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Abstract
Categorization decisions are made thousands of times every day, and a typical adult knows tens of thousands of categories. 
It is thus relatively rare that adults learn new categories without somehow reorganizing pre-existing knowledge. Yet, most 
perceptual categorization research has investigated the ability to learn new categories without considering they relation to 
existing knowledge. In this article, we test the ability of young adults to merge already known categories into new categories 
as a function of training methodology and category structures using two experiments. Experiment 1 tests participants’ ability 
to merge rule-based or information-integration categories that are either contiguous, semi-contiguous, or non-contiguous in 
perceptual space using a classification paradigm. Experiment 2 is similar Experiment 1 but uses a YES/NO learning paradigm 
instead. The results of both experiments suggest a strong effect of the contiguity of the merged categories in perceptual space 
that depends on the type of category representation that is learned. The type of category representation that is learned, in 
turn, depends on a complex interaction of the category structures and training task. We conclude by discussing the relevance 
of these results for categorization outside the laboratory.

Categorization is a ubiquitous cognitive process and catego-
rization decisions are made thousands of times every day 
(Hélie, Waldschmidt, & Ashby, 2010). As a result, a typical 
adult knows tens of thousands of categories. It is thus rela-
tively rare that adults learn new categories without relying 
on prior knowledge. For example, if one already knows the 
category “red objects” and the category “large objects”, then 
learning the category “large red objects” should be fairly 
straightforward and would not need re-learning about the 
color red or large sizes. Instead, the already known catego-
ries can be merged together to form the new category. This 
property has been referred to as compositionality (Fodor & 
Pylyshyn, 1988). Although this issue has been investigated 
in the context of natural categories (Aerts, Gabora, & Sozzo, 
2013; Cohen & Murphy, 1984; Prinz, 2012; Smith, Osher-
son, Rips, & Keane, 1988; Voorspoels, Storms, & Vanpae-
mel, 2012; Wisniewski, 1997; Ling Wu & Barsalou, 2009; 
Zadeh, 1982), most perceptual category learning tasks have 

investigated the ability to learn artificial categories without 
relying on prior knowledge (e.g.. Ashby & Maddox, 2010; 
Erickson & Kruschke, 1998; Medin & Schaffer, 1978; 
Nosofsky, 1986; Posner & Keele, 1968; Shepard, Hovland, 
& Jenkins, 1961; Smith & Minda, 2002). In this article, we 
test the ability of young adults to merge already known cat-
egories into new categories as a function of training meth-
odology and category structures using two experiments. The 
results show that categories that are contiguous in perceptual 
space are easier to merge, and that the magnitude of the 
merging cost may depend on the type of category representa-
tion that is learned. The type of category representation that 
is learned, in turn, depends on both the category structures 
of the learned categories and the training task (Ell, Smith, 
Peralta, & Hélie, 2017; Hélie, Shamloo, & Ell, 2017).

Category representation and generalization

Category representations (i.e., the way in which information 
is stored and used: Markman, 2002) are the building blocks 
of decision-making from the most routine to the most novel 
contexts (Hélie & Ashby, 2012). Generally speaking, cate-
gory representations can be broadly classified as within-cat-
egory representations or between-category representations 
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(Levering & Kurtz, 2015; Markman & Ross, 2003). Specifi-
cally, within-category representations contain information 
about the categories themselves. For example, a within-cat-
egory representation of humans could contain information 
about what is common among category members (e.g., one 
head), the correlation between the features (e.g., as height 
increases, so does arm length), or the range of feature values 
(e.g., adult height typically varies between 5 and 6.5 feet). 
In contrast, between-category representations would contain 
information about the distinguishing features between two 
categories. For example, a between-category representation 
contrasting humans and dogs might contain information 
about the relevant features for separating humans and dogs 
(e.g., number of legs) and criteria on these feature-values 
(e.g., less than three legs is generally a human; more than 
three legs is generally a dog). Hélie, Ell, and colleagues (Ell 
et al., 2017; Hélie et al., 2017) argued that within-category 
representations may be more useful when inferring miss-
ing attributes (e.g., one may infer that the author’s spouse 
has two legs without being told) whereas between-category 
representations may be useful for extrapolation outside of 
the learning space (e.g., an animal with one leg is even less 
likely to be a dog than a human). In the category learning 
literature, prototype models (Reed, 1972; Smith & Minda, 
2002) and exemplar models (Nosofsky, 1986) assume that 
a within-category representation is the basis for response 
selection, whereas criterion-setting models (Erev, 1998; 
Treisman & Williams, 1984) assume a between-category 
representation.

Given that category representations may contain different 
types of information, it is reasonable to expect that within- 
and between-category representations may assemble differ-
ently when merged to create new categories. For example, 
between-category representations can be represented as 
decision criteria in perceptual space (e.g., a threshold on 
height separating tall peoples from short peoples), so com-
positionality could consist of linking multiple decision crite-
ria together using logical connectors (e.g., AND, OR). In the 
earlier example of large red objects, these would be objects 
that fall above the large threshold on size AND above some 
threshold in the hue spectrum. The decisions could be made 
independently on each dimension using a conjunction rule 
(F. G. Ashby, Alfonso-Reese, Turken, & Waldron, 1998). 
Accordingly, applying multiple rules consecutively could 
be taxing for working memory resources (Miles & Minda, 
2011), and one would expect that difficulty would increase 
with the number of decision criteria that need to be applied 
to merge the categories (Erickson, 2008). In other words, the 
effect would be similar to increasing the Boolean complex-
ity of the categories (Feldman, 2003; Shepard et al., 1961).

In contrast, within-category representations can be rep-
resented by the generative model (e.g., density distribution) 
that is most likely to have generated the category members 

(Hélie et al., 2017). For example, imagine four categories 
formed based on peoples’ height (e.g., short, average, tall, 
very tall). Let’s further imagine that each category was 
generated using a normal distribution, so an ideal observer 
learning within-category information would learn 4 genera-
tive models of the categories (i.e., 4 separate normal distri-
butions—one for each category) and use the sample means 
and variances to estimate the distribution parameters. The 
top row of Fig. 1 shows an example resulting model where 
the x-axis would represent the height of an individual and 
the y-axis would represent the probability.

After learning the 4 categories, imagine that the ideal 
observer is asked to merge the learned categories into 2 new 
categories. There are many ways in which generative models 
can be merged. If the newly formed categories are contigu-
ous, one could aggregate the learned generative distributions 
by calculating a grand mean and variance to include all the 
stimuli from the merged categories, or learn a mixture model 
of the training categories. Mixtures models are statistical 
models where a distribution is formed using a weighed sum 
of basis functions (in this case normal distributions) with 
different parameter values (Bishop, 2006). These two pos-
sibilities are shown in the middle row of Fig. 1. These two 
merged models are fairly straightforward and not much com-
plexity is added since there are no stimuli with a different 
category label between the merged categories. However, if 
the categories become non-contiguous, then the best that 
can be done by the ideal observer is to create mixture mod-
els that are semi-contiguous (Fig. 1, bottom-left) or non-
contiguous (Fig. 1, bottom-right). These mixture models are 
discontinuous, which could drastically increase the difficulty 
of the categorization task.

Generating predictions

To provide an intuition for the difficulty of merging the gen-
erative models, we simulated the merging models included 
in Fig. 1. The simulation went as follows: (1) A set of 96 
training stimuli was generated from 4 Gaussian distributions. 
The resulting maximum likelihood Gaussian models are 
shown in the top row of Fig. 1. (2) Next, the training models 
identified in (1) were merged and tested using 96 new stimuli 
generated from the original training distributions. For the 
contiguous condition, both models in the middle row of Fig.  
1 were tested. For the semi-contiguous and non-contiguous 
conditions, the models in the bottom row of Fig. 1 were 
tested. (3) In all cases, the test stimuli were presented one at 
a time and the probability of the stimulus under each merged 
category was calculated based on the distribution models. 
(4) A response was selected stochastically. Each condition 
was simulated 10,000 times.
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When the learning densities (top row of Fig.  1) are 
merged with optimal mixture weights (i.e., the weights 
linearly combining the merged learning densities), all 

conditions produce a test accuracy > 99% . However, human 
participants do not have the opportunity to learn the mixture 
weights: They are only told that the categories are merged. 

Fig. 1  Top row: Generative models learned by an ideal observer. Middle row: Possible merging models for contiguous categories. Bottom row: 
Possible merging models for semi-contiguous and non-contiguous categories
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To produce more realistic predictions, we added mean-
centered Gaussian noise to the optimal mixture parameter 
estimates ( SD = 1).1 With the noisy weight estimates, the 
contiguous mixture model (Fig. 1, middle-right) produced a 
test accuracy of 94.2%, the semi-contiguous merged model 
(Fig.  1, bottom-left) produced a test accuracy of 80.2%, and 
the non-contiguous merged model (Fig.  1, bottom-right) 
produced a test accuracy of 73.4%. Finally, because the inte-
grated merged model (Fig.  1, middle-left) did not require 
estimating mixture weights, it produced a test accuracy of 
96.7%.

These simulation results thus allow for the following 
predictions. If participants are merging categories using the 
integrated model, then there should be nearly perfect transfer 
from training to test. However, all the mixture models should 
produce a transfer cost. The transfer cost for the mixture 
model is small in the contiguous condition (about 5%), but 
is substantial when category contiguity is broken. For the 
semi-contiguous condition, the transfer cost is about 20% 
and for the non-contiguous condition, the transfer cost was 
about 26%. Hence, breaking contiguity of the merged cat-
egories produces a large transfer cost, with a small difference 
between semi- and non-contiguous conditions. This suggests 
an all or none type of transfer cost when breaking contiguity 
with within-category representations.

Hypotheses

The present experiments test the effects of category contigu-
ity in perceptual space on merging difficulty as a function 
of category structures and training methodology. Hélie et al.
(2017) and Ell et al.(2017) showed that category structures 
and training methodology interact in determining the type 
of information that is learned in perceptual categorization. 
In a typical classification (A/B) experiment, participants 
are shown a stimulus and asked to assign the stimulus to 
one of a number of contrasting categories by pressing a 
response button corresponding to the category. For exam-
ple, a participant might be asked to press the left button if 
the animal is a human and the right button if the animal is 
a dog. Hélie and colleagues showed that more than half of 
the participants trained in A/B with rule-based (RB) cat-
egories learned between-category information. In contrast, 
over 70% of the participants trained in A/B with information-
integration (II) categories learned within-category informa-
tion. We thus predict that, with A/B training, the difficulty 
of merging already learned RB categories will increase with 
the number of decision bounds that need to be joined with 

logical connectors. In contrast, the difficulty of merging 
already learned II categories with A/B categorization will be 
increased abruptly by the mere presence of a discontinuity.

Experiment 1 tests for these hypotheses by training par-
ticipants in a 4-category A/B task using either RB or II cat-
egories. After training, participants transferred to a condition 
where they had to merge the 4 training categories into 2 
new categories. The new categories could be formed using 
contiguous (C), semi-contiguous (SC), or non-contiguous 
(NC) training categories. To anticipate, the results show that, 
as predicted, each additional decision bound increased the 
transfer cost with RB categories. Hence, the C condition was 
easiest (requiring 1 bound), followed by the SC condition 
(requiring 2 bounds), and the NC condition was the most dif-
ficult (requiring 3 bounds). In contrast, breaking contiguity 
increased the transfer cost in an all-or-none fashion with II 
categories. Specifically, the transfer cost for the SC and NC 
conditions was higher than for the C condition (as with the 
RB categories), but there was no evidence of a transfer cost 
difference between the SC and NC conditions (unlike with 
the RB categories).

Another task popular in perceptual categorization is the 
YES/NO task. In a typical YES/NO experiment, partici-
pants are shown a stimulus with a category label and asked 
to accept or reject the association by pressing a different 
response button for yes and no. For example, a participant 
might be shown an animal with the label human and be 
asked to press the right button if the animal is a member 
of the category human (i.e., “yes”) or the left button if the 
animal is not a member of the category human (i.e., “no”). 
Hélie et al. (2017) showed that most participants trained 
with YES/NO learned within-category information for both 
RB and II category structures. We thus predict that, with 
YES/NO training, the difficulty of merging already learned 
categories will depend on the contiguity of the categories in 
perceptual space (similar to merging II categories with A/B 
training). However, with YES/NO training, this prediction 
should hold for both RB and II categories.

Experiment 2 tests for this hypothesis by reproducing 
Experiment 1 with the only difference being that partici-
pants were trained with YES/NO categorization (same stim-
uli, categories, and transfer conditions). To anticipate, the 
results show that, as predicted, the transfer cost was higher 
for the NC condition compared to the C condition, and did 
not depend on the category structures. However, unlike in 
Experiment 1, there was no evidence suggesting a difference 
in transfer cost between the SC condition and either the C 
or NC condition.

1 The noise distribution was cut so that the mixture parameters could 
not be negative and summed to 1.
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Experiment 1

Experiment 1 tested the effects of category structures and 
category contiguity on the compositionality of categories 
learned using an A/B paradigm. Participants learned four II 
or RB categories using trial-and-error and then transferred to 
a two-category task where two new categories were created 
by merging learned categories. The merged categories at test 
could be contiguous, semi-contiguous, or non-contiguous.

Method

Participants

One hundred eighty-eight Purdue University undergradu-
ate students were recruited to participate in this experi-
ment. There were two category structures (RB and II) and 
three testing conditions (C, SC, and NC). Participants were 
randomly assigned to one of the six combinations of cat-
egory structure × testing conditions: RB/C ( n = 32 ), RB/SC 
( n = 31 ), RB/NC ( n = 30 ), II/C ( n = 33 ), II/SC ( n = 32 ), 

and II/NC ( n = 30 ). Each participant was given credit for 
participation as partial fulfillment of a course requirement.

Material

The stimuli were lines of various lengths and orientations 
presented on a 21-inch monitor ( 1920 × 1080 resolution). 
Each stimulus was defined in a 2D space by a set of points 
(length, orientation) where length was calculated in pixels 
and orientation (counterclockwise rotation from horizontal) 
was calculated in degrees. The stimuli were generated with 
the Matlab Psychophysics toolbox (Brainard, 1997) and 
occupied an approximate visual angle of 5 degrees. Fig-
ure 2a shows an example stimulus.

Four categories (arbitrarily labeled “A”,“ B”, “C” and 
“D”) were generated using the randomization technique of 
Ashby and Gott(1988). Each category was generated using 
a bivariate normal distribution. The parameters to generate 
the RB category structures were as follows (Fig.  2b): 

�A = (110, 67) , ΣA =

(
50 0

0 350

)
 ; �B = (150, 67) , ΣB = ΣA ; 

Fig. 2  Stimuli used in the experiments. a An example stimulus. b RB category structures used in Experiments 1 and 2. c II category structures 
used in Experiments 1 and 2. Symbols in panels (b) and c denote different categories
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�C = (190, 67) , ΣC = ΣA ; �D = (230, 67) , ΣD = ΣA . To gen-
erate the II category structures, we used the following 

parameters (Fig.  2c): �A = (122, 88) , ΣA =

(
646 313

313 179

)
 ; 

�B = (159, 77)  ,  ΣB = ΣA  ;  �C = (182, 61)  ,  ΣC = ΣA  ; 
�D = (210, 44) , ΣD = ΣA . RB categories can be separated 
using a rule on line length while ignoring the line orienta-
tion: the shortest lines are from category “A”, medium-
short lines are from category “B”, medium-long lines are 
from category “C”, and the longest lines are from category 
“D”. No such verbalizable rule exist for II categories. Per-
fect accuracy was possible in all conditions.

Twenty-four stimuli were generated from each category 
for a total of 96 stimuli. The resulting stimuli were re-
shuffled at the beginning of each block and each stimulus 
was presented once in each block. In each trial, a single 

stimulus was presented in the center of the screen with a 
question in the center-top of the screen asking a specific 
categorization question: “X or Y?”, where X and Y stand 
for one of the category labels used in the experiment. Dur-
ing the training blocks, the category labels were A, B, C, 
or D. For example, substituting A for X and B for Y would 
produce the questions “A or B?”. The question indicated 
the possible choices for the categorization trial. By creat-
ing all the possible combinations there were six possible 
questions. Each question appeared 16 times in each train-
ing block. Correct responses for each question were also 
equally split (e.g., the correct response to half of “A or B?” 
was “A” and other half “B” and so on). Positive feedback 
was indicated by the word “Correct” in green font, nega-
tive feedback was indicated by the word “Incorrect” in red 
font, and late responses (i.e., more than 5 seconds) were 
followed by the words “Too slow!” in black font.

Fig. 3  Test categories in the RB conditions. a RB/C: “A” and “B” 
formed category “1” and “C” and “D” formed category “2”. b RB/
SC: “A” and “D” formed category “1” and “B” and “C” formed cat-

egory “2”. c RB/NC: “A” and “C” formed category “1” and “B” and 
“D” formed category “2”
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During the test block, two new non-overlapping catego-
ries were formed by merging together two training catego-
ries. The new categories were arbitrarily labeled “1” and 
“2”. In the C condition, 1 = {A, B} and 2 = {C, D}. In the 
SC condition, 1 = {A, D} and 2 = {B, C}. In the NC con-
dition, 1 = {A, C} and 2 = {B, D}. The test categories are 
shown in Fig. 3 for the RB conditions and in Fig. 4 for the 
II conditions. Trials during the test block were identical to 
those in the training blocks except that the categorization 
question was always “1 or 2?”. 

Participants responded using a standard keyboard. Key 
“d” always corresponded to category “A” and key “x” was 
the category that merged with “A” in the test phase. The keys 
“k” and “m” were used for the other two categories. There-
fore, the key locations depended on the testing condition. 
The reason for this was to have the response buttons of the 
categories that were merged together at test be on the same 

side during training to exclude any possible motor effect 
when comparing different testing conditions. Keys “e” and 
“i” corresponded to test categories “1” and “2”, respectively, 
for all testing conditions. The keyboard configurations for 
all conditions are shown in Fig. 5.

Procedure

Each experimental session was composed of five training 
blocks and one test block. Participants were told that they 
would be doing a categorization task for six blocks, and 
that the stimuli were lines varying in length and orientation. 
They were also told that there are four categories “A”, “B”, 
“C” and “D” and that on each trial they would see a stimulus 
and be asked to choose between the two categories men-
tioned in a question on top of the screen. They were told that 
the first five blocks would be training blocks in which they 

Fig. 4  Test categories in the II conditions. a II/C: “A” and “B” formed category “1” and “C” and “D” formed category “2”. b II/SC: “A” and “D” 
formed category “1” and “B” and “C” formed category “2”. c II/NC: “A” and “C” formed category “1” and “B” and “D” formed category “2”
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receive feedback while the last block would be a test block 
where they would not receive feedback. Participants were 
told that they would see instructions on the screen about 
the test phase after finishing the last training block. The test 
instructions varied based on the testing condition, but they 
were all similar and told participants which categories would 

be merged in the test block. For example, the instructions for 
the semi-contiguous conditions was: “Categories A and D 
will form a new category, ’1’. Categories B and C will form 
a new category, ’2’.”

A training trial went as follows: (1) a fixation cross was 
presented in the center of the screen for 1500 ms; (2) The 
crosshair disappeared and was replaced by the line stimu-
lus and the question. The stimulus and question stayed on 
screen until the participant pressed a key corresponding to 
one of the two categories in the question. (3) After a key 
was pressed, feedback was presented for 750 ms. Test trials 
were identical to training trials except that no feedback was 
presented.

Results

A binomial test was used to identify and exclude partici-
pants who performed randomly during the last training block 
(i.e., non-learners). The rationale was that participants who 
did not learn the training categories should not be able to 
merge the training categories (which is the main goal of the 
experiment). Specifically, we excluded participants whose 
accuracy in Block 5 was not above chance ( p < .05 ) accord-
ing to a binomial distribution ( p = 0.5 , n = 96).2 This cor-
responded to a 59% accuracy threshold. Using this threshold, 

31 participants were excluded (16.5% of the sample), and 

Fig. 5  Category labels on the keyboard of Experiment 1 for a RB/C 
and II/C, b RB/SC and II/SC and c RB/NC and II/NC

Fig. 6  Mean accuracy per block in Experiment 1. a RB categories; b II categories. In both panels. Blocks 1–5 are the training phase and Block 6 
is the test phase. Error bars are between-subject standard error of the mean

2 On any given trial, participants chose one of two response buttons 
so chance performance was 0.50, and each block had 96 trials.
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157 participants remained in the analysis, with at least 25 
participants left in each condition (see Fig. 6 for exact counts 
per condition).

Learning phase

Figure 6 shows the mean accuracy for each block for each 
testing condition. The left panel (a) shows the RB categories 
while the right panel (b) shows the II categories. In both pan-
els, the first five blocks were training and the last block was 
the testing block. A 2 (RB, II) × 3 (C, SC, NC) × 5 (Block) 
mixed effect ANOVA was performed on the training data. As 
expected, the main effect of Block was statistically significant 
(F(4, 628) = 144.11, p < .001, 𝜂2 = 0.18) , showing that par-
ticipants were able to learn the task. The effect of Category 
was also significant (F(1, 157) = 70.51, p < .001, 𝜂2 = 0.19) , 
showing that participants were more accurate with RB cat-
egories than II categories. However, these main effects 
need to be interpreted with care since the Category × 
Block interaction also reached statistical significance 
(F(4, 628) = 7.29, p < .001, 𝜂2 = 0.01) .  The  in t e rac -
tion was decomposed by computing the effect of Block 
within each level of Category. The results show that 
the effect of Block reached statistical significance for 
both RB (F(4, 328) = 91.70, p < .001, 𝜂2 = 0.27) and II 
(F(4, 300) = 54.09, p < .001, 𝜂2 = 0.18) categories, con-
firming that participants were able to learn both category 
structures. The interaction was thus likely caused by a 
larger increase in accuracy with the RB categories than 
with the II categories. Mean accuracy in Block 1 with RB 
categories was 70.9%, which improved to 88.2% in Block 

5. For II categories, mean accuracy in Block 1 was 64.8%, 
which improved to 76.2% in Block 5. All other main effects 
and interactions failed to reach statistical significance (all 
F < 1.54, n.s.).

Testing phase

The main goal of this experiment was to test whether 
participants could merge learned categories together to 
form new categories. The transfer cost was calculated as 
the difference in accuracy between Blocks 5 and 6 and is 
shown in Fig. 7. Again, the left panel (a) shows the RB 
categories whereas the right panel (b) shows the II cate-
gories. A 2 (RB, II) × 3 (C, SC, NC) ANOVA was per-
formed on the transfer cost. Both the effects of testing 
condition (F(2, 151) = 111.97, p < .001, 𝜂2 = 0.57) and 
category (F(1, 151) = 4.39, p < .05, 𝜂2 = 0.01) reached 
statistical significance. However, the main effects need 
to be interpreted in the context of a statistically signifi-
cant interaction (F(2, 151) = 6.29, p < .01, 𝜂2 = 0.03) . 
We proceeded by decomposing the effect of testing 
condition within each level of Category. For RB cat-
egories, the effect of testing condition was statisti-
cally significant (F(2, 79) = 33.76, p < .001, 𝜂2 = 0.46) . 
Bonferroni-corrected pairwise comparisons show that 
all pairwise differences were statistically significant 
(p < .001) . The mean transfer costs were: C = 00.0%; SC 
= 11.4%; and NC = 21.6%. For II categories, the effect 
of testing condition also reached statistical significance 
(F(2, 72) = 106.00, p < .001, 𝜂2 = 0.75) . Again, Bonferroni-
corrected pairwise comparisons show that the C condition 

Fig. 7  Accuracy differences between Blocks 5 and 6 (transfer cost) in each testing conditions in Experiment 1. a RB categories; b II categories. 
Error bars are between-subject standard error of the mean
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differs from both the SC and NC conditions (p < .001) . 
However, unlike for RB categories, there was no statistical 
difference between the SC and NC conditions. The mean 
transfer costs were: C = − 8.4%; SC = 14.3%; and NC = 
18.4%.

Next, a t test was performed to assess whether the trans-
fer cost was statistically different from zero in each test-
ing condition of each category. For RB categories, the 
transfer cost was not statistically significant in the RB/C 
condition ( t(24) = 0.09, n.s.) , but reached statistical sig-
nificance for both the RB/SC and RB/NC conditions (both 
t > 6.83, p < .001 ). For II categories, all transfer costs were 
statistically different from zero (all |t| > 6.00, p < .001 ), 
but note that this difference is negative for the C condition, 
showing a facilitation effect instead of a cost. In contrast, the 
transfer costs were negative for the SC and NC conditions, 
showing a true cost of merging categories (similar to RB 
categories). Hence, breaking contiguity had a transfer cost 
for both RB and II categories, but the cost was progressive 
for RB categories and all-or-none for II categories.

Discussion

The results of Experiment 1 show no evidence of a transfer 
cost for C conditions with either RB or II category struc-
tures. One surprising result is that there was facilitation 
when merging II categories. It is possible that participants 
averaged the distributions of the merged categories and 
used a single integrated distribution for the “1” category 
and another single integrated distribution for the “2” cat-
egory (instead of forming mixture models—see middle-
left of Fig. 1). No increase in accuracy was observed in the 
simulations of this model because of a ceiling effect in train-
ing accuracy, but if training accuracy is reduced by biasing 
the estimated means of the training generative models the 
integrated model does produce a higher test accuracy. It is 
thus possible that participants in the contiguous II condi-
tion used this response strategy at test. Note that this “sin-
gle integrated distribution” strategy is only possible with 
within-category information, so it was unlikely to be used 
with RB categories, which could explain why no facilita-
tion was observed in the RB/C condition. This result was 
unexpected and the experiment was not designed to test for 
this possibly. Still, clearly, there was no transfer cost for both 
RB and II categories.

In contrast, a transfer cost was present for all other condi-
tions. Critically, the SC condition was differently affected 
by the category structures. Specifically, the SC condition 
differed from both the C and the NC conditions with RB 
category structures, with a transfer cost falling somewhere 
between these two conditions. This result is in line with the 
hypothesis that participants learn between-category informa-
tion in A/B with RB categories (Hélie et al., 2017), so the 

transfer cost increase with the number of decision bounds 
that needs to be assembled. In contrast, there was no evi-
dence of a different transfer cost between the SC and NC 
conditions with II category structures. This suggests that, 
when trained with an A/B paradigm, category contiguity may 
be an all-or-none phenomenon with II category structures 
because participants are learning a within-category repre-
sentation and are forming mixture models of the generating 
distributions (at least when the merged categories are not 
fully contiguous). Experiment 2 tested whether these effects 
were also present with YES/NO training.

Experiment 2

Experiment 2 tested the effects of category structures and 
category contiguity on the compositionality of categories 
learned using a YES/NO task. Experiment 1 showed that 
transfer cost increased gradually with the required number 
of decision bounds with RB categories (consistent with 
between-category representations) but that this increase was 
all-or-none with II categories (consistent with within-cate-
gory representations). However, Hélie et al. (2017) showed 
that, unlike A/B categorization, YES/NO categorization 
leads to learning within-category information with both RB 
and II categories. Hence, Experiment 2 tests whether break-
ing the contiguity of the training categories at test would 
increase the transfer cost in an all-or-none fashion. As in 
Experiment 1, participants learned four II or RB categories 
using trial-and-error and then transferred to a two-category 
task where two new categories were created by merging 
learned categories. The merged categories at test could be 
contiguous, semi-contiguous, or non-contiguous. The only 
difference between Experiments 1 and 2 is that Experiment 
2 used YES/NO training instead of A/B training.

Method

Participants

One hundred eighty-one participants were recruited from the 
Purdue University undergraduate population to participate 
in this experiment. As in Experiment 1, there were two cat-
egory structures (RB and II) and three testing conditions (C, 
SC, and NC). Participants were randomly assigned to one of 
the six combinations of category structure and testing condi-
tions: RB/C (n = 32) , RB/SC (n = 29) , RB/NC (n = 30) , II/C 
(n = 31) , II/SC (n = 30) , and II/NC (n = 29) . None of the 
participants participated in Experiment 1. Each participant 
was given credit for participation as partial fulfillment of a 
course requirement.
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Material

The stimuli and category structures were the same as those 
used in Experiment 1 (see Figs. 2, 3, 4). The only differ-
ences were the question included at the top of the screen 
and the response keys. In the YES/NO task, the question 
asked about category membership: “Is this a X?”, where 
X is replaced by one of the categories (A, B, C, D). For 
example, by substituting B for X, the question would be 
“Is this a B?”. The participant responded YES by pressing 
the ’d’ key or NO by pressing the ’k’ key (sticker labeled). 
During training, one quarter of the trials asked about cat-
egory “A”, another quarter asked about category “B”, etc. 
For each question, the correct response was YES in half 
the trials and NO in the other half. At test, half the trials 
asked about category “1” and the other half asked about 
category “2”. Again, the correct response to each test 
question was YES on half the trials and NO on the other 
half. The same YES and NO response keys were used at 
test and at training. The key configuration for Experiment 
2 is shown in Fig. 8.

Procedure

The procedure was the same as Experiment 1.

Results

The same procedure as in Experiment 1 was used to exclude 
participants who failed at learning the task. Fifty participants 
were excluded (27.6% of the sample), and 131 participants 

remained in the analysis. The exact number of participants 
left in each condition is shown in Fig. 9.

Learning phase

Figure 9 shows the mean accuracy for each block in each 
testing condition. The left panel (a) shows the RB cat-
egories while the right panel (b) shows the II catego-
ries. As in Experiment 1, the first five blocks were train-
ing and the last block was the testing block. A 2 (RB, II) 
× 3 (C, SC, NC) × 5 (Block) mixed effect ANOVA was 
performed on the training data. As in Experiment 1, 
the main effect of Block was statistically significant 
(F(4, 524) = 104.12, p < .001, 𝜂2 = 0.19) , showing that par-
ticipants were able to learn the task. The effect of Category 
was also significant (F(1, 131) = 27.22, p < .001, 𝜂2 = 0.01) , 
showing that participants were again more accurate with 
RB categories than II categories. However, these main 
effects need to be interpreted with care since the Category 
× Block interaction again reached statistical significance 

Fig. 8  Category labels on keyboard in Experiment 2

Fig. 9  Mean accuracy per block in Experiment 2. a RB categories; b II categories. In both panels, Blocks 1–5 are the training phase and Block 6 
is the test phase. Error bars are between-subject standard error of the mean
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(F(4, 524) = 3.84, p < .01, 𝜂2 = 0.01) .  The interaction 
was decomposed by computing the effect of Block within 
each level of Category. The results show that, similar to 
Experiment 1, Block had a statistically significant effect 
for both RB (F(4, 292) = 74.98, p < .001, 𝜂2 = 0.30) and 
II (F(4, 232) = 36.42, p < .001, 𝜂2 = 0.16) categories. The 
interaction was likely caused by a larger improvement in 
accuracy for RB, which began with a mean accuracy of 
67.3% (Block 1) and ended up with a mean accuracy of 
86.4% (Block 5). For II categories, Block 1 accuracy was 
63.4% and increased to 78.2% in Block 5. As in Experiment 
1, none of the other main effects and interactions reached 
statistical significance (all F < 1.49, n.s.).

Testing phase

The transfer cost for each testing condition is shown 
in Fig.  10. The left panel (a) shows the RB catego-
ries while the right panel (b) shows the II categories. 
A 2 (RB, II) × 3 (C, SC, NC) ANOVA was performed 
on the transfer cost. As in Experiment 1, the effect 
of testing condition reached statistical significance 
(F(2, 125) = 4.98, p < .01, 𝜂2 = 0.07) , showing that trans-
fer cost was affected by the contiguity of the merged cat-
egories. However, unlike in Experiment 1, the effect of 
categories (F(1, 125) = 0.54, n.s., �2 = 0.00) and the inter-
action between the factors (F(2, 125) = 1.54, n.s., �2 = 0.02) 
both failed to reach statistical significance. Bonferroni-cor-
rected pairwise comparisons show a statistically significant 

difference between the C and the NC conditions (p < .01) . 
All other pairwise comparisons failed to reach statistical 
significance. The mean transfer costs were: C = 8.1%; SC = 
13.1%; and NC = 18.7%. The transfer cost was statistically 
significant for all testing conditions (all t > 3.54, p < .001).

Discussion

The results in Experiment 2 suggest that contiguous cat-
egories learned with the YES/NO task are more difficult 
to merge into new categories than contiguous categories 
learned with the A/B task. For the YES/NO task, even the 
C condition showed a significant transfer cost. This sug-
gests that the “single integrated distribution” strategy was 
not used in this case. However, as predicted, there was no 
interaction between contiguity and categories. There was 
thus no evidence of a differential effect of contiguity on RB 
and II categories. A more detailed comparison of the two 
experiments is described in the following section.

Comparing experiments 1 and 2

While Experiments 1 and 2 were separate experiments and 
any direct comparison needs to be interpreted with care, 
comparing the experiment results may still be informative 
to better understand the effect of training task on transfer 
cost. In this section, separate Training paradigm (A/B vs. 
YES/NO) × Testing condition (C, SC,NC) ANOVAs were 
computed for the RB and II transfer costs.

Fig. 10  Accuracy differences between Blocks 5 and 6 (transfer cost) in each testing conditions in Experiment 2. a RB categories; b II categories. 
Error bars are between-subject standard error of the mean
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For RB categories, the effect of testing condition was sta-
tistically significant (F(2, 149) = 21.60, p < .001, 𝜂2 = 0.22) , 
with a mean transfer cost of C = 4.45%, SC = 10.44%, and 
NC = 20.78%. This effect is not surprising given that the 
one-way ANOVA on transfer cost in both experiments 
showed a statistically significant effect. In contrast, the 
effect of training paradigm did not reach statistical signifi-
cance (F(1, 149) = 0.51, n.s., �2 = 0.00) , and the interaction 
between the factors was trending but was also not statis-
tically significant (F(2, 149) = 2.87, p < .10, 𝜂2 = 0.03) . 
Given the exploratory nature of these analyses, we decom-
posed the trending interaction to compute the effect of train-
ing paradigm in each level of testing condition. The results 
show a statistically significant effect of training paradigm in 
the C testing condition (F(1, 50) = 4.42, p < .05, 𝜂2 = 0.08) . 
For the C testing condition, the mean transfer cost was 
00.0% for A/B and 8.4% for YES/NO. This suggests that 
participants may have used a single decision criterion in the 
A/B task (i.e., the criterion learned at training between the B 
and C categories) but used a mixture model in the YES/NO 
task (which produced a transfer cost). In contrast, the effect 
of training paradigm did not have a statistically significant 
effect in the SC or NC conditions (both F < 0.57, n.s.).

For II categories, both the effect of testing condition 
(F(2, 127) = 42.05, p < .001, 𝜂2 = 0.36) and the effect of 
training paradigm (F(1, 127) = 8.34, p < .01, 𝜂2 = 0.04) 
reached statistical significance. However, these main effects 
need to be interpreted in the context of a statistically sig-
nificant interaction (F(2, 127) = 7.00, p < .01, 𝜂2 = 0.06) . 
As with RB categories, decomposing the interac-
tion to compute the effect of training paradigm within 
each level of testing condition shows a statistically sig-
nificant effect of training paradigm in the C condition 
(F(1, 39) = 15.31, p < .001, 𝜂2 = 0.28) . For the C testing 
condition, the mean transfer cost was -8.4% for A/B and 
7.6% for YES/NO. This difference appears to be linked to 
the possibility of using the “single integrated distribution” 
strategy in the A/B condition but not in the YES/NO condi-
tion. Again, the effect of training paradigm did not have a 
statistically significant in the SC or NC conditions (both 
F < 0.88, n.s. ). These analyses further support the previous 
interpretation that training methodology (i.e., A/B vs. YES/
NO) mostly affected transfer costs in the C conditions.

General discussion

This article presents the results of two experiments explor-
ing the effect of training methodology and category struc-
ture on the ability to merge already known categories. 
We hypothesized that the ability to merge categories (i.e., 
compositionality) would depend on the type of knowledge 
contained in the categorical representation (Ell et al., 2017; 

Hélie et al., 2017). Specifically, between-category represen-
tations can be connected using logical operators and there-
fore each additional discontinuity in the merged category 
would require additional connectors, which would tax work-
ing memory and gradually increase transfer cost. In contrast, 
within-category representations could be grouped using 
generative mixture models, and simulation results suggest 
that breaking the continuity of the merged categories would 
significantly increase the transfer cost, but additional breaks 
in continuity would only marginally increase transfer cost. 
Hélie et al. (2017) showed that learning RB categories with 
A/B training would produce a between-category representa-
tion, and we thus expected that the contiguity of the merged 
categories would have a progressive effect on transfer cost. 
However, learning II categories with A/B training, or learn-
ing both RB and II categories with YES/NO training, would 
produce within-category representations, and thus a break 
in the contiguity of the merged category would produce an 
abrupt increase in transfer cost.

The results of the experiments were largely consistent 
with the above hypotheses. First, Experiment 1 showed that 
with A/B training, each added level of discontinuity in the 
merged categories increased the transfer cost with RB cat-
egories. With II categories, the SC and NC conditions pro-
duced a larger transfer cost than the contiguous condition, 
but we found no evidence of a difference in transfer cost 
between the SC and NC conditions. Second, Experiment 2 
showed that with YES/NO training, the NC condition pro-
duced a larger transfer cost than the contiguous condition. 
However, there was no evidence that transfer cost in the SC 
condition differed from the other two, and there was also no 
evidence of an effect of category structure on transfer cost. 
Together, these results are consistent with earlier results 
showing that A/B training produces different category rep-
resentations depending on the category structures whereas 
YES/NO training produces the same type of category rep-
resentation for RB and II structures (Ell et al., 2017; Hélie 
et al., 2017).

Another interesting result follows from the comparison of 
the experiments. The effect of training condition was mostly 
relevant for the contiguous condition. Specifically, contigu-
ous categories were easier to merge with A/B training than 
with YES/NO training. For both tested category structures, 
contiguous categories could be merged without a significant 
transfer cost with A/B training, whereas a transfer cost was 
always present with YES/NO training. This main effect of 
task could be linked to the response modality of the tasks. 
For participants trained with A/B, the training task used 4 
response buttons whereas the test used only 2 response but-
tons. This made some aspect of the test easier, which could 
compensate for the added difficulty of merging categories. 
In contrast, the number of response buttons did not change 
between training and test for the YES/NO task, so overall the 
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test phase may be more difficult. Another possible explana-
tion is that the A/B and YES/NO tasks likely rely on differ-
ent cognitive mechanisms and brain circuits. For example, 
the A/B task has been shown to rely on a circuit centered 
around the ventrolateral prefrontal cortex for RB catego-
ries (Hélie, Roeder, & Ashby, 2010) and a different circuit 
centered around the sensorimotor striatum for II categories 
(Waldschmidt & Ashby, 2011). While much less is known 
about the brain circuit supporting YES/NO learning, there 
is evidence that it differs from the brain circuit used for A/B 
training (Zeithamova, Maddox, & Schnyer, 2008), which 
could explain the difference in RB representations (Hélie 
et al., 2017; Ell et al., 2017) and merging difficulty for con-
tiguous categories. However, this result was unexpected and 
the present experiments were not design to directly test these 
possibilities. Future research should attempt to directly test 
these two competing hypotheses.

Implications for research on category learning

Beyond the effects of category structure and training meth-
odology, the experiments included in this article clearly 
show that, in perceptual categorization, participants can 
merge already known categories when needed. Given the 
ubiquity of categorization in everyday life, and the large 
number of known categories, it appears very unlikely that 
adults engage in learning new categories without restruc-
turing existing categorical knowledge. Thus, the process of 
merging learned category representations is likely closer 
to real-life category learning. Indeed, much empirical and 
theoretical work has been devoted to the investigation of how 
natural categories are combined (Cohen & Murphy, 1984; 
Prinz, 2012; Smith et al., 1988; Wisniewski, 1997). This 
work has focused on the merging of within-category repre-
sentations of well-learned, natural categories (e.g., merging 
the categories red and apple to form the category red apple). 
The present research extends this work to perceptual catego-
rization and emphasizes how different factors during learn-
ing may affect the combination of categories and suggests 
that multiple kinds of category representations demonstrate 
characteristics of compositionality.

The present methodological approach may prove useful 
in investigating the neural substrates of combining category 
representations. Much is known about the neural substrates 
mediating learning in rule-based and information-integration 
tasks (e.g., Ashby & Ell, 2001; Hélie et al., 2010; Seger 
& Miller, 2010; Waldschmidt & Ashby, 2011). Very little 
research, however, has investigated the neural substrates of 
merging category representations. At least with between-
category representations, knowledge can be reorganized 
into higher-order, hierarchical representations. For instance, 
merging a set of stimulus-response rules into a common, 
superordinate category recruits regions of prefrontal cortex 

rostral to the subregions of prefrontal cortex that learned 
the original stimulus-response rules (Badre, Kayser, & 
D’Esposito, 2010). Although a similar neural substrate may 
support the merging of discontinuous between-category 
representations, it is unclear if such a rostro-caudal distinc-
tion would be the neural substrate of knowledge reorganiza-
tion with within-category representations. Thus, the current 
approach may provide a useful method for comparing and 
contrasting knowledge reorganization supported by between-
category differences versus knowledge reorganization sup-
ported by within-category similarities.

Limitations and future work

One important limitation of the present experiments is that 
merging cost was only measured for one transfer block. It 
is possible that re-organization of existing knowledge takes 
longer than the duration of the included test block and re-
organization was still ongoing. As a result, the differences 
observed between the different tasks and conditions may 
be transient and a longer test condition could reduce these 
differences. Future research should focus on increasing the 
length of test and observe its effect on transfer cost.

Another limitation of the experiments is that they explore 
the general effects of between- and within-category repre-
sentation on compositionality, but there is likely more than 
one type of within-category representation (same with 
between-category representation). For example, both pro-
totype models (Smith & Minda, 2002) and exemplar models 
(Nosofsky, 1986) are treated as producing within-category 
representations in the current framework because they are 
generative models (Ashby & Maddox, 1993). However, the 
decision rule applied to the representation is different, which 
could result in different merging performance. The present 
experiments were not designed to address these subtler dif-
ferences, and future experiments are needed to test how 
homogeneous (or not) the different within-category repre-
sentations are and how they merge.

Finally, an emphasis on how category learning influences 
compositionality would increase the ecological validity of 
categorization research and be more useful for understand-
ing categorization outside of the laboratory. For instance, 
research on the merging of category representations could 
inform best practices for training challenging conceptual 
relations in physics and math education (e.g., Heckler, 
2011). The work included in this article provides an initial 
step, but much more work is needed to identify the factors 
that facilitate the re-organization of categorical knowledge 
in useful new ways that allow for generalization and transfer.
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