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Abstract When interacting with categories, representations
focused on within-category relationships are often learned,
but the conditions promoting within-category representations
and their generalizability are unclear. We report the results of
three experiments investigating the impact of category struc-
ture and training methodology on the learning and generaliza-
tion of within-category representations (i.e., correlational
structure). Participants were trained on either rule-based or
information-integration structures using classification (Is the
stimulus a member of Category A or Category B?), concept
(e.g., Is the stimulus a member of Category A, Yes or No?), or
inference (infer the missing component of the stimulus from a
given category) and then tested on either an inference task
(Experiments 1 and 2) or a classification task (Experiment
3). For the information-integration structure, within-category
representations were consistently learned, could be general-
ized to novel stimuli, and could be generalized to support
inference at test. For the rule-based structure, extended infer-
ence training resulted in generalization to novel stimuli
(Experiment 2) and inference training resulted in generaliza-
tion to classification (Experiment 3). These data help to clarify
the conditions under which within-category representations
can be learned. Moreover, these results make an important
contribution in highlighting the impact of category structure
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The ability to learn categorical representations is foundational
for cognition. Categories enable the navigation of familiar
situations with increasing efficiency and can also be general-
ized to facilitate function in novel situations. Not surprisingly,
much research has been dedicated to understanding categori-
cal representations and how they are learned. This research
has been fertile ground for a vigorous and healthy debate
regarding the nature of category representations. Throughout
this debate, most research groups advocating for one theory or
another have tended to focus on a single paradigm, suggesting
that some theoretical disagreements may be driven by meth-
odological differences. This article investigates the impact of
two methodological variants on the learning of category rep-
resentations focusing on within-category similarities. Namely,
how does variability in the structure of the categories, and the
training methodology that dictates how participants interact
with the to-be-learned information, impact within-category
representations? Furthermore, once learned, what are some
of the limits on the generalization of within-category
representations?

Category representations

Category representations are largely dependent upon the goal
of the task (Goldstone, 1996; Hoffman & Rehder, 2010;
Markman & Ross, 2003; Minda & Ross, 2004; Yamauchi &
Markman, 1998). For instance, in the typical category learning
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experiment, participants are presented with stimuli (each
drawn from one of a number of contrasting categories) and
instructed to make a decision about the category membership
of each stimulus. Such classification instructions have often
been argued to lead to the development of a representation that
focuses on between-category differences (e.g., learn what di-
mensions are relevant for classification, along with decision
criteria or category boundaries; Ashby, Alfonso-Reese,
Turken, & Waldron, 1998; Erickson & Kruschke, 1998;
Maddox & Ashby, 1993; Nosofsky, Palmeri, & McKinley,
1994; Smith & Minda, 2002). In a slightly different paradigm,
participants are presented with a subset of the stimulus fea-
tures as well as a category label and instructed to infer the
missing feature. Such inference instructions lead to the devel-
opment of a category representation that focuses on within-
category similarities (e.g., the correlational structure of the
stimulus dimensions; Chin-Parker & Ross, 2002; Markman
& Ross, 2003). Thus, the goal of classifying the stimuli into
one of a number of contrasting categories may lead to a
between-category representation, whereas the goal of infer-
ring missing information for stimuli from a known category
may lead to a within-category representation.

Task goal is clearly an important factor, but it is not the only
factor in producing within-category representations. For in-
stance, observational training (Carvalho & Goldstone, 2015;
Levering & Kurtz, 2015), training emphasizing the compari-
son of members from the same category (Hammer,
Diesendruck, Weinshall, & Hochstein, 2009), and blocked
training (Carvalho & Goldstone, 2014; Goldstone, 1996) can
promote within-category representations. Another factor that
is investigated in the present article involves a seemingly mi-
nor tweak of the typical classification instructions to empha-
size concept learning called the yes/no task (i.e., participants
learn categories by classifying stimuli as a member/
nonmember of a target category; Maddox, Bohil, & Ing,
2004; Posner & Keele, 1968; Reber, 1998; Smith & Minda,
2002; Zeithamova, Maddox, & Schnyer, 2008). Both classifi-
cation and concept training are active tasks and have the goal
of classification on a trial-by-trial basis. Concept training,
however, has been argued to shift the emphasis from
between-category differences to within-category similarities
(Casale & Ashby, 2008; Hélie, Shamloo, & Ell, 2017).

The very structure of the categories themselves can influ-
ence category representations (Ashby et al., 1998; Carvalho &
Goldstone, 2014). Consider, for example, the distinction be-
tween rule-based (RB) and information-integration (I) cate-
gory structures (Ashby & Ell, 2001). RB structures can be
learned using logical rules. Although logical rules can be
based on either within- or between-category representations
(e.g., large or larger than), the subset of logical rules learned
with RB structures tends to depend upon between-category
representations (Casale, Roeder, & Ashby, 2012; Ell &
Ashby, 2012; Ell, Ing, & Maddox, 2009; Hélie et al., 2017).
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In contrast, II structures are those in which information from
multiple dimensions needs to be integrated prior to making a
categorization response. Unlike RB structures, II structures
generally promote within-category representations (Ashby &
Waldron, 1999; Hélie et al., 2017; Thomas, 1998). Again,
even when classification is the goal, RB structures would be
expected to promote between-category representations,
whereas II structures would be expected to promote within-
category representations. Neurocomputational models that
have been applied to RB and II structures implicitly echo this
between- versus within-category distinction (Ashby et al.,
1998; Ashby & Crossley, 2011).

Utility of within- and between-category
representations

Categorical representations in and of themselves have little
value. Rather, it is the efficiencies afforded by categories that
are a better measure of their cognitive utility (Hoffman &
Rehder, 2010; Markman & Ross, 2003). Category represen-
tations can facilitate interactions with category members (e.g.,
Rosch & Mervis, 1975). Arguably more important is that cat-
egory representations can also facilitate interactions with nov-
el stimuli. Indeed, the field has a well-established tradition of
probing the extent to which learned category representations
can support the classification of novel stimuli (e.g., Smith &
Minda, 1998). Clearly this is an important function of catego-
ry representations.

Importantly, we argue that the generalizability of category
representations depends upon the nature of the representation
itself (Carvalho & Goldstone, 2014; Hoffman & Rehder,
2010; Levering & Kurtz, 2015). For instance, between-
category representations may be better suited to generalize
to novel stimuli that are beyond the range of the previously
encountered stimuli (e.g., because the representation is not
tied to the stimuli themselves but rather between-category
differences; Casale et al., 2012; Hoffman & Rehder, 2010;
Maddox, Filoteo, Lauritzen, Connally, & Hejl, 2005).
Similarly, within-category representations may be better suit-
ed for generalization that would benefit from knowledge of
within-category regularities, such as prototypicality or the co-
variation of stimulus dimensions (Chin-Parker & Ross, 2002,
2004; Yamauchi & Markman, 1998).

The ability to generalize between-category representations,
however, may be task dependent. Although knowledge of
between-category differences would facilitate classification
of novel stimuli, such knowledge is inextricably tied to the
goal of classification. When successful generalization depends
upon the ability to reconfigure knowledge acquired during
training to solve a new decision-making problem, within-
category representations would seem to have far greater utility
than between-category representations. Indeed, within-
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category representations can support generalization to novel
tasks (Chin-Parker & Ross, 2002). Within-category represen-
tations are also better able than between-category representa-
tions to support the reconfiguration of categorical knowledge
(Hélie et al., 2017; Hoffman & Rehder, 2010).

Formal models of categorization have been successful in
accounting for generalization of learned representations to
support the classification of novel stimuli. Attempts to test
the ability of formal models to account for generalization to
novel tasks, however, are not as common (see Maddox &
Bogdanov, 2000; Nosofsky & Zaki, 1998; Smith & Minda,
2001, for notable examples). Thus, the approach taken in the
current study—investigating generalization to novel stimuli
and tasks—will provide an important test bed for the devel-
opment and testing of formal models.

The current study

Although participants often demonstrate an initial bias toward
between-category representations (Ashby, Queller, &
Berretty, 1999; Ell & Ashby, 2006; Medin, Wattenmaker, &
Hampson, 1987; Smith, Beran, Crossley, Boomer, & Ashby,
2010), within-category representations may be a common out-
come of interacting with categories (e.g., Anderson &
Fincham, 1996; Hélie et al., 2017; Hoffman & Rehder,
2010; Thomas, 1998). Previous work suggests that numerous
methodological factors can promote within-category represen-
tations, but there is variability in how within-category repre-
sentations were measured, if measured at all. For example,
some studies used a two-alternative, forced-choice procedure
(e.g., Hoffman & Rehder, 2010) while others asked for typi-
cality ratings (e.g., Levering & Kurtz, 2015).

Studies using inference training consistently demonstrate
the development of within-category representations but have
not given much attention to the impact of category structure.
For example, when trained by inference, participants learn the
correlational structure of the categories despite such informa-
tion possibly being irrelevant to category membership (e.g.,
Chin-Parker & Ross, 2002). Motivated by this work, we em-
ploy knowledge of correlational structure as our primary de-
pendent measure of within-category representation and extend
this work by considering variability in training methodology
and category structure.

Using a transfer task that required the reconfiguration of
within-category representations, Hélie and colleagues (2017)
showed that learning an II structure resulted in successful
transfer with both concept and classification training. In con-
trast, learning a RB structure resulted in successful transfer
with concept training, but not classification training.
Although these data are consistent with the claim that
within-category representations may be a more common out-
come of categorization, this claim would be bolstered by using

a more traditional measure of within-category representations
(i.e., knowledge of the correlational structure).

A second goal of the current study is to investigate the
extent to which within-category representations can be gener-
alized to support performance with novel stimuli and/or novel
tasks. Within-category representations developed with infer-
ence training appear to be quite versatile and can support
generalization to novel tasks (Chin-Parker & Ross, 2002).
Although the within-category representations developed with
concept and classification training can support knowledge re-
configuration (Hélie et al., 2017), it is unclear if these within-
category representations can also support generalization to
novel stimuli and tasks. For example, some researchers have
demonstrated that within-category correlations can be learned
during a classification task (Anderson & Fincham, 1996;
Thomas, 1998), whereas others have argued that such demon-
strations are a byproduct of simplistic stimuli, overtraining,
and/or classification tasks that incorporate additional
inference-like training (e.g., Chin-Parker & Ross, 2002).

The current study tests these hypotheses using classification,
concept, and inference training methodologies to learn RB and
IT structures. For classification training, participants were
instructed to distinguish between members of contrasting cate-
gories (e.g., Is the image a member of Category A or Category
B?—hereafter referred to as A/B training). For concept train-
ing, participants were instructed to distinguish between catego-
ry members and nonmembers (e.g., Is the image a member of
Category A?—hereafter referred to as YES/NO training; Hélie
et al., 2017; Maddox, Bohil, et al., 2004). For inference train-
ing, participants were instructed to produce the missing stimu-
lus feature given the category label and another stimulus feature
(hereafter referred to as INF training; Chin-Parker & Ross,
2002; Thomas, 1998; Zotov, Jones, & Mewhort, 2011).

In Experiment 1, participants learned RB or II structures that
incorporated a correlation between the stimulus dimensions
using either A/B, YES/NO, or INF training. Knowledge of
the correlation between the stimulus dimensions was subse-
quently tested using inference. The test phase included stimuli
that were consistent with the training categories (allowing for
the assessment of within-category representations developed
during training) and novel stimuli (allowing for the assessment
of generalization of within-category representations beyond the
trained stimuli). Importantly, the design also enabled an analy-
sis of the extent to which knowledge could be generalized
across methodologies (e.g., from classification to inference).

Following Hélie et al. (2017), we hypothesized that within-
category representations would be learned in all but the RB-A/
B condition, and that within-category representations could be
generalized to support inference across stimuli and methodol-
ogies. Experiments 2 and 3 were designed to replicate and
extend Experiment 1. Experiment 2 investigated the impact
of extended training on the ability to generalize within-
category representations. Experiment 3 aimed to investigate
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if the generalization results were specific to using an inference
procedure at test by testing participants on A/B classification
rather than inference.

To anticipate, the results of Experiments 1 and 2 demon-
strate that the II structure consistently resulted in within-
category representations that could be generalized to novel
stimuli and across methodologies (Experiments 1 and 2).
The RB structure, however, resulted in within-category repre-
sentations only when paired with INF training (Experiments 1
and 2). The within-category representations acquired in the
RB-INF condition could be generalized to novel stimuli and
across methodologies, but only when provided with extended
INF training (Experiment 2). Furthermore, generalization
across methodologies was asymmetric as the within-
category representations acquired with INF training could be
generalized to support A/B classification, but only with the
RB structure (Experiment 3).

Experiment 1

The goals of Experiment 1 were twofold. First, Experiment 1
investigated the extent to which training methodology and
category structure promotes the learning of within-category
representations. Second, Experiment 1 investigated the ability
of within-category representations to support knowledge gen-
eralization across stimuli and tasks. Specifically, participants
were trained on either RB or II category structures using clas-
sification training (A/B), concept training (YES/NO), or infer-
ence training (INF). The stimulus dimensions were correlated
within each category, thereby allowing the use of knowledge
of the correlational structure of the categories as a probe for
within-category representations. All participants were subse-
quently tested using an inference procedure that included ex-
emplars from the training categories as well as novel exem-
plars. Knowledge of the within-category correlations for train-
ing exemplars indexed learning of the within-category repre-
sentations whereas knowledge of the within-category correla-
tions for transfer exemplars indexed generalization to novel
stimuli. Successful test performance for participants in the A/
B and YES/NO conditions provided a measure of generaliza-
tion across methodologies. It was predicted that all but the
RB-A/B condition would evidence within-category represen-
tations and that these representations would be able to be
generalized across stimuli and methodology.

Method
Participants and design
In all experiments, a target sample size of approximately 30

participants in each experimental condition was determined a
priori (based upon previous experience with similar
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experiments). Participants (193 total) were recruited from the
University of Maine community and received partial course
credit for participation. Participants were randomly assigned
to one of six experimental conditions in the 2 category struc-
ture (RB vs. II) x 3 training methodology (A/B, YES/NO,
INF) design. A total of seven participants were excluded from
analysis: two participants due to a software error (RB-INF: 1;
II-INF: 1), three participants did not complete the task within
the hour-long experimental session (II-AB: 1; II- YES/NO: 1;
II-INF: 1), and two participants were statistical outliers (i.e.,
more than three standard deviations from the mean on both
average training accuracy and accuracy during the final train-
ing block; RB-YES/NO: 2). The resulting sample sizes by
condition were RB-A/B: 32; RB-YES/NO: 29; RB-INF: 32;
[I-A/B: 32; 1I- YES/NO: 30; II-INF: 31. All participants re-
ported normal (20/20) or corrected-to-normal vision. Each
participant completed one session of approximately 60 mi-
nutes duration.

Stimuli and apparatus

The stimuli in all experiments comprised circles and lines that
varied continuously in diameter and orientation, respectively
(see Fig. 1). These dimensions were selected in an effort to
facilitate the ability of participants to complete the inference
task. The training categories were generated using a variation
of the randomization technique introduced by Ashby and Gott
(1988), in which the stimuli were generated by sampling from
bivariate normal distributions defined in a Diameter x Angle
(from horizontal) space in arbitrary units. For the II structure,
the category means were p, = [485, —20] and pz =
[415, 40]. For the RB structure, the category means were /1,

= [635, —20] and ppz = [265, 40]. The covariance matrix %

2875 3175
and angle) was the same for all tasks and categories. Recall
that the primary dependent measure of within-category
knowledge was the extent to which participants learned the
diameter-angle correlation. As a consequence, it was neces-
sary to have a nonzero covariance within each category and to
increase the category separation in the RB task in order to
allow for a unidimensional rule on diameter to produce opti-
mal accuracy.

On each trial, a random sample (x, y) was drawn from the
Category A or B distribution, and these values were used to
construct a stimulus with circle of 5 pixels in diameter and line

= [3125 2875} (i.e., a correlation of 1 between diameter

of % degrees (counterclockwise from horizontal) with length
of 200 pixels. The line was always connected at the circle’s
highest point. The scaling factors were selected in an effort to
equate the perceived salience of the stimulus dimensions.
Eighty stimuli (40 from each category) were generated for
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Fig. 1 (Top) Example displays for three training methodologies.
(Bottom) RB and II category structures. Category A and B exemplars
used during the training phase are plotted as black crosses and circles,

each of the four blocks of trials. All stimuli were generated
off-line, and a linear transformation was applied to ensure that
the sample statistics matched the population parameters. The
experiment was run using the Psychophysics Toolbox
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in the
MATLAB computing environment. Each stimulus was
displayed on a 20-inch LCD with 1600 x 1200 pixel resolu-
tion at a viewing distance of 20 inches in a dimly lit room.

Two sets of test phase stimuli (112 total) were selected to
assess the learning and generalization of the within-category
correlations. The training set was selected to approximate the
training categories and was used to assess learning of the
within-category correlations (red circles in Fig. 1). The trans-
fer set was selected to broadly sample the untrained region of
the stimulus space while maintaining the within-category cor-
relation from the training categories and was used to assess
generalization of the within-category correlations (blue circles
in Fig. 1). The coordinates of the test phase stimuli are pre-
sented in Appendix 1.

Consistent with previous work, participants were expected
to learn unidimensional rules in the RB task (Ell & Ashby,

Circle Diameter

respectively. Stimuli used during the test phase are plotted as red/dark
(training set) and blue/light (transfer set) circles. (Color figure online)

2006). Given the large category separation, however, there are
many alternative strategies that would also yield perfect per-
formance (e.g., the optimal strategy for the II task). Thus,
probe stimuli were included to differentiate between unidi-
mensional and integration strategies (e.g., the solid lines in
Fig. 1). A subset (14) of the test stimuli that lie between
Category A and B were included as probe stimuli during the
final block of training (resulting in a total of 94 trials during
the final block). In an effort to increase the similarity between
the RB and II conditions, these same probe stimuli were also
included during the final block with the II structure. Because
the probe stimuli do not aid in the identifiability of the deci-
sion strategy used with the II structure, the probe stimuli were
excluded from the analysis of the II training data. No feedback
was provided for probe trials. The coordinates of the probe
stimuli are presented in Appendix 1.

Procedure

Each participant was run individually. At the beginning of the
training phase, participants were told that stimuli would
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comprise a circle with a line connected at the top and that the
stimuli would be presented individually but would vary across
trials in circle diameter and line angle. In the A/B condition,
participants were instructed that their goal was to learn, by trial
and error, to distinguish between members of Category A and
B. On each trial, a stimulus was presented, and participants
were prompted “Is this image a member of Category A or
Category B?” and responded by pressing the button labeled
“A” or “B” on the keyboard. In the YES/NO condition, par-
ticipants were instructed that their goal was to learn, by trial
and error, if each image is a member of a particular category or
not. On each trial, a stimulus was presented and participants
were prompted with either “Is this image a member of
Category A?” or “Is this image a member of Category B?”
(with equal probability) and responded by pressing the button
labeled “Yes” or “No” on the keyboard. In the INF condition,
participants were instructed that their goal was to learn, by trial
and error, to draw the missing stimulus component. Example
stimulus displays are shown in Fig. 1. On each trial, a partial
stimulus (i.e., line or circle along with the category label) was
presented and participants were prompted to draw the missing
component—that is, “Draw the circle that goes with this line
angle” or “Draw the line angle that goes with this circle” (with
equal probability). Participants initially responded by using
the mouse to select the location of either the bottom of the
circle (indicating the diameter of the circle relative to the dot at
the beginning of the line) or the end of the line (indicating the
orientation of the line relative to horizontal). The circle or line
was drawn by the computer based upon the participant’s se-
lection with a line beginning at the dot at the top of the circle
(at a constant length of 200 pixels). After the line was drawn,
participants were able to adjust the diameter or angle using the
arrow keys, pressing the space bar when satisfied. Any select-
ed stimulus values outside the allowable range were reset to
the nearest allowable value (allowable range: diameter 10 to
600 pixels, angle: -50 to 110 degrees).

Stimulus presentation was response terminated with an up-
per limit of 60 s. After responding, feedback was provided. In
the A/B and YES/NO conditions, the screen was blanked and
the word “CORRECT” (in green, accompanied by a 500 Hz
tone) or “WRONG” (in red, accompanied by a 200 Hz tone)
was displayed. In the INF condition, the correct circle or line
was overlaid upon the participant’s response. In all conditions,
feedback duration was 2 s and the screen was then blanked for
1 s prior to the appearance of the next stimulus.

In addition to trial-by-trial feedback, summary feedback
was given at the end of each 80-trial block, indicating percent-
age correct for that block (A/B and YES/NO, participants
were informed that higher numbers are better) or the root
mean square error between the drawn and correct stimulus
components (INF, participants were informed that lower num-
bers are better). The presentation order of the stimuli was
randomized within each block, separately for each participant.
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Prior to starting the training phase, participants completed
several practice trials to familiarize themselves with the task
using stimuli randomly sampled (with equal probability) from
the training categories.

During the test phase, all participants performed the infer-
ence task (one block of 112 trials). Instruction was provided
for all conditions and participants completed several practice
trials prior to beginning the test phase using stimuli randomly
sampled (with equal probability) from all test phase stimuli.
No feedback was provided during the test phase.

Results
Training phase

The dependent measure varied across training methods, thus
the training phase data from the A/B, YES/NO, and INF con-
ditions were analyzed separately. Performance generally im-
proved across blocks for all training methodologies (Fig. 2). A
2 category structure x 4 block mixed ANOVA conducted on
the data from the A/B condition revealed significant main
effects, structure: F(1,62) =282.14,p < .05, n2 = 82; block:
F(2.62,162.41) = 2737, p < .05, 12 = .31, and a significant interac-
tion, F(2.62,162.41) =4.16, p < .05, 11]23 = .06." To de-
compose the interaction, a series of pairwise comparisons
were conducted within each structure. For the II structure,
accuracy increased across the first three blocks (ps < .05),
but not from Block 3 to Block 4 (p = .80). For the RB struc-
ture, there was no significant block-over-block increase in
accuracy (ps > .10), but there was a more general increase
with Block 4 accuracy being higher than Block 1 (p < .05).
These results suggest that with A/B training, there was more
consistent improvement across blocks in the II structure, but
caution is warranted given a possible ceiling effect in the RB
structure.

A 2 category structure x 4 block mixed ANOVA conducted
on the data from the YES/NO condition revealed significant
main effects, structure: F(1, 57) = 261.62, p < .05, 12 = .82; block:
F(2.14,122.06) = 46.97, p < .05, ng = .45, but the inter-
action was not significant, 7(2.14, 122.06) = 2.85, p = .06, )2 = .05.
Pairwise comparisons indicated that the main effect of block
was driven by an increase in accuracy across the first three
blocks (p's < .05), but not from Block 3 to Block 4 (p = .63).
With YES/NO training, participants in both structures learned,
but accuracy was higher in the RB structure.

To analyze the data from the INF condition, the correlation
between the presented and produced dimensions was comput-
ed separately for each category, then averaged across catego-
ries (Fig. 2, right panel). A 2 category structure x 4 block

'A Huynh-Feldt correction for violation of the sphericity assumption has been
applied to all mixed ANOVAs (when appropriate). All post-hoc comparisons
have been Sidak corrected unless otherwise noted.
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Fig. 2 Training performance in the A/B, YES/NO, and INF conditions of Experiment 1

mixed ANOVA indicated a significant effect of block, F(2.89,
176.22) = 16.26, p < .05, ng = .21, with consistent improve-
ment across Blocks 1-3 [p’s < .05. No other effects were
statistically significant, category structure: F(1, 61) = 3.06,
p = .08, nf) = .05; Category Structure x Block: F(2.89, 17
6.22) =123, p=.3, ng = .02. In sum, participants in the
two inference training conditions evidenced learning of the
within-category correlation although this learning was mod-
est, only being statistically greater than zero in Blocks 2—4 (p's
< .05) and asymptoting near a correlation of .2.

Categorization performance in the RB task was expected to
be mediated by unidimensional decision strategies (Ell &
Ashby, 2006), but given the large separation between the RB
categories, a number of qualitatively different decision strate-
gies could have produced high accuracy. In order to confirm
that participants were using unidimensional strategies in the
RB task, a number of decision-bound models (Ashby, 1992a;
Maddox & Ashby, 1993) were fit to the individual participant
data from the A/B and Yes/No conditions. Three different
types of models were evaluated, each based on a different
assumption concerning the participant’s strategy. Rule-based
models assume that the participant sets decision criteria on one
(or both) stimulus dimensions (e.g., unidimensional model: If
the circle is large, respond A; otherwise respond B).
Information-integration models assume that the participant in-
tegrates the stimulus information from both dimensions prior
to making a categorization decision. Finally, random respond-
er models assume that the participant guessed. Each of these
models were fit separately to the data from the final block, for
each participant, using a standard maximum likelihood proce-
dure for parameter estimation (Ashby, 1992b; Wickens, 1982)
and the Bayes information criterion for goodness of fit
(Schwarz, 1978; see Appendix 2 for a more detailed descrip-
tion of the models and fitting procedure).

As expected, most participants in the RB task were best fit
by a unidimensional model assuming participants attended

selectively to diameter (A/B: 91%, YES/NO: 86%).
Similarly, most participants in the II task were best fit by
information-integration models (A/B: 63%, YES/NO: 67%).
The results of the model-based analysis indicate that the ma-
jority of participants used task appropriate strategies at the end
of training.

Test phase

Correlations between the presented and produced dimensions
were computed separately for each cluster of test stimuli in
Fig. 1. Preliminary analyses were conducted on the correla-
tions to determine if the data could be safely aggregated across
clusters. For test phase data from the two training clusters, a 2
cluster x 2 category structure x 3 training methodology mixed
ANOVA did not reveal any significant effects of cluster (main
effect and interactions: all F < 1, p>.38, nﬁ <.01).
Similarly, for test phase data from the six transfer clusters, a
6 cluster x 2 category structure x 3 training methodology
mixed ANOVA did not reveal any significant effects of cluster
(main effect and interactions: all /' <1.6, p>.1, né <.018).
Thus, the subsequent analyses average across clusters within
the two sets of test stimuli (i.e., training and transfer).
Inspection of the correlations during the test phase (see
Fig. 3) suggests more consistent learning and generalization
of the correlational structure of the training categories for the
IT structure. A series of one-sample ¢ tests (see Table 1) were
consistent with this observation. For the RB structure, neither
the correlations for the training stimuli nor the transfer stimuli
were significantly greater than zero. In contrast, for the II struc-
ture, almost all of the correlations were significantly greater
than zero, with the correlation for training items in the YES/
NO condition not surviving the correction for multiple compar-
isons. Consistent with the previous analysis, a 2 stimulus set
(training, transfer) x 2 category structure x 3 training method-
ology mixed ANOVA comparing the magnitude of the
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Fig. 3 Performance on the inference task used during the test phase of Experiment 1

correlation across conditions indicated only a significant main
effect of category structure, F(1,180) =9.98, p < .05
, ng = .05. None of the other effects were statistically signifi-

cant (all F<2.43, p>.12, nf) <.02 ). In sum, these data sug-

gest learning and generalization of the within-category correla-
tions, but only for the II category structure.

Summary

The goal of Experiment 1 was to investigate the impact of
category structure and training methodology on the ability to
learn and generalize within-category representations (i.e., cor-
relational structure of the categories). Structure and methodol-
ogy were predicted to interact such that within-category repre-
sentations would be learned in all but the RB-A/B condition.
The results, however, did not support these predictions. First,

Table 1 Knowledge of the within-category correlational structure dur-
ing the test phase of Experiment 1

Training stimuli Transfer stimuli

Rule based df ¢ p d t p d
A/B 31 123 11 22 3 .38 .05
YES/NO 28 .76 23 14 1.1 .14 2
INF 31 155 .07 27 245 .01 43
Information integration
A/B 31 3.61* .0005 .64 4.62* .00003 .82
YES/NO 29 291 .007 530 391 .0002 71
INF 30 3.34*  .001 .6 3.93%  .0002 71

Note. One-sample ¢ tests comparing observed correlations to no learning
(i.e., correlation = 0), df are constant across training and transfer.
*Statistically significant at Sidék corrected o = .004
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although participants demonstrated some evidence of learning
within-category representations during the training phase of the
INF condition, this information was only significantly main-
tained for the II structure. That being said, there may have been
learning in the RB-INF condition that did not survive the sta-
tistical correction for multiple comparisons given the small-to-
moderate effect sizes for the training and transfer stimuli during
the test phase. Second, YES/NO training did not generally
result in the learning of within-category representations.
Instead, the results suggest that the II structure consistently
resulted in the learning of within-category representations, re-
gardless of training methodology. Moreover, the within-
category representations could be generalized to a novel task
(i.e., from categorization to inference) and to novel stimuli.

Experiment 2

The results of Experiment 1 suggest that learning and gen-
eralization of within-category representations may be lim-
ited to II category structures. The inference task, however,
was fairly challenging. Thus, it may be that there would be
more robust evidence of within-category knowledge with
extended training on the inference task. In addition, pro-
viding extended training may also provide more of an
opportunity for participants given categorization training
to learn the within-category representations. The goal of
Experiment 2 was to investigate the impact of extended
training on the ability to learn and generalize within-
category representations. The design of Experiment 2
was identical to Experiment 1 with two exceptions. First,
the amount of training was doubled (across two training
sessions). Second, given the similarity of the results in the
A/B and YES/NO conditions of Experiment 1, only A/B
training was included in Experiment 2.
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Method
Participants and design

Participants (143 total) were recruited from the University of
Maine community and received partial course credit for par-
ticipation. Participants were randomly assigned to one of four
experimental conditions in the 2 category structure (RB vs. II)
x 2 training methodology (A/B, INF) design. The experiment
was conducted across two 60-min sessions on consecutive
days. Twenty-one participants failed to return on Day 2.
Although the attrition rate was high, it was similar across the
four conditions. The sample sizes (and number of participants
that did not return for Day 2) by condition were RB-A/B: 33
(3), RB-INF: 29 (6), 1I-A/B: 30 (6), II-INF: 30 (6). All partic-
ipants reported normal (20/20) or corrected-to-normal vision.

Procedure

The stimuli and procedure were identical to Experiment 1 with
two exceptions. First, the YES/NO condition was not includ-
ed. Second, the experiment was conducted across two, con-
secutive days. On Day 1, participants completed four blocks
of A/B or INF training. Day 2 was identical to Experiment 1
with participants completing four additional blocks of training
followed by the test phase.

Results
Training phase

The results from the training phase were similar to Experiment
1 (Fig. 4). In the A/B condition, learning was evident in both
category structures, but accuracy was generally higher and
increased more quickly in the RB structure. A 2 category
structure X 8 block mixed ANOVA was consistent with these
observations with all effects being significant, structure:
F(1,61) = 199.36, p < .05, 1% = .77; block: F(3.96,241.56)
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=24.41,p < .05, ‘r]lz7 = .29; Structure x Block: F(3.96, 241
.56) =5.52, p < .05, ng = .08 ]. As with the A/B condition
of Experiment 1, the interaction was driven by a more consis-
tent increase in accuracy across blocks in the II structure than
in the RB structure, likely due to a ceiling effect in the RB
structure. The decision-bound models described in
Experiment 1 were fit to the final training block in the A/B
conditions and indicated that most participants in the RB task
were best fit by a unidimensional model on diameter (88%)
and most participants in the II task were best fit by an
information-integration model (73%).

In the INF condition, a 2 category structure x 8 block
mixed ANOVA indicated a significant effect of block, F(4,
227.9) = 641, p < .05, n7 = .1, reflecting improved perfor-
mance with training (e.g., Block 8 > Block 1, p < .05). No
other effects were statistically significant, structure:
F(1,57) = .42, p = .52, Tlf) =.007; Block X Structure: F(4,
227.9) =2.02, p = .09, ng = .03. In sum, as in Experiment
1, there was evidence of learning in all conditions, albeit to
varying degrees.

Test phase

Inspection of the correlations during the test phase (Fig. 5)
suggests learning and generalization of the correlational struc-
ture of the training categories for the II structure and for infer-
ence training with the RB structure. A series of one-sample #
tests (see Table 2) were consistent with this observation. For
the RB structure, the correlations for the training and transfer
stimuli were significantly greater than zero in only the INF
condition. In contrast, for the II structure, all correlations were
significantly greater than zero, suggesting learning and gener-
alization of the correlational structure. A 2 stimulus set (train-
ing, transfer) x 2 category structure x 3 training methodology
ANOVA comparing the magnitude of the correlation across
conditions indicated that learning was greater for the trained
region of the stimulus space [main effect of stimulus set:

INF
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Fig. 4 Training performance across two, four-block sessions in the A/B and INF conditions of Experiment 2
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Fig. 5 Performance on the inference task used during the test phase of Experiment 2

F(1,118) =12.24, p < .05, 1’1123 = .09, and that INF train-
ing was superior to A/B training, main effect of methodology:
F(1,118) = 7.95, p < .05, 12 = .06. None of the other ef-
fects were statistically significant (all F' <2.23, p >.14, nf) <
.02 ). In sum, with extended training participants in the RB
condition were able to learn and generalize the within-
category correlation, but these results were specific to
inference.

Summary

The goal of Experiment 2 was to investigate if extended train-
ing might facilitate the learning and generalization of within-
category information. For the II structure, the results mirrored
those from Experiment 1 with evidence of learning and gen-
eralization regardless of training methodology. For the RB
task, participants were able to learn and generalize with

Table 2  Knowledge of the within-category correlational structure dur-
ing the test phase of Experiment 2

Training stimuli Transfer stimuli

Rule based df ¢ p d t P d
A/B 32 139 .09 24 98 17 17
INF 29 354 001 66 3.78%  .001 7
Information integration

A/B 29  3.04%  .005 56 431% 0 .0002 .79

INF 29  5.08% .0002 .93  3.05%  .005 .56

Note. One-sample ¢ tests comparing observed correlations to no learning
(i.e., correlation = 0), df are constant across training and transfer.
*Statistically significant at Sidék corrected o = .006.
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extended training, but these effects were specific to inference
training. In sum, II structures and inference training seem to be
best suited for the learning and generalization of within-
category information.

Experiment 3

Experiments 1 and 2 focused on the ability to generalize
within-category representations to an inference task. In prin-
ciple, within-category representations should also be able to
support categorization. The primary goal of Experiment 3 was
to investigate the extent to which INF training would support
generalization to A/B classification with the same stimuli. A
second, more exploratory question concerned the extent to
which between- and within-category representations could
be generalized to support the classification of novel stimuli.
RB-A/B training would be expected to result in between-
category representations that could be generalized to support
the classification of novel stimuli (Casale et al., 2012). More
specifically, a unidimensional boundary on circle diameter
could be applied to novel stimuli during the test phase (e.g.,
an extension of the vertical boundary plotted with the RB
structure in Fig. 1). Casale et al. found, however, that the
within-category representations resulting from II-A/B training
had limited generalizability to novel stimuli.

Method
Participants and design

Participants (170 total) were recruited from the University of
Maine community and received partial course credit for
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participation. Participants were randomly assigned to one of
four experimental conditions in the 2 category structure (RB
vs. II) x 2 training methodology (A/B, INF) design. A total of
five participants were excluded from analysis: one participant
due to software error (RB-A/B) and four participants were
statistical outliers (i.e., more than three standard deviations
from the mean on both average training accuracy and accuracy
during the final training block; RB-INF: 1; II-INF: 3). The
resulting sample sizes by condition were RB-A/B: 44; RB-
INF: 40; II-A/B: 43; II-INF: 38. All participants reported nor-
mal (20/20) or corrected-to-normal vision. Each participant
completed one session of approximately 60 minutes duration.

Procedure

The stimuli and procedure were identical to Experiment 1 with
two exceptions. First, the YES/NO condition was not includ-
ed. Second, all participants were tested on classification (i.e.,
A/B) without corrective feedback.

Results
Training phase

In the A/B conditions, learning was evident in both category
structures and accuracy was higher in the RB structure (Fig. 6,
left). A 2 category structure X 4 block mixed ANOVA was
consistent with these observations, structure: F(1, 85)
=485.14, p < .05, ng = .85; block: F(2.71, 230.03) = 26.
31, p < .05, 115 = .24; Structure x Block: F(2.71, 230.03)
=249, p = .07, nf) = .03. As was the case in the previous
experiments, most participants in the RB task were best fit by a
unidimensional model during the final training block (86%).
However, information-integration strategies were not as preva-
lent in the II task (37%) with the majority of participants using
rule-based strategies (47%) or guessing (16%).

The correlations in the INF conditions followed a similar
pattern as the accuracy rates in the A/B conditions (Fig. 6,
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right). A 2 category structure x 4 block mixed ANOVA con-
ducted on the correlations between the presented and inferred
dimension indicated that all effects were significant, structure:
F(1,76) = 13.81, p < .05, 1} = .15; block: F(2.58, 196.2) =
11.88, p < .05, T]IZD = .14; Structure x Block: F(2.58, 196.2)
= .3.15, p < .05, nﬁ = .04. The Structure x Block interac-
tion was driven by a superior performance in the II structure
during Blocks 1-3 (ps < .05), but equivalent performance by
the end of training (p = .24). In sum, as in Experiments 1 and
2, there was evidence of learning in all conditions, albeit to
varying degrees.

Test phase

Recall that unlike Experiments 1 and 2, Experiment 3 partic-
ipants performed A/B classification during the test phase. The
two training clusters had an objectively correct response and,
therefore, were analyzed by computing categorization accura-
cy (Fig. 7). For participants in the INF conditions, accuracy on
the training clusters provided a measure of generalization
from inference to classification. A series of one-sample ¢ tests
(Sidék corrected ov = .0127 ) indicated that accuracy in all
conditions was significantly greater than chance, rule-based:
A/B -1(43) =22.96,p < .001,d = 7; INF - £(39) = 6.6, p
< .001, d = 2.11; information-integration: A/B - #(42) = 6.
72,p < .001,d =2.07; INF - (37)=2.54,p=.007,
d = .84. A 2 category structure X 2 training methodology
ANOVA comparing accuracy across conditions indicated that
test phase accuracy was generally greater for the RB structure,
main effect of structure: F(1, 161) = 92.24, p < .05, ng =.
36, and when participants continued to categorize at test, main
effect of methodology: F(1, 161) =37.72,p < .05, 1} = .
19 ]. The Category Structure x Training Methodology inter-
action was also significant, F(1, 118) =5.24, p < .05, 17
= .03, with higher A/B accuracy for both the RB (p < .001)
and II (p = .008) structures. The interaction likely reflects a
greater A/B advantage for the RB structure (d = 8.57) than the
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Fig. 6 Training performance in the A/B and INF conditions of Experiment 3
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II structure (d = 2.5). In sum, these data suggest that partici-
pants could generalize knowledge from inference to categori-
zation, but performance was inferior to participants that did
not have to generalize across methodologies.

No feedback was provided at test, thus the test transfer
items did not have an objectively correct response.
Nevertheless, the analysis of how the transfer items were clas-
sified permitted an exploration of generalization profiles to
novel regions of the stimulus space. Previous work would
suggest that participants in the RB-A/B condition would apply
the between-category representation acquired during training
(i.e., a unidimensional rule on diameter) to the transfer items.
In contrast, participants in the II-A/B condition would be ex-
pected to be limited in their ability to generalize their decision
strategy to novel stimuli. To investigate this question, the
decision-bound models described in Experiment 1 were fit
to each participant’s test phase data. As expected, unidimen-
sional strategies on diameter dominated in the RB-A/B con-
dition (see Table 3). In contrast, strategy use was variable in
the other conditions, and there was little evidence of the con-
sistent application of a task-appropriate strategy during the test
phase.

Table 3  Percentage of participants best fit by each model type during
the test phase

Condition
Model Type RB-A/B RB-INF 1I-A/B II-INF
UD-Diameter 93.2 32.5 16.3 10.5
Other RB 2.3 17.5 51.1 31.6
I 4.5 25.0 25.6 26.3
RR 0 25.0 7.0 31.6

Note. UD = unidimensional; RB = rule based; II = information integra-
tion; RR = random responder
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Summary

The primary goal of Experiment 3 was to investigate if the
within-category representations learned in the INF condition
would support classification with the same stimuli.
Participants in the INF conditions were able to generalize
across tasks when classifying the training items. Their perfor-
mance, however, was inferior to those participants that classi-
fied during training and test. The exploratory analysis of gen-
eralization profiles to novel stimuli replicated previous work
demonstrating that the between-category representations
learned with RB-A/B training could be generalized to novel
stimuli.

General discussion

This manuscript reports the results of three experiments
designed to investigate the impact of category structure
and training methodology on the ability to learn and gen-
eralize within-category representations (i.e., within-
category correlations). In Experiment 1, with an II struc-
ture, participants were able to learn within-category rep-
resentations regardless of whether participants used clas-
sification, concept, or inference training. Participants were
also able to generalize within-category representations to
novel tasks and novel stimuli. Experiment 2 revealed that
with extended training, within-category representations
learned with a RB structure could be generalized to novel
stimuli. Experiment 3 showed that within-category repre-
sentations learned in a RB structure could also be gener-
alized to a novel task. These results complement the
growing body of work highlighting the impact of category
structure and training methodology on category represen-
tations (Carvalho & Goldstone, 2015; Hammer et al.,
2009; Levering & Kurtz, 2015). These results also build
upon previous work by investigating the relationship be-
tween these factors and the generalization of categorical
knowledge (Carvalho & Goldstone, 2014; Chin-Parker &
Ross, 2002; Hoffman & Rehder, 2010).

Learning of within-category representations

Previous research has shown that II structures and concept
training result in a bias towards learning within-category
representations (Hélie et al., 2017). Moreover, inference
training results in knowledge of within-category correla-
tions that can be generalized to novel tasks (Chin-Parker
& Ross, 2002; Markman & Ross, 2003). Based on these
data, it was predicted that within-category representations
would be learned in all but the RB-A/B condition, a com-
bination of category structure and training methodology
that leads to a between-category representation (Casale
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et al.,, 2012; Ell & Ashby, 2012; Ell et al., 2009; Hélie
et al., 2017). With the exception of the RB-YES/NO con-
dition, these predictions were supported. Within-category
correlations could be learned with an II structure (see also
Thomas, 1998) and with extended training in the RB-INF
condition.

Extended training in the RB-INF condition, and II training
(Experiment 2) resulted in similar knowledge of the within-
category correlations. The process of producing a missing
stimulus value (i.e., the production task), much like producing
a missing category label, is a direct measure of knowledge. It
could be, however, that a direct measure of within-category
information was not an ideal match for measuring the category
representation that is learned with II structures (e.g., Roediger,
Marsh, & Lee, 2002). Thus, it is possible that the observed
within-category correlations are an underestimate of within-
category representations in the II structure.

The present data do not support previous claims that
within-category correlations cannot be learned during the
course of categorization (Markman & Ross, 2003). Instead,
and consistent with previous work (Anderson & Fincham,
1996; Thomas, 1998), within-category correlations could be
learned during categorization. Such learning, however, is
constrained by the structure of the categories. Furthermore,
because the tasks and stimulus dimensions were the same
for both RB and II structures, the present data argue against
the hypothesis that within-category correlations learned dur-
ing categorization are a byproduct of simplistic stimuli,
overtraining, and/or classification tasks that incorporate addi-
tional inference-like training (e.g., Chin-Parker & Ross,
2002).

Hélie et al. (2017) showed that, even with an RB structure,
concept training (i.e., YES/NO) results in a bias towards
within-category representations. In Hélie et al., participants
learned two RB category structures (simultaneously) along a
single diagnostic stimulus dimension (Category A vs.
Category B and Category C vs. Category D). Participants
were subsequently tested on a novel categorization problem
using the same categories (i.e., Category B vs. Category C).
Participants were successfully able to generalize the knowl-
edge when receiving concept training, but not when receiving
classification training, suggesting that concept training pro-
moted a representation based on the categories themselves
rather than between-category differences (see Hoffman &
Rehder, 2010, for a related finding). Consistent with this in-
terpretation, a computational model assuming within-category
representations fit to the concept training data was more suc-
cessful in predicting test phase performance than a model
assuming between-category representations. Thus, it may be
the case that concept training promotes a minimal within-
category representation that is sufficient to support classifica-
tion on a novel RB categorization problem (e.g., the range of
values on the stimulus dimensions) but not so rich so as to

include knowledge that was not required during training (e.g.,
the correlational structure of the categories).

Indeed, it has often been argued that participants learn
what is necessary to perform the task at hand (Markman &
Ross, 2003; Pothos & Chater, 2002; Yamauchi & Markman,
1998). This would suggest that the learning of within-
category correlations depends upon their relevance to the
training methodology. With inference training, knowledge
of the within-category correlations would facilitate perfor-
mance regardless of the category structure. In the categori-
zation conditions, however, the relevance of within-category
correlations depends upon the category structure. With the
RB structure, successful performance during training did not
depend upon learning the relationship between diameter and
angle. In this task, the vast majority of participants selective-
ly attended to diameter during training, using unidimension-
al decision rules. It is thus possible that participants in the
YES/NO task learned within-category representations that
did not include correlations (i.e., they could be limited to
containing the range of the stimulus dimensions). With the II
structure, however, successful performance depends upon
knowledge of the relationship between diameter and angle.
Thus, the II structure may promote learning within-category
representations that contain correlation information. The
present data suggest that within-category representations
may only include information that is necessary for success-
ful performance. As a result, within-category representations
learned with inference training, or an II structure, would
contain correlation information, but within-category repre-
sentations learned with a RB structure might not.

Generalization of within-category representations

In addition to investigating the factors that promote within-
category representations, another goal of the present work was
to investigate the extent to which within-category representa-
tions can be generalized to support performance with novel
stimuli and/or on novel tasks. Successful generalization per-
formance on the inference task used during the test phase of
Experiments 1 and 2 depended upon a within-category repre-
sentation that contained correlation information. For the II
structure, generalization to novel stimuli and tasks was sup-
ported by within-category representations. Participants in the
II-INF conditions were able to generalize knowledge of the
within-category correlations to the transfer stimuli and partic-
ipants in the II-A/B and II-YES/NO conditions were able to
generalize knowledge of the within-category correlations to
the inference task used during the test phase. In contrast, with
the RB structure, generalization was limited to novel stimuli
with participants in the RB-INF condition of Experiment 2
being able to generalize knowledge of the within-category
correlations to the transfer stimuli. The lack of successful gen-
eralization in the RB-YES/NO condition may reflect a

@ Springer



1790

Atten Percept Psychophys (2017) 79:1777-1794

mismatch between the nature of the within-category informa-
tion (i.e., range of the stimulus dimensions) and the knowledge
necessary at test (i.e., within-category correlations), instead of
reflecting the absence of a within-category representation.

In the categorization conditions, training accuracy was con-
sistently higher in the RB structure than the II structure, but
the opposite pattern was observed on the inference task during
the test phase. Moreover, in Experiment 3, inference training
performance was higher for the II structure than the RB struc-
ture, but the pattern of test phase performance on the catego-
rization task was reversed. Thus, it may be the case that in-
creased difficulty during training somehow benefits the ability
to learn and generalize within-category representations—a
common observation in the learning and memory literature
(e.g., Schmidt & Bjork, 1992). However, if task difficulty
were the primary determinant of learning and generalization
of within-category representations, then we should have also
observed a difference in transfer performance between the
RB-YES/NO and RB-A/B conditions of Experiment 1.
Despite average training accuracy across blocks being lower
in the RB-YES/NO (M = 93.2, SD = 3.9) condition than the
RB-A/B condition (M =97.1,SD =1.7), 1(59)=3.9,p < .05, d
= 1.28, within-category representations were not learned in
either condition. That being said, we cannot rule out the pos-
sibility that with extended training, or a generalization task
dependent upon aspects of within-category representations
other than within-category correlation, generalization in the
RB-YES/NO condition would have been stronger than gener-
alization in the RB-A/B condition.

Inference training was also able to support generalization to
classification—an effect that was more pronounced for the RB
structure (Experiment 3). Participants in the RB-INF condi-
tion demonstrated learning of the within-category correlations
that was similar to the performance observed in Experiments 1
and 2. It is possible, however, that the seemingly successful
generalization from inference to classification may actually be
a consequence of a preference to use unidimensional rules in
the absence of feedback in category structures where logical
rules would be successful (Ashby et al., 1999; Ell & Ashby,
2012; Ell et al., 2012; Medin et al., 1987; Milton & Wills,
2004; Pothos & Chater, 2005; Pothos & Close, 2008).
Although the training clusters were interleaved with the trans-
fer clusters during the test phase, many unidimensional rules
would have resulted in high test phase accuracy when focus-
ing on the widely separated training clusters. Moreover, if
inference training generally supported classification, then
one might have also expected successful generalization in
the II-INF condition. In light of these points, the present data
provide limited evidence of the ability to generalize within-
category representations learned by inference to support
classification.

The RB structure had a greater range on diameter than the
IT structure. This was done to equate the accuracy of a
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unidimensional rule on diameter in the RB structure with the
accuracy of information-integration models in the II structure
while also equating the within-category correlations between
category structures. One consequence of this design choice is
that in the RB conditions, a higher proportion of the transfer
stimuli fell within the range of stimuli used during training.
Thus, test-phase differences as a function of category structure
could be at least partly attributable to interference (e.g., pro-
ducing a line angle consistent with the training set rather than
the transfer set). Several considerations, however, would make
this possibility seem unlikely. For instance, this account would
predict that test phase performance for the transfer stimuli
would have varied by cluster, but this was not the case. In
addition, in Experiment 2, inference training with either cate-
gory structure produced similar levels of transfer performance.
Thus, the difference in the range of the training stimuli be-
tween category structures does not seem to be problematic for
interpretation of the test phase data.

Conclusions

These data suggest that both category structure and training
methodology are important factors in shaping the way cate-
gorical knowledge is represented and ultimately used. These
results extend previous research on inference training to dem-
onstrate the generality of this training methodology as a means
for learning within-category representations that can support
generalization. In addition, regardless of training methodolo-
gy, 1l structures promote the learning of within-category rep-
resentations that contain correlation information. Although
between-category representations may be efficient for classi-
fication, such representations would seem to have limited util-
ity for generalization. Intuitively, learning within-category
representations appears to be more useful in most cases. For
example, learning within-category representations about cats
and dogs is more useful than exclusively learning between-
category representations between cats and dogs. Knowing
what a cat is will facilitate distinguishing a cat from another
animal, whereas only learning what is different between cats
and dogs may not help. Indeed, the present data are consistent
with these speculations and make the contribution of clarify-
ing the conditions that promote within-category representa-
tions. Moreover, these data will be useful in developing a
new generation of computational models better equipped to
deal with knowledge generalization.
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Table 4  Test stimuli coordinates (arbitrary units)

II training/RB transfer II training/RB transfer RB training/II transfer RB training/II transfer
Diameter Angle Diameter Angle Diameter Angle Diameter Angle
410.0 -95.0 340.0 -35.0 560.0 -95.0 190.0 -35.0
421.5 -83.5 3515 =235 571.5 -83.5 201.5 -23.5
433.1 -71.9 363.1 -11.9 583.1 -71.9 213.1 -11.9
444.6 -60.4 374.6 -0.4 594.6 -60.4 224.6 -0.4
456.2 -48.8 386.2 11.2 606.2 -48.8 236.2 11.2
467.7 -37.3 397.7 22.7 617.7 -37.3 247.7 22.7
479.2 -25.8 409.2 34.2 629.2 -25.8 259.2 34.2
490.8 -14.2 420.8 45.8 640.8 -14.2 270.8 45.8
502.3 2.7 432.3 57.3 652.3 =27 2823 573
513.8 8.8 4438 68.8 663.8 8.8 293.8 68.8
5254 20.4 455.4 80.4 675.4 20.4 305.4 80.4
536.9 31.9 466.9 91.9 686.9 31.9 316.9 91.9
548.5 43.5 478.5 103.5 698.5 435 3285 103.5
560.0 55.0 490.0 115.0 710.0 55.0 340.0 115.0
II and RB transfer II and RB transfer II and RB transfer II and RB transfer
Diameter Angle Diameter Angle Diameter Angle Diameter Angle
440.0 215.0 590.0 215.0 660.0 155.0 810.0 155.0
451.5 226.5 601.5 226.5 671.5 166.5 821.5 166.5
463.1 238.1 613.1 238.1 683.1 178.1 833.1 178.1
474.6 249.6 624.6 249.6 694.6 189.6 844.6 189.6
486.2 261.2 636.2 261.2 706.2 201.2 856.2 201.2
497.7 272.7 647.7 272.7 717.7 212.7 867.7 212.7
509.2 284.2 659.2 284.2 729.2 224.2 879.2 224.2
520.8 295.8 670.8 295.8 740.8 235.8 890.8 235.8
5323 307.3 682.3 307.3 7523 2473 902.3 2473
543.8 318.8 693.8 318.8 763.8 258.8 913.8 258.8
5554 3304 705.4 3304 7754 270.4 925.4 270.4
566.9 341.9 716.9 341.9 786.9 281.9 936.9 281.9
578.5 3535 728.5 3535 798.5 293.5 948.5 293.5
590.0 365.0 740.0 365.0 810.0 305.0 960.0 305.0

Note. Bold coordinates were used as probe stimuli during the final block of training

Appendix 2
Model-based analyses

To get a more detailed description of how participants
categorized the stimuli, a number of different decision
bound models (Ashby, 1992a; Maddox & Ashby, 1993)
were fit separately to the data for each participant.
Decision bound models are derived from general recogni-
tion theory (Ashby & Townsend, 1986), a multivariate

generalization of signal detection theory (Green & Swets,
1966). It is assumed that, on each trial, the percept can be
represented as a point in a multidimensional psychological
space and that each participant constructs a decision bound
to partition the perceptual space into response regions. The
participant determines which region the percept is in and
then makes the corresponding response. While this deci-
sion strategy is deterministic, decision bound models pre-
dict probabilistic responding because of trial-by-trial per-
ceptual and criterial noise (Ashby & Lee, 1993).

@ Springer
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This appendix briefly describes the decision bound models.
For more details, see Ashby (1992a) or Maddox and Ashby
(1993). The classification of these models as either rule-based
or information-integration models is designed to reflect cur-
rent theories of how these strategies are learned (e.g., Ashby
et al., 1998) and has received considerable empirical support
(see Ashby & Maddox, 2005; Maddox & Ashby, 2004, for
reviews).

Rule-based models

Unidimensional classifier (UC). This model assumes that
the stimulus space is partitioned into two regions by set-
ting a criterion on one of the stimulus dimensions. Two
versions of the UC were fit to the data. One version as-
sumes that participants attended selectively to diameter
and the other version assumes participants attended selec-
tively to angle. The UC has two free parameters, one cor-
responds to the decision criterion on the attended dimen-
sion and the other corresponds to the variance of internal
(perceptual and criterial) noise (o2 ). A special case of the
UC, the optimal unidimensional classifier, assumes that
participants use the unidimensional decision bound that
maximizes accuracy. This special case has one free param-
eter (o2 ).

Conjunctive classifier (CC) An alternative rule-based strate-
gy is a conjunction rule involving separate decisions about the
stimulus value on the two dimensions with the response as-
signment based on the outcome of these two decisions (Ashby
& Gott, 1988). The CC assumes that the participant partitions
the stimulus space into four regions. Based on an initial in-
spection of the data, two versions of the CC were fit to these
data. One version assumes that individuals assigned a stimulus
to Category B if it was low on diameter and high on angle;
otherwise, the stimulus would be assigned to Category A. The
other version assumes that individuals assigned a stimulus to
Category A if it was high on diameter and low on angle;
otherwise, the stimulus would be assigned to Category B.
The CC has three free parameters: the decision criteria on
the two dimensions and a common value of o for the two
dimensions.

Information-integration models

The linear classifier (L.C). This model assumes that a linear
decision bound partitions the stimulus space into two regions.
The LC differs from the CC in that the LC does not assume
decisional selective attention (Ashby & Townsend, 1986).
This produces an information-integration decision strategy
because it requires linear integration of the perceived values

@ Springer

on the stimulus dimensions. The LC has three parameters,
slope and intercept of the linear bound and o?.

The minimum distance classifier (MDC). This model as-
sumes that there are a number of units representing a low-
resolution map of the stimulus space (Ashby & Waldron,
1999; Ashby, Waldron, Lee, & Berkman, 2001; Maddox,
Filoteo, Hejl, & Ing, 2004). On each trial, the participant de-
termines which unit is closest to the perceived stimulus and
produces the associated response. The version of the MDC
tested here assumes two units because the category structures
were generated from two multivariate normal distributions.
Because the location of one of the units can be fixed, and
because a uniform expansion or contraction of the space will
not affect the location of the minimum-distance decision
bounds, the MDC has four free parameters (three determining
the location of the units and o2 ).

Random responder models

Equal response frequency (ERF) This model assumes that
participants randomly assign stimuli to the two response fre-
quencies in a manner that preserves the category base rates
(i.e., 50% of the stimuli in each category). This model has no
free parameters.

Biased response frequency (BRF). This model assumes
that participants randomly assign stimuli to the two re-
sponse frequencies in a manner that matches the partici-
pant’s categorization response frequencies. This model
has one free parameter, the proportion of stimuli in
Category A. Although the ERF and BRF are assumed to
be consistent with guessing, these models would also likely
provide the best account of participants that frequently shift
to very different strategies.

Model fitting

The model parameters were estimated using maximum likeli-
hood (Ashby, 1992b; Wickens, 1982) and the goodness-of-fit
statistic was

BIC = rinN-2InL

where N is the sample size, 7 is the number of free parameters,
and L is the likelihood of the model given the data (Schwarz,
1978). The BIC statistic penalizes a model for poor fit and for
extra free parameters. To find the best model among a set of
competitors, one simply computes a BIC value for each mod-
el, and then chooses the model with the smallest BIC.
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