discriminability: from 20 to 80; high discrimin-
ability: from 5 to 95). The test block is not included
in the accuracy-based analysis because there is no
objectively correct response for many of the test
stimuli with respect to the trained categories.

Procedure
The procedure was identical to that of Experiment
1. The participants were not informed that the
stimuli during the final test block differed from
the stimuli during the earlier training blocks.

Results

Accuracy-based analyses
Average accuracyduring training is plotted inFigure 7.
A clear accuracy advantage emerged with training for
participants in the high discriminability condition.
The results of a 2 (condition)× 4 (response block)
mixed ANOVA (with block as the within-subjects
factor) were consistent with this claim. Specifically,
the main effect of condition, F(1, 24)= 46.94,
p, .001, MSE= 135.23, η2p= .66, and the
Condition× Block interaction, F(1.99, 47.86)=
4.99, p, .05, MSE= 95.54, η2p= .17, were signifi-
cant. The interaction was driven by superior perform-
ance in the high discriminability condition during the
last three response blocks (Block 1: p= .11; Blocks 3,
5, and 7: ps, .001). The main effect of block was not
significant, F(1.99, 47.86)= 0.21, p= .81, MSE=
95.54, η2p= .009.
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Model-based analyses
Recall that increasing intercategory distance comes
with the cost of decreased identifiability of the
decision strategy. Thus, the higher accuracy in the
high discriminability condition during training
may be a consequence of the success of strategies
that integrate brightness and saturation rather
than an increase in the use of strategies assuming
selective attention to saturation. To address this
issue, we focused the model-based analyses on the
data from the test block in which the stimuli were
sampled uniformly from across the range of the

Figure 6. A. Scatterplots of the training stimuli used in Experiment 3. Each point represents a rectangular, iso-hue colour patch that varied

continuously on Munsell value and chroma. Category A and B exemplars are depicted as black plus signs (“+ ”) and grey circles (“o”),

respectively. The solid lines are examples of decision strategies that maximize accuracy (i.e., the optimal decision strategies). B. Scatterplots

of the test stimuli used during the final response block. The stimulus coordinates are equally spaced and were selected to span the range of

the training stimuli.

Table 5. Parameters used to generate the low and high

discriminability category structures before transforming to the

Munsell colour space

Discriminability

Value Chroma

Min Max Min Max

Low

Category A 7.5 92.5 60 80

Category B 7.5 92.5 20 40

Category A 7.5 92.5 75 95

Category B 7.5 92.5 5 25
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training stimuli. The same models as those investi-
gated in Experiments 1 and 2 were fitted to each
participant’s responses separately for the test
block, and the distribution of best fitting models
is listed in Table 6. As was the case in
Experiment 1, decision strategies consistent with
selective attention to saturation were extremely
rare (nlow= 2/13, nhigh= 1/13). This pattern held
across the training blocks, with 12.3% and 13.8%
of the blocks being best accounted for by decision
strategies consistent with selective attention to

saturation in the low and high discriminability
conditions, respectively. Importantly, these data
suggest that increasing category discriminability
for categories defined on saturation was not
accompanied by an increase in the use of one-
dimensional strategies on saturation.

The preceding analysis implies that the
increased accuracy in the high discriminability con-
dition occurred because the more widely separated
categories in that condition did not penalize strat-
egies in which selective attention to saturation
failed as much as those in the low discriminability
condition did. The relative degree to which partici-
pants attended to saturation versus brightness can
be assessed by examining parameter estimates
from the best fitting version of the linear classifier.
Recall that in this model, the slope of the decision
bound is free to vary. Slopes near 0 or 180° (coun-
terclockwise from horizontal) are consistent with a
weak form of selective attention to saturation,
whereas slopes near 90° are consistent with a
weak form of selective attention to brightness. As
shown in Figure 8, the slopes for participants best
fitted by the linear classifier were more consistent
with a weak form of selective attention to bright-
ness (i.e., 90° counterclockwise from horizontal;
Mlow= 102.4°, SElow= 8.6; Mhigh= 95.2°,
SEhigh= 8.7). Thus, despite the higher accuracy
of participants in the high discriminability con-
dition, participants in this condition appeared to
allocate more attention to the irrelevant brightness
dimension than to the relevant saturation
dimension.

Brief summary

The goal of Experiment 3 was to determine
whether increasing category discriminability
improved the ability of participants to learn cat-
egories defined by saturation in the absence of feed-
back. Although participants were more accurate
when discriminability was increased, the increased
accuracy was not driven by an increased ability to
attend selectively to saturation. Instead, consistent
with Experiment 1, participants tended to integrate
brightness and saturation in a manner that
suggested greater weighting of brightness.

Figure 7. Average accuracy in the two conditions of Experiment 3.

Table 6. Number of blocks best accounted for by each model

during the final test block of Experiment 3

Discriminability

Models

OC UC-B UC-S CC LC

Low 1 4 1 0 7

High 0 1 1 0 11

Note: OC= optimal classifier. UC= unidimensional classifier.

UC-B= unidimensional classifier on the brightness

dimension. UC-S= unidimensional classifier on the

saturation dimension. CC= conjunctive classifier. LC=
linear classifier. The OC is a special case of the UC-S in

which it is assumed that the participant used the optimal

decision strategy plotted in Figure 6.
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GENERAL DISCUSSION

Previous research on the unsupervised categoriz-
ation of stimuli constructed from integral dimen-
sions has focused primarily on categorization
preferences in unconstrained tasks where no
instructions are provided about the underlying cat-
egory structure. Although such studies are clearly
important, they do not address the ability of indi-
viduals to learn in constrained tasks where the
goal is to learn a predefined category structure.
The present study makes an important contribution
to the literature by addressing this question.
Experiment 1 showed that the ability to learn cat-
egories constructed from brightness and saturation
under unsupervised conditions varies as a function
of the category structure. Specifically, in the
absence of feedback, participants were able to
learn only when the category structures required
attending selectively to brightness. Experiment 2

demonstrated that these category structures can
be learned with feedback and that categorization
based on brightness is easier than categorization
based on saturation. Experiment 3 demonstrated
that unsupervised categorization accuracy for cat-
egories defined by saturation can be increased by
increasing category discriminability. In contrast to
the vertical condition of Experiment 1, however,
higher accuracy was not driven by the use of strat-
egies assuming selective attention to the relevant
dimension, but rather by the increased accuracy
associated with strategies assuming the integration
of brightness and saturation.

These data are partially consistent with the pre-
dictions motivated by both constrained and uncon-
strained unsupervised category learning tasks. Data
from constrained tasks using separable dimensions
predict a bias to use one-dimensional strategies
(e.g., Ashby et al., 1999). Strong evidence in
support of this bias, however, was only observed

Figure 8. Distribution of the slope (in degrees) for cases where the linear classifier (LC) provided the best account of the data in Experiment

3. The percentage of blocks for which the linear classifier provided the best fit is provided in the figure legends for reference. For descriptive

purposes, it was assumed that the slopes ranged from 0° to 180°. The optimal classifier predicts a slope of 0° or 180°. Bin-width= 10°.
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when the categories were defined by brightness. In
contrast, data from unconstrained tasks using inte-
gral dimensions typically predict that there is a bias
to use similarity-based strategies. Indeed, the
majority of data from the Experiment 1 and 3 con-
ditions were best accounted for by strategies assum-
ing the integration of brightness and saturation. In
each experiment, however, a subset of the partici-
pants that integrated brightness and saturation
used strategies that weighted brightness more
heavily than saturation, suggesting a weak form of
selective attention to brightness. Furthermore, the
different patterns of strategy use across experimen-
tal conditions and the general advantage for the
vertical conditions of Experiments 1 and 2 contra-
dict the assumption that there should be a general
bias to use similarity-based strategies with integral
dimensions. If this was true, then performance
should have been equivalent in all conditions
since the various conditions were all rotations of
each other, and similarity with integral dimensions
is generally thought to be rotation invariant
(Shepard, 1964).

Is brightness privileged in the Munsell
system?

Several aspects of these data suggest that brightness
is more efficiently processed than saturation. First,
under unsupervised conditions, participants were
most accurate when the categories were defined by
brightness. Second, under supervised conditions,
participants learned categories defined by brightness
at a faster rate. Third, participants relied upon one-
dimensional rules on brightness much more fre-
quently than those on saturation. Fourth, even
when category discriminability along saturation
was increased, participants rarely used one-dimen-
sional strategies on saturation. Finally, as might be
expected with integral dimensions, many partici-
pants integrated brightness and saturation in the
absence of feedback. In general, however, these par-
ticipants did not give brightness and saturation equal
weighting. Instead, there was a bias to give bright-
ness more weight in the categorization process.

Indeed, attentional mechanisms operate more
efficiently with brightness than saturation under

supervised conditions (Maddox & Dodd, 2003;
Nosofsky, 1987). The Maddox and Dodd exper-
iments suggest that the advantage for brightness
over saturation is driven by a perceptual bias (i.e.,
the perceptual representation of brightness is less
noisy than the perceptual representation of satur-
ation). In spite of this difference, participants can
clearly learn categories defined by saturation under
supervised conditions. One possibility is that the
perceptual advantage for brightness over saturation
is exaggerated under unsupervised conditions.

Furthermore, in everyday life, people are con-
stantly making discriminations based on brightness,
but how common are saturation discriminations? In
fact, all participants indicated that they understood
what brightness was, but several were unfamiliar
with saturation and had to be given specific
examples. Clearly participants demonstrated an
ability to attend selectively to saturation when
feedback was provided, but the horizontal condition
still required more training to learn than the vertical
condition in Experiment 2. Moreover, only 3 of the
10 participants were ever able to achieve near
optimal accuracy without the aid of feedback. It
may be that with extended training, more
participants would have been successful learning
categories defined by saturation in the absence of
feedback. This, however, seems unlikely given the
lack of improvement observed in the horizontal
condition of Experiment 1 and the low discrimin-
ability condition of Experiment 3. Thus, despite
the fact that the Munsell system was designed to
equate variation on brightness and saturation,
there may be an advantage for making decisions
based on brightness (at least when it is paired with
saturation).

Experiment 3 was designed to explore whether
it is possible to overcome the disadvantage for cat-
egories defined by saturation. More specifically,
would increasing category discriminability (i.e.,
increasing intercategory distance) improve accuracy
by increasing the use of one-dimensional strategies
on saturation? Perhaps not surprisingly, accuracy
improved with category discriminability.
Critically, however, the improvement in accuracy
was not driven by an increase in the use of one-
dimensional strategies on saturation. Instead, the
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improvement in accuracy was driven by the
increased success of strategies assuming the inte-
gration of brightness and saturation that resulted
from increasing intercategory distance.

We chose to define our stimuli in the Munsell
colour system because it provides a more direct con-
nection to previous work on the categorization of
stimuli constructed from integral dimensions. Of
course, there are many other colour systems.
Interestingly, brightness, but not saturation, is gen-
erally represented across colour systems. For
example, brightness in the Munsell system is
monotonically related to luminance in the Natural
Color System (e.g., Brainard, 2003). Moreover, it
has been suggested that luminance (and not satur-
ation) may be one of the features that guides preat-
tentive visual processing (Wolfe, 2005). Although
speculative, these arguments suggest that bright-
ness may be a more fundamental feature than satur-
ation in the representation of colour.

Constrained categorization of separable
versus integral dimensions

Data from constrained tasks demonstrate that indi-
viduals are capable of learning categories con-
structed from separable dimensions in the absence
of feedback (Ashby et al., 1999; Zeithamova &
Maddox, 2009). This capability, however, appears
to be limited as individuals were not able to learn
when a one-dimensional strategy predicted poor
performance (i.e., similar to the diagonal con-
ditions; Ashby et al., 1999). Moreover, even when
there is a highly accurate one-dimensional strategy,
unsupervised learning with separable dimensions
appears to be limited to categories that are highly
discriminable (Ell & Ashby, in press).

Given the dominance of one-dimensional rules
that had been observed in some previous studies
with separable stimulus dimensions (e.g., Ashby
et al., 1999), it is surprising that participants in
the horizontal condition did not outperform those
in the diagonal conditions. One possible expla-
nation relates to our definition of a one-dimen-
sional rule. Here we have operationally defined a
one-dimensional rule as a decision bound orthog-
onal to the physical dimensions of value or

chroma. It is possible that the psychological rep-
resentation of the decision strategy does not corre-
spond exactly to the dimensional structure we
intended (e.g., Melara, Marks, & Potts, 1993). It
is also possible that the mapping between the phys-
ical space and the perceptual (Brightness×
Saturation) space is nonlinear. The Munsell
system is based on scaling judgements performed
on one colour attribute while the remaining
attributes were held constant. Thus, the relations
proposed in the Munsell system are not
guaranteed to hold when the dimensions are
varied orthogonally (Brainard, 2003). Therefore,
there is reason to expect that the psychological
representation of a rule may not exactly match our
operational definition of a rule in the Value×
Chroma space.

This explanation would be more compelling if
participants demonstrated some degree of consist-
ency in their decision strategy in the saturation-
relevant conditions. In contrast to the vertical con-
dition, there was little agreement in the best fitting
decision bounds across participants. If there was
some psychological rule that did not correspond to
the physical axes, then one would expect some
degree of agreement between the participants. Of
course, these data do not rule out this interpretation
as the different participants may have each been
attending selectively to different psychological
rules. To the extent that categorization based on
saturation is less intuitive than categorization
based on brightness, the variability in strategy use
is consistent with recent work by Pothos and
colleagues (Pothos et al., 2011).

It would be inaccurate to say that unsupervised
learning is impossible in the diagonal conditions.
Although the optimal classifier was the best
fitting model for only a small number of blocks in
both the positive and the negative conditions, the
data from several other blocks that were best
fitted by the linear classifier did not deviate sub-
stantially from the optimal decision strategy.
Therefore, it appears as though it is possible to
successfully integrate information from integral
stimulus dimensions in the absence of feedback,
but also that there are large individual differences
in this ability.
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The distribution of best fitting models observed
in the diagonal conditions is quite different from
that observed with separable dimensions. For
example, Ashby et al. (1999) found that partici-
pants almost exclusively relied upon one-dimen-
sional decision strategies in category structures
similar to those in the present diagonal conditions.
This is not the case when the stimuli are con-
structed from integral dimensions. In the positive
condition, participants were integrating brightness
and saturation information rather than attending
selectively to one of those dimensions. In contrast,
in the negative condition, there was more frequent
use of decision strategies consistent with one-
dimensional rules. However, many participants
were also integrating brightness and saturation
information.

In addition, in the positive condition of
Experiment 1, there were a number of blocks in
which decision strategies were more consistent
with the optimal classifier (between 40° and 70°)
than a one-dimensional strategy. A close inspection
of the entire stimulus space suggested that there
may have been an alternative “greyness” rule to
which participants were sensitive. Inspection of
Figure 3 and written descriptions of decision strat-
egies, however, reveal no evidence that participants
used a “greyness” strategy. Furthermore, no such
bias was observed when feedback was provided in
Experiment 2 (Figure 5). Instead, participants
whose data were best fit by the linear classifier
were more likely to use a strategy consistent with
a less accurate one-dimensional rule than the so-
called “greyness” rule.

The few available studies on free sorting of inte-
gral-dimension stimuli suggest that people prefer
to use similarity-based decision strategies (e.g.,
Handel & Imai, 1972). Although testing between
similarity-based and one-dimensional strategies is
not the focus of this article, the similarity-based
account would seem to predict that performance
should be identical across the four category con-
ditions. This is because all of our conditions are
simply rotations of each other, and, according to
most popular definitions, similarity among inte-
gral-dimension stimuli is invariant under rotation
of the categories (Nosofsky, 1986).

Implications for models of category learning

Many computational models have been developed
that are capable of category learning in the
absence of feedback (Ahn & Medin, 1992;
Anderson, 1991; Ashby, Alfonso-Reese, Turken,
& Waldron, 1998; Billman & Heit, 1988;
Carpenter & Grossberg, 1991; Fried & Holyoak,
1984; Love, Medin, & Gureckis, 2004; Pothos &
Chater, 2002). The majority of these models,
however, predict that at least some aspects of
performance on the Figure 1 category structures
should be invariant with rotation of the categories,
and even fewer make explicit predictions for inte-
gral versus separable dimensions. The pattern of
results observed in the accuracy- and model-based
analyses therefore provides a challenge to future
model development.

For example, consider a recent network model of
category learning proposed by Love and colleagues
(Supervised and Unsupervised Stratified Adaptive
Incremental Network, or SUSTAIN; Love, et al.,
2004), which has been successfully applied to data
from unsupervised tasks. In short, SUSTAIN is a
multilayer neural network that maps stimulus
representations to the appropriate responses via an
intermediate layer of abstract category represen-
tations (or clusters). In unsupervised tasks,
SUSTAIN assumes that the initial category rep-
resentation comprises a single cluster and that
additional clusters are created as highly dissimilar
exemplars are encountered. SUSTAIN was
applied to a broader class of unsupervised tasks
than that considered here, but it does correctly
predict that participants prefer one-dimensional
strategies in unconstrained tasks, at least with
separable dimensions. Similar to many other
models of category learning, SUSTAIN is
equipped with a selective attention learning
mechanism that, together with a bias to attend to
brightness over saturation, would allow it to
capture the higher accuracy in the vertical condition
in Experiment 1. This attentional bias, however,
should be invariant with rotation of the categories,
thereby predicting the frequent use of decision
strategies on brightness in all conditions—a predic-
tion that is inconsistent with the data.
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Pothos and Chater’s (2002) simplicity model is
also particularly relevant to the issue of unsupervised
categorization. Briefly, this model assumes that the
preferred categorization strategy will be the simplest
one (i.e., in an information-theoretic sense). A strat-
egy’s simplicity, or code length, is a function of the
similarity structure of the stimuli and the costs and
benefits of the constraints imposed by classifying
the stimuli. The simplicity model accurately predicts
a bias to use one-dimensional strategies over two-
dimensional strategies in the absence of feedback
and, as a result, the pattern of performance in the
vertical condition (Pothos & Close, 2008). The sim-
plicity model, however, would predict a similar bias
for the horizontal condition and an approximately
equal distribution of one- and two-dimensional
strategies in the positive and negative conditions
(Pothos & Close, 2008). Neither of these patterns
was observed in the present data.

An alternative account is offered by the COVIS
(Competition between Verbal and Implicit
Systems) model of category learning (Ashby,
et al., 1998). COVIS hypothesizes that category
learning is a competition between separate hypoth-
esis-testing and procedural-based systems. The
hypothesis-testing system is specialized to learn
abstract rules (e.g., one-dimensional rules),
whereas the procedural-based system is specialized
to learn stimulus–response mappings. Because
learning in the procedural-based system is highly
dependent upon feedback, and there is an initial
bias towards the hypothesis-testing system,
COVIS predicts that the hypothesis-testing
system should dominate in unsupervised tasks.
COVIS also predicts that the hypothesis-testing
system will experiment with one-dimensional
rules only if two conditions are met—that selective
attention can be directed to this dimension and that
a salient verbal label describes the dimension (e.g.,
brightness). These conditions are met with most
separable dimensions, so COVIS correctly predicts
that one-dimensional decision strategies should
dominate in unsupervised tasks with separable
dimensions (Ashby et al., 1999). Thus, COVIS
correctly predicts the high prevalence of one-
dimensional strategies on brightness in the vertical
condition. COVIS, however, would not predict

that participants would be able to integrate bright-
ness and saturation as evidenced by the high per-
centage of data sets best fit by the linear classifier
in the horizontal, positive, and negative conditions.

SUMMARY

In summary, the present experiments demonstrate
that individuals are capable of learning categories
constructed from the integral dimensions of
brightness and saturation in the absence of feed-
back. This ability, however, has several limitations.
Consistent with the claim that integral dimensions
are initially processed holistically (e.g., Kemler
Nelson, 1993), participants had some success in
conditions that required the integration of
brightness and saturation. Consistent with the
claim that integral dimensions can subsequently
be processed in terms of the individual dimensions
given the appropriate task demands (e.g., Garner,
1974), participants were able to learn when a one-
dimensional strategy on brightness was highly
accurate. In addition, participants demonstrated a
general tendency to weight brightness more
heavily than saturation across all three experiments,
suggesting that brightness may have privileged
status relative to saturation. Whether such a
pattern holds when brightness is paired with
other dimensions is a matter for future research.

Although current models can account for some
aspects of these data, to our knowledge no current
models can account for the pattern of strategy use
observed in Experiment 1. In fairness, although
SUSTAIN, the simplicity model, and COVIS all
make predictions for unsupervised tasks, none of
these models was designed to account for differences
between integral and separable stimulus dimensions.
Thus, it may be possible to augment these models to
account for the present data (e.g., Pothos et al.,
2011). Even so, because of the theoretical difficulties
posed by our results, these datawill provide an impor-
tant benchmark for the development of theories
of unsupervised category learning and may have
implications for the application of cognitive science
to education and training where constrained tasks
are the norm (e.g., the training of medical
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professionals to categorize predefined medical
conditions).
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APPENDIX

Description of decision bound models and
fitting procedure

To get a more detailed description of how participants categor-

ized the stimuli, a number of different decision bound models

(Ashby, 1992a; Maddox & Ashby, 1993) were fitted separately

to the data for each participant from every block. Decision

bound models are derived from general recognition theory

(Ashby & Townsend, 1986), a multivariate generalization of

signal detection theory (Green & Swets, 1966). It is assumed

that, on each trial, the percept can be represented as a point in

a multidimensional psychological space and that each participant

constructs a decision bound to partition the perceptual space into

response regions. The participant determines which region the

percept is in and then makes the corresponding response.

While this decision strategy is deterministic, decision bound

models predict probabilistic responding because of trial-by-

trial perceptual and criterial noise (Ashby & Lee, 1993).

The appendix briefly describes the decision bound models.

For more details, see Ashby (1992a) or Maddox and Ashby

(1993).

Unidimensional classifier
This model assumes that the stimulus space is partitioned into

two regions by setting a criterion on one of the stimulus dimen-

sions. Two versions of the unidimensional classifier (UC) were

fitted to these data: One assumed that participants attended

selectively to brightness (UC-B), and the other assumed that

participants attended selectively to saturation (UC-S). The uni-

dimensional classifier has two free parameters: a decision cri-

terion on the relevant perceptual dimension and the variance

of internal (perceptual and criterial) noise (i.e., σ2). In the vertical
and horizontal conditions, a special case of the unidimensional

classifier, the optimal unidimensional classifier (OC), assumes

that participants use the unidimensional decision bound that

maximizes accuracy (Figure 1). This special case has one free

parameter (σ2)

Conjunctive classifier
Another possibility is that the participant uses a conjunction rule

involving separate decisions about the stimulus value on the two

dimensions, with the response assignment based on the outcome

of these two decisions (Ashby & Gott, 1988). The conjunctive

classifier (CC) assumes that the participant partitions the stimu-

lus space into four regions. Based upon inspection of the data

from the individual participants, two versions of the CC were

fitted to these data. The first assumed that individuals assigned

a stimulus to Category A if it was high on brightness and low

on saturation; otherwise the stimulus was assigned to Category

B. The second assumed that a stimulus was assigned to

Category A if it was low on brightness and low on saturation;

otherwise the stimulus was assigned to Category B. The CC

has three free parameters: the decision criteria on the two dimen-

sions and a common value of σ2 for the two dimensions.

Linear classifier
This model assumes that a linear decision bound partitions the

stimulus space into two regions. The linear classifier (LC)

differs from the CC in that the LC does not assume decisional

selective attention (Ashby & Townsend, 1986). Instead, the LC

requires integration of the perceived values on the stimulus

dimensions. The LC has three parameters: slope and intercept

of the linear bound, and σ2. In the positive and negative con-

ditions, a special case of the LC, the optimal linear classifier

(OC), assumes that participants use the linear decision bound

that maximizes accuracy (Figure 1). This special case has one

free parameter (σ2).

Model fitting
The model parameters were estimated using maximum likeli-

hood (Ashby, 1992b; Wickens, 1982), and the goodness-of-fit

statistic was

BIC = r ln N − 2 lnL,

where BIC is the Bayesian information criterion,N is the sample

size, r is the number of free parameters, and L is the likelihood of

the model given the data (Schwarz, 1978). The BIC statistic

penalizes a model for poor fit and for extra free parameters. To

find the best model among a set of competitors, one simply com-

putes a BIC value for each model and then chooses the model

with the smallest BIC. To assess the absolute fit of the

models, the percentage of responses accounted for by the best

fitting model was computed for each data set. This statistic

ranges from 0% to 100% with the latter implying that the

model perfectly accounted for all of the participant’s responses.

1562 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2012, 65 (8)

ELL, ASHBY, HUTCHINSON

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
M

ai
ne

] 
at

 1
8:

37
 2

6 
A

ug
us

t 2
01

2 


