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Many areas in cogniti ve psychology are currently debating whether learning and memory are
mediated by one or more functionally distinct processing systems. Included in this li st are the fields
of memory, category learning, function learning, discrimination, and reasoning. Within each field,
many of the multiple systems accounts have hypothesized at least two similar systems: an explicit
system that is rule-based, and an implicit system that operates largely without conscious awareness.
This chapter explores the debate between single and multiple systems. The focus is on the
methodologies that have been proposed for testing between these two positions. In particular, we ask
the following questions: 1) What constitutes a separate system? 2) What is the appropriate way to
resolve this debate empiricall y?, and 3) What are the best empirical methodologies for testing
between single and multiple systems? Finally, as a model of this debate, we focus on the question of
whether human category learning is mediated by single or multiple systems.

One of the most hotly debated current issues in psychology and neuroscience is whether human learning
and memory is mediated by a single processing system or by multiple quali tatively distinct systems. Although
it is now generally accepted that there are multiple memory systems (Klein, Cosmides, Tooby, & Chance, in
press; Squire, 1992; Schacter, 1987; Mishkin, Malamut, & Bachevalier, 1984; Zola-Morgan, Squire, &
Mishkin, 1982; Cohen & Squire, 1980; O’Keefe & Nadel, 1978; Gaffan, 1974; Hirsh, 1974; Corkin, 1965),
this issue is far from resolved in the case of learning and other cognitive processes. Even so, arguments for
multiple systems have been made in such diverse fields as reasoning (Sloman, 1996), motor learning
(Willi ngham, Nissen, & Bulli mer, 1989), discrimination learning (Kendler & Kendler, 1962), function learning
(Hayes & Broadbent, 1988), and category learning (Ashby, Alfonso-Reese, Turken, & Waldron, 1998; Brooks,
1978; Erickson & Kruschke, 1998). Interestingly, many of these papers have hypothesized at least two similar
systems: 1) an explicit, rule-based system that is tied to language function and conscious awareness, and 2)
an implicit system that may not have access to conscious awareness. In many cases, there has been resistance
to these proposals, and a number of researchers have responded with papers arguing that single system models
can account for many of the phenomena that have been used to support the notion of multiple systems
(Nosofsky & Johansen, in press; Nosofsky & Zaki, 1998; Poldrack, Selco, Field, & Cohen, 1999).

This chapter explores the debate between single and multiple systems. The focus is on the methodologies
that have been proposed for testing between these two positions. Thus, rather than attempting to resolve the
debate by arguing for one position or another, our goals are to answer the following questions: 1) What
constitutes a separate system? 2) What is the appropriate way to resolve this debate empirically?, and 3) What
are the best empirical methodologies for testing between single and multiple systems? Many of the different
areas currently engaged in the single versus multiple systems debate use similar methodologies to test between
these two opposing arguments, and as mentioned above, they have all postulated similar explicit and implicit
systems. For this reason, a detailed study of the debate in one area will most likely benefit the other areas as
well . Thus, in the last major section, as a model of this debate, we focus on the question of whether human
category learning is mediated by single or multiple systems.
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I. What Is A System?

Before one can examine methods for testing between single and multiple systems, one must first decide
what is meant by a separate system. This question turns out to be as diff icult as any that we will examine in
this chapter. This is because all tasks in which we are interested are performed somewhere in the brain, and
at one level, the brain is part of a single system (e.g., the central nervous system). At the other extreme, a strong
argument can be made that each single cell , or even each single ion channel, forms its own system. So there
is a continuum of levels, from macroscopic to microscopic, at which a system could be defined. It seems clear
however, that the level chosen should match the task in question. Thus, a more macroscopic system is required
to learn a new category of automobiles than to detect a sine-wave grating of a certain orientation. In the latter
case, one could reasonably ask whether a column of cells in visual cortex defines the system, whereas in the
former case this is clearly too reductionistic.

Given that an appropriate level and task are selected, what criteria should we use to decide whether some
model postulates one or more systems? Suppose we have a model with two modules S1 and S2. The question
is: do S1 and S2 define separate systems, or should they be viewed as two components of a single system? We
believe there is no single criterion that can be used to answer this question. Instead, we propose a hierarchy of
criteria – from the mathematical to the psychological to the neurobiological. Two modules that meet all these
criteria are clearly separate systems. Modules that meet none of the criteria clearly do not constitute separate
systems, and modules that meet some, but not all the criteria are in some ambiguous gray region along the
single system - multiple system continuum.

Suppose the model for S1 is characterized by a set of parameters denoted by the vector 
�

1 and the model
for S2 is characterized by the parameters 

�
2. For any specific set of numerical values of 

�
1 and 

�
2, the models

of S1 and S2, respectively, each predict a certain probability distribution of the relevant dependent variable,
whatever that might be. Denote these probability distributions by f1(x � � 1) and f2(x � � 2), respectively. As the
numerical values of � 1 and � 2 change, these predicted probabili ty distributions will also change. Therefore, let
{ f1(x � � 1)}  and { f2(x � � 2)}  denote the set of all possible probabili ty density functions that can be generated from
the S1 and S2 models, respectively (i.e., any numerical change in � 1 or � 2 creates a new member of these sets).
Then a mathematical criterion for S1 and S2 to be separate systems is that { f1(x � � 1)}  and { f2(x � � 2)}  are not
identical, and neither is a subset of the other. In other words, the models of S1 and S2 are not mathematically
equivalent and one is not a special case of the other – i.e., they each make at least some unique predictions. If
the models were completely mathematically equivalent, so no experiment could ever be run that could produce
data that might differentiate the two, then it is diff icult to see how they could quali fy as separate systems.

Note that an implicit assumption of this definition is that S1 and S2 each make predictions about
observable behavior (since they each predict some probabili ty distribution on the relevant dependent variable).
This itself, is a stringent requirement that eliminates many possible models. For example, signal detection
theory postulates separate sensory and decision processes, each described by its own parameter (d’ and XC,
respectively). But either process, by itself, is incapable of making predictions about behavior. Instead, the two
subsystems are assumed to always work together to produce a behavioral response. As such, standard signal
detection theory is a single system theory, even though it postulates functionally separate sensory and decisional
subsystems.

At the psychological level, to quali fy as separate systems S1 and S2 should postulate that different
psychological processes are required to complete the task in question successfully. For example, a multiple
systems account of category learning might postulate separate prototype abstraction and rule-based systems,
but a model that proposed two different prototype abstraction processes might be better described as a single
system model. This criterion would also apply the single system label to a theory that postulated two separate
signal detection systems, one say, with a more eff icient sensory process and the other with a more eff icient
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decision process. This is because both systems would postulate similar (but not identical) sensory and decision
processes that are active on all trials.

At the neurobiological level, separate systems should be mediated by separate neural structures or
pathways. In most cases, there will be widespread agreement within the field of neurobiology about whether
a pair of structures are part of the same or different systems, so this criterion should usually be straightforward
to test. Within cognitive psychology, this should be the gold standard for establishing the existence of separate
systems. It is highly likely that if the neurobiological condition is met, then the psychological and mathematical
conditions will also be met. However, it is very easy to find examples in which the reverse implication fails.
For example, one could easily construct two different exemplar-based category learning models that are
mathematically identifiable (i.e., so the mathematical condition is met), but that postulate the same process of
accessing category exemplars and computing their similarity to the presented stimulus, and therefore are also
mediated by the same neural structures and pathways.

Just as the theoretical criteria for the existence of separate systems can be formulated at several different
levels of analysis, so too is it vitally important to appeal to converging operations when empirically testing
between single and multiple systems of learning and memory. It is extremely unlikely that any single experiment
will yield data that definitively decides the question of whether there are single or multiple systems in any
specific area of learning or memory. For any single set of data that purportedly supports the existence of
multiple systems, for example, it is highly likely that a clever researcher will be able to construct a single
system model that can account for those data. Thus, it is vital that when evaluating any new model, whether
it postulate single or multiple systems, data is considered from many different experimental paradigms. Ideally,
such data would come from several different levels of analysis – including behavioral neuroscience, traditional
cognitive psychology, as well as cognitive neuroscience and neuropsychology.

II. Specific Methodological Tests of Single Versus Multiple Systems

A formal investigation of the efficacy of various methods for testing between single and multiple systems
of learning and/or memory requires more structure than our previous discussions. Consider an experiment with
several different conditions in which the dependent variable on condition i is denoted by the random variable
Xi. Denote the probabili ty density function (pdf) of Xi in condition i by gi(x). As concrete examples, X1 and
X2 might be the response times (RTs) from an experiment with two different conditions that load on different
putative memory systems, or they might be the number of trials required to reach some criterion accuracy level
in this same experiment. In the former case, gi(x) might be the RT distribution produced by a single subject in
condition i, but in the latter case gi(x) would be the trials-to-criterion distribution across a group of subjects
who all participated in condition i (i.e., because each subject produces many RTs, but only one value for trials-
to-criterion in each condition).

Next consider an organism with two separate memory systems, either of which might be suff icient to
complete the experimental task by itself. Let XAi and XBi denote the value of the dependent variable on trials
when condition i is completed by systems A and B, respectively, and let fA(x

�
i) and fB(x

�
i) denote their

respective pdfs. The pdf gi(x) is the distribution of observable data values and so it can always be estimated
directly. As we will see, however, whether the pdfs fA(x

�
i) and fB(x

�
i) can be estimated directly depends on the

model we assume.
In this section, we will consider three different types of multiple systems models. In the strong model, the

observer uses only system A in experimental condition 1, and only system B in experimental condition 2. Thus,

g1(x) = fA(x
�
1) and g2(x) = fB(x

�
2). (1)



Single Versus Multiple Systems 4

g x
r r

f i d wi
i i

x w
r

w
ri i

( )
( )

( , ) ,=
−

−
−

−∞

∞

∫1

1 1                                    (4)

The assumption that different systems are used in the two tasks has been called selective influence in the single
versus multiple systems li terature (Dunn & Kirsner, 1988), after a similar assumption in the response time
li terature that was identified by Sternberg (1969). Almost all of the formal analysis of methodologies that
purport to test between single and multiple systems (e.g., double dissociations) are based on this strong model.

In practice however, it seems possible that both systems would contribute to performance in both
conditions, with the relative contributions of systems A and B varying from condition 1 to condition 2. For
example, explicit memory systems may contribute to performance on putative implicit memory tasks (and vice
versa). There are two obvious models of how this division of labor might proceed. In the mixture model, the
observable response is determined by a single system on each trial, but memory system A determines the
response on some trials and memory system B determines the response on the remaining trials. Let pi denote
the probabili ty that memory system A determines the response in condition i. Then the mixture model predicts
that the observable pdf is a probabili ty mixture of the two component pdfs – that is,
 

gi(x) =  pi fA(x
�
i) + (1 -  pi) fB(x

�
i). (2)

The third possibili ty that we will consider is that both systems contribute to the observable response on every
trial. In fact, in the averaging model the observable dependent variable is a weighted average of the outputs
of the two component systems. In particular,

Xi = ri XAi + (1 - ri) XBi, (3)

where 0 �  ri � 1 is the weight given memory system A in condition i. The observable pdf is found from a
generalization of the so-called convolution integral: 

where f(xA,xB � i) is the joint pdf of XAi and XBi.
Equations 2 and 3 are in a similar form, but mathematically their behavior is very different. For example,

suppose systems A and B can both complete task i, but that system A is much better adapted to performing
this task than system B. Then fA(x � i) and fB(x � i) will have very different means. In the mixture model, this will
be obvious because on trials when the observer uses system A, RT will be short, but RT will be long on trials
when the observer uses system B. In fact, if the A and B means are far enough apart, then the observable pdf,
gi(x), will be bimodal. However, in the averaging model the observer does the same thing on every trial, and
as a result, RT will always be of intermediate value and gi(x) will therefore be unimodal. For these reasons,
mixture models will generally be easier to discriminate from single system models than will averaging models,
which like single system models assume observers do the same thing on all trials.

The Fixed-Point Property of Binary Mixtures

An obvious signature of a mixture model would be a bimodal pdf (in the case of binary mixtures).
Unfortunately, mixture models will produce unimodal pdfs unless the component distributions are far apart.
Thus, it is important to find some other less obvious signature left by mixture models. A solution to this
problem was discovered more than 30 years ago.

The issue of whether choice RT was mediated by a mixture model or a single system model achieved
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Figure 1.  Examples of probabilit y density functions that
satisfy the fixed-point property (see text for detail s).

intense scrutiny during the 1960's and 1970's (e.g., Falmagne, 1968; Falmagne & Theios, 1969; Lupker &
Theios, 1977; Townsend & Ashby, 1983; Yellott, 1969; 1971). The interest was generated by Yellott’s (1969)
proposal that some proportion of responses in speeded choice tasks were simple guesses, and thus the
observable RTs were a mixture of fast guesses and slower times from trials when complete processing
occurred. In response, Falmagne (1968) proposed a clever test of mixture models that he called the fixed-point
property. Consider a special case of Equation 2 in which the mixture probabili ty pi varies across the
experimental conditions (i.e,. varies with i), but the component system pdfs do not – that is,

fA(x
�
i) = fA(x) and   fB(x

�
i) = fB(x), for all values of i.

In each experimental condition, all we can estimate, of course, is the observable pdf, gi(x). The fixed-point
property of binary-mixtures states that all such mixtures must intersect at the same time point, if they intersect
at all (Falmagne, 1968).

Figure 1 shows examples of gi(x) when the component pdfs, fA(x) and fB(x), are each normal distributions
with equal variance, and the mixture probabili ty pi varies across conditions from 0.2 to 0.8. Note that the
resulting pdfs (which are not themselves normal) all i ntersect at the point x = 0.5. Although it is mathematically
possible that a single-system model could coincidentally mimic this result, such a possibil ity seems highly
unlikely, so a set of empirical pdfs that satisfy the fixed-point property should be taken as strong evidence of
multiple systems. On the other hand, the converse result is much weaker. There are many reasons why the
mixture model might fail to display the fixed-point property, so data in which the fixed-point property fails do
not constitute strong evidence against the mixture model. For example, it might be the case that the component
pdfs change across conditions, in addition to the mixture probabili ty pi. 

The fixed-point property has not been used to test for single versus multiple systems of learning or
memory, but there is no reason, in principle, why it could not. For example, consider the category structures
shown in Figure 2. Suppose a researcher believes that learning of these structures will depend heavily on
memorization when there are only a few exemplars per category, but as the number of exemplars is increased,
observers begin learning and applying a more abstract rule. This dual-system hypothesis could be tested via
the fixed-point property. For example, consider the stimulus labeled T in Figure 2. Note that this stimulus
appears in every condition. Suppose the conditions are
ordered so that the smallest categories are learned first
and more exemplars are successively added (so the
order is Figure 2a - 2b - 2c). In each condition, enough
data is collected to estimate the RT distribution for
stimulus T. If the theory is right, then in Figure 2a, the
RT distribution for stimulus T will be determined
primarily by a memorization strategy and in Figure 2c
by applying an abstract rule. If during the transition,
the observer intermixes trials in which the response to
stimulus T is generated by these two systems, then the
stimulus T RT distributions across conditions should
satisfy the fixed-point property.
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Figure 2.  Example of category structures to which the
fixed point property might be applied.  a) A
memorization strategy may be utilized to learn this
structure with few exemplars.  However, as the number
of exemplars increases (in b and c), it seems more
likely that an abstract rule may be applied.

Trials to
Criterion

Visual Discrimination
Learning

Spatial
Learning

Caudate Lesion

Fornix Lesion

Figure 3.  Hypothetical results showing a double
dissociation between visual discrimination learning
and spatial learning for two different types of lesions
(tail of the caudate nucleus or fornix).

In this case, dual systems are supported if the
observable RT pdfs all i ntersect at the same point.
Unfortunately, however, if they do not satisfy the fixed-
point property, it is diff icult to draw any strong
conclusions. Recall that a necessary condition for the
fixed-point property to hold is that fA(x

�
i) = fA(x) and

fB(x
�
i) = fB(x) – in other words, the component system

pdfs for the time to categorize stimulus T are the same in
all  three conditions shown in Figure 2. This is a strong
assumption that could fail for a variety of reasons. For
example, the rule-based system might use a slightly
different rule in the three conditions. There is much
evidence that categorization RT is strongly affected by the
distance from the stimulus to the category boundary
(Ashby, Boynton, & Lee, 1994; Maddox, Ashby, &
Gottlob, 1998), so if the boundary (i.e., rule) changes,
then the distance between T and the boundary will change,
and so wil l the time it takes the rule-based system to
categorize stimulus T. Similarly, it may be that the
memorization system slows down when the number of
exemplars that must be memorized increases. This would cause the pdf from the memorization system to
change (i.e., move to the right) as more stimuli are added from one condition to the next.

Double Dissociations

The most widely used current method for establishing that there are multiple systems of learning or
memory is to find a double dissociation between two tasks that load differently on the two systems. Many such
examples exist. To name one, several studies have found that rats with lesions of the tail of the caudate nucleus
are impaired in visual discrimination learning but not in spatial learning, whereas rats with lesions to the fornix
(the output structure of the hippocampus) show the
opposite pattern – namely, they are impaired in spatial
learning but are normal in visual discrimination learning
(Packard, Hirsch, & White, 1989; Packard & McGaugh,
1992; McDonald & White, 1994). An example of the
pattern of results one would expect in such a situation is
given in Figure 3. Note that the dependent variable is
trials-to-criterion.

There are several properties of the Figure 3 results
that are necessary for them to quali fy as a double
dissociation ( a term first coined by Teuber, 1955). First,
the interaction must be of the cross-over type. A non-
crossover interaction does not quali fy as a double
dissociation, no matter what its level of statistical
significance. This is because it is relatively easy for
single system models to account for non-crossover
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interactions (this is demonstrated below). Second, the cross-over interaction must come from measuring the
same dependent variable in two different tasks. Thus, a cross-over interaction, by itself is not suff icient to
qualify as a double dissociation. Again, this is because it is straightforward for single system models to
account for cross-over interactions in 2 × 2 designs when only one task is used and different dependent
variables are measured (more detail on this is provided later in this section).

A third condition, which is not strictly necessary but greatly strengthens the argument that a double
dissociation supports multiple systems, is that the two groups in the experiment each are representative of
some homogeneous population. In the Figure 3 example, the same results would be assumed to hold for any
group of rats that received these same lesions. McCloskey (1993) in particular, has forcefully argued this
point. Of the phrase "homogeneous population", both words are important. For example, McCloskey (1993)
showed that spurious conclusions are possible (or perhaps li kely) if each group contains a mixture of
observers with different types of lesions. This homogeneity requirement makes the interpretation of a double
dissociation especially problematic if each group comprises humans who have suffered some particular type
of lesion. Since human lesions are generally the result of accident or stroke, no two are alike. For example,
they are often unilateral and do not respect the neuroanatomical boundaries established by Broadman and
others. From this perspective, neurodegenerative disease groups (e.g., Parkinson’s disease) are probably
better candidates for double dissociation studies, but even in Parkinson’s disease there is widespread
individual difference in the neuroanatomical locus and extent of damage (e.g., van Domburg & ten
Donkelaar, 1991). For this reason, it is important that, whenever possible, any double dissociations reported
in humans are replicated in nonhuman animals under more controlled conditions.

The term "population" in the phrase "homogeneous population" is equally important. For example,
suppose one of our groups is normal, healthy, adult humans, and that a single neuropsychological patient is
discovered who, when defined as the second group, produces data that satisfies a double dissociation. Several
researchers have emphasized the dangers in attempting to make inferences from such data (e.g., Shalli ce,
1988; Van Orden, Pennington, & Stone, in press). For example, since we have no data from this particular
patient before his or her neurological trauma, we do not know whether the patient would have produced these
idiosyncratic data before the trauma, and thus, that the peculiar data are the result of the neurological damage.
When one samples from any variable population, eventually an extreme outlier is encountered that might not
be representative of any existing population.

Another popular argument against double dissociation logic is that it leads to the conclusion that there
are too many functionally separate systems (e.g., Van Orden et al., in press). For example, consider two tasks

�  both are YES/NO detection tasks where the signal is a sine wave grating and the noise is a uniform field.
In the first task, however, the frequency of the signal grating is f1 degrees and in the second task the signal
has frequency f2 degrees. Our two groups are animals with lesions to specific spatial frequency columns in
primary visual cortex. Group 1 has a lesion to columns sensitive to spatial frequencies centered at f1 degrees,
and Group 2 has a lesion to columns sensitive to frequencies centered at f2 degrees. This experiment should
produce a double dissociation, so the standard conclusion would be that there are separate systems for the
detection of gratings of f1 and f2 degrees. Furthermore, if we repeat this experiment with other frequencies,
we will have to conclude that a number of other such systems also exist. In a sense, our logic is correct since
visual psychophysiologists often treat different cortical columns (or hypercolumns) as separate (mini)
systems. On the other hand, from the perspective of cognitive psychology this conclusion seems too
reductionistic. Cognitive psychologists might be satisfied to learn, for example, only that there are separate
systems for spatial frequency and orientation perception. At this point, any more detail would just overwhelm
theory development. 

From a practical perspective, the problems arise in our hypothetical detection experiment because the
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2 In fact, one might easily argue that they are so similar that they should be considered the same task, a
conclusion that would violate our earlier condition that two different tasks are needed to test for a double
dissociation.

two tasks are so similar2. According to standard signal detection theory, they require the same sensory and
decision processes. Therefore, a practical solution to the problem is to use current theory regarding the
function of the postulated systems to aid in selecting the tasks to be used in the double dissociation
experiment. In particular, two tasks should be used only if there is current theoretical debate as to whether
they are mediated by one or more separate systems.

In the remainder of this section, we formally examine the validity of claims that a double dissociation
is strong evidence for multiple systems. We assume throughout this discussion that the double dissociation
was produced in an experiment that satisfies all of the guidelines described above (and avoids the pitfalls).

To begin, consider the strong multiple systems model described in Equation 1. Suppose system A is
based in the hippocampus (e.g., the fornix) and specializes in spatial memory tasks and system B is based
in the caudate nucleus and specializes in visual discrimination tasks. Denote the pdf of system A in the
spatial memory task when the fornix is lesioned by fA

�
(x

�
S), and the pdf of system B in the visual

discrimination task when the caudate is lesioned by fB

�
(x

�
V). Such lesions will impair the two systems. We

can document this by assuming that lesions affect the entire pdfs. Specifically, we assume that the
performance of system A in the normal and lesioned groups is related via

P(XA �  x) �  P(XA�  �  x), for all values of x. (5)

These two functions are called the cumulative probability distribution functions, denoted by FA(x) and FA� (x),
respectively, so Equation 5 is equivalent to

FA(x) �  FA� (x), for all x. (6)

Similarly, we assume
FB(x) �  FB � (x), for all x. (7)

Note that the orderings specified by Equations 6 and 7 guarantee that the means will also be ordered
(although in the reverse direction �  i.e., lesions will increase mean trials-to-criterion). Figure 4a presents
hypothetical cumulative distribution functions (left) and the relative ordering of the means (right) predicted
by Equations 6 and 7.

 Let GIJ(x) denote the cumulative distribution function of trials-to-criterion for group J (J = F or C for
fornix or caudate lesions) in task I (I = S or V for spatial memory or visual discrimination). We assume that
this function provides a complete description of the dependent variable of interest (e.g., trials-to-criterion).

In this strong multiple systems model, the observable cumulative distribution functions in the four
conditions are:

Spatial Memory Task Visual Discrimination Task

Fornix Lesion GSF(x) = FA� (x � S) GVF(x) = FB(x � V)

Caudate Lesion GSC(x) = FA(x � S) GVC(x) = FB � (x � V)
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Figure 4.  Cumulative distribution functions (left) and means (right) in four conditions of a hypothetical experiment
(see text for details). a) Orderings induced by Equations 6 and 7.  b) Predictions of the strong multiple systems model.
c) Predictions for a single system model that satisfies Equation 8 (i.e., fornix lesions are more detrimental than caudate
lesions).

Equations 6 and 7 guarantee that this model produces the cross-over double dissociation. Figure 4b presents
a graphical example of these orderings.

Next, consider what a single system model predicts in this experiment. Even if the same system is used
on every trial of all conditions, that system might not be equally suited to the two types of task, and the two
types of lesions might not inflict the same amount of damage to the system. With these caveats in mind, single
system models predict:

Spatial Memory Task Visual Discrimination Task

Fornix Lesion GSF(x) = FF

�
(x

�
S) GVF(x) = FF

�
(x

�
V)

Caudate Lesion GSC(x) = FC

�
(x

�
S) GVC(x) = FC

�
(x

�
V)

where the subscripts F and C refer to the fornix and caudate, respectively. Now, if the fornix lesion causes
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more damage to the system than the caudate lesion, then we assume that the abili ty of the system to perform
in any task is poorer with fornix lesions than with caudate lesions. Thus,

 FC

�
(x

�
S) �  FF

�
(x

�
S) and FC

�
(x

�
V) �  FF

�
(x

�
V), for all x.

(8)
Similarly, if the caudate lesion causes more damage, then

 FF

�
(x

�
S) �  FC

�
(x

�
S) and FF

�
(x

�
V) �  FC

�
(x

�
V), for all x. (9)

In either case, there is no cross-over interaction and therefore, no double dissociation (see Figure 4c for an
example of the Equation 8 predictions).

There are several points worth noting here. First, even if Equation 8 or 9 holds, an interaction is possible
in the single system model – only a cross-over interaction is precluded. Additive effects (i.e., no interaction)
would occur only if the deleterious effect of the more damaging lesion was exactly the same in both tasks. This
might occur, but there is no reason it should be expected. 

Second, this analysis makes it clear that a single system model can predict a double dissociation if
Equations 8 and 9 both fail -- that is, if the deficit is more severe with the first lesion in one task and with the
second lesion in the other task. For example, single system models predict a double dissociation if

 FC

�
(x

�
S) �  FF

�
(x

�
S) and FF

�
(x

�
V) �  FC

�
(x

�
V), for all x. (10)

This point was noted by Dunn and Kirsner (1988), who called Equation 10 a negative relation between the
tasks. With lesion data, it is diff icult to imagine how this might occur in a true single-system model. One
possibili ty though, is that the single system is composed of several subsystems – one of which is knocked out
by fornix lesions and another by caudate lesions. A double dissociation could result if the subsystem damaged
by the fornix lesion was more important in the spatial memory task and the subsystem damaged by the caudate
lesion was more important in the visual discrimination task. There are several problems with this scenario,
however. First, if the subsystems are arranged in series, with the output of one serving as the input for the
other, then it is not clear that a double dissociation would result. Damage to the upstream subsystem would
cause poor performance on both tasks because the input to the downstream, undamaged subsystem would be
corrupted. On the other hand, damage to the downstream subsystem would affect performance only on one task,
because the input and processing in the upstream subsystem would be unaffected by such a lesion. Thus, the
only way the double dissociation is guaranteed is if the two subsystems operate in parallel. Such a parallel
system, however, shares many properties with multiple systems, so it is unclear that its existence should be
taken as support for a single system.

If  different dependent variables are used for the two groups, then it becomes easy for single system models
to predict cross-over double dissociations. For example, consider the hypothetical categorization RT data
shown in Figure 5a. In this experiment, subjects must decide whether each presented stimulus is or is not a
member of category A. Figure 5a shows mean RT for “A” and “not A” responses as a function of the similarity
between the stimulus and the category A prototype. These data are easily predicted by a single system model
that assumes subjects compute the similarity of the stimulus to the category A prototype, and then compare
this similarity to a criterion. Similarities above the criterion elicit an “A” response and similarities below the
criterion elicit a “not A” response. Such a model predicts the Figure 5a data if the time to determine whether
the similarity is above or below criterion decreases with the magnitude of the difference between the similarity
and the criterion. Clearly, in such a case, it would be a mistake to infer from Figure 5a that there are separate
systems on “A” and “not A” trials.
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A

RT

Similarity to Prototype

a)

A

RT

Distance to Category Bound

b)

Not A

Not A

Figure 5.  Hypothetical categorization RT data.  a)
Mean RT plotted as a function of similarity to
prototype in an A-not A task.  b) Data from the same
experiment plotted as a function of distance to category
bound (see text for detail s).

From the perspective of double dissociation logic,
there are several problems with the Figure 5a example.
First, there are neither two groups nor two tasks. Instead,
the Figure 5a data are from one group of subjects in one
task. Second, data from two different types of response are
plotted in Figure 5 – RT for “A” responses and RT for
“not A” responses. Note that this contrasts with the double
dissociation shown in Figure 3, in which the response is
the same in all conditions. In Figure 5a, data from one
experimental condition are divided into two categories
(according to the response given). Then a variable is
constructed (similarity-to-prototype) that subdivides these
two categories in such a way that a cross-over interaction
occurs. It is important to note, however, that other
variables could be defined that subdivide the categories
differently, and for which the interaction might disappear.
For example, the same data are replotted in Figure 5b
against the variable “psychological distance to category
bound.”

If  performance in some task is mediated by a single
system, then it is natural that there may exist negative
relations between different kinds of responses, or different
dependent variables (e.g., speed versus accuracy). Clearly,
it would be a mistake to apply double dissociation logic to
a cross-over interaction in such a case.

These analyses provide a rigorous justification for the
practice of inferring multiple systems when double
dissociations are found, but only under a fairly limited set
of circumstances (e.g., different tasks, same response,
separate homogeneous populations). On the other hand, the
only multiple systems model we have so far considered is
the strong model that assumes selective influence -- that is,
that the observer uses separate systems in the two tasks under study. Perhaps a more plausible multiple systems
alternative is that the observer uses both systems in both conditions, but the two tasks load differently on the
two systems and the observable response is determined either by only one of the systems on any given trial or
by a weighted average of the two system outputs. In other words, it is of interest to consider the conditions
under which the mixture and averaging models predict a double dissociation. To our knowledge, this question
has not previously been investigated.

We begin with the mixture model. Let pS and pV denote the probabili ty that the hippocampal-based system
is used on any given trial of the spatial memory task and the visual discrimination task, respectively. We
assume that observers are more likely to use the hippocampal system in the spatial memory task and the
caudate system in the visual discrimination task. This means that pS > ½ > pV. As before, we assume that the
effect of the lesions is as described in Equations 6 and 7. Under these assumptions, the cumulative distribution
functions in each condition are given by:
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3 If the caudate group performs better than the fornix group in the spatial memory task, then

pS FA(x
�
S) + (1 - pS)FB� (x � S) >  pS FA � (x � S) + (1 - pS)FB(x � S), for all x,

which implies that

pS [FA(x � S) - FA � (x � S)] > (1 - pS) [FB(x � S) - FB� (x � S)], for all x.

Equation 10 follows readily from this result. Equation 11 follows in a similar fashion from the result that a double
dissociation requires the fornix group to perform better than the caudate group in the visual discrimination task.
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Spatial Memory Task Visual Discrimination Task

Fornix

 Lesion

GSF(x) =  pS FA � (x � S) + (1 - pS)FB(x � S) GVF(x) =   pV FA � (x � V) + (1 - pV)FB(x � V) 

Caudate

 Lesion

GSC(x) =  pS FA(x � S) + (1 - pS)FB � (x � S) GVC(x) =  pV FA(x � V) + (1 - pV)FB � (x � V)

It is not diff icult to show3 that this mixture model predicts a (cross-over) double dissociation if and only if for
all values of x,

and

Since pS > ½  > pV, the left side is greater than 1 in both equations. By Equations 6 and 7, the numerator and
denominator of the right hand side are positive in both equations. Thus, the mixture model predicts a double
dissociation anytime the effects of the lesions are the same on the two systems. If they are not – for example
if the caudate lesion more effectively impairs the caudate-based system than the fornix lesion impairs the
hippocampal-based system – then whether or not the mixture model predicts a double dissociation depends on
the mixture probabili ties pS and pV. If the experimenter is effective at finding two tasks that each load heavily
on different systems, then pS will be near 1 and pV will be near 0, and the left side of Equations 10 and 11 will
both be large. In this case, a double dissociation will occur even if there are large differences in the eff icacy
of the various lesions. Thus, with the mixture model of multiple systems, a double dissociation is not
guaranteed, but it should generally be possible to find tasks and conditions (e.g., lesions) that produce one.

The predictions of the averaging model are quali tatively similar to those of the mixture model if we shift
our focus from the cumulative distribution functions, FA(x) and FB(x), to the means E(XAi) and E(XBi) (e.g.,
this allows us to avoid dealing with the convolution integral of Equation 4). Let rS and rV denote the weights
given the hippocampal-based system on any given trial of the spatial memory task and the visual discrimination
task, respectively. We assume that observers weight the hippocampal system more heavily in the spatial
memory task and the caudate system more heavily in the visual discrimination task. Thus rS > ½ > rV. As
before, we assume the lesions impair performance [i.e., since the dependent variable is trials-to-criterion, this
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means that EA

�
(X) > EA(X) and EB

�
(X) > EB(X)]. Under these assumptions, the observable means in each

condition are given by:

Spatial Memory Task Visual Discrimination Task

Fornix

Lesion

ESF(X) = rS EA

�
(X

�
S) + (1 - rS)EB(X

�
S) EVF(X) =   rV EA

�
(X

�
V) + (1 - rV)EB(X

�
V) 

Caudate

 Lesion

ESC(X) = rS EA(X
�
S) + (1 - rS)EB

�
(X

�
S) EVC(X) = rV EA(X

�
V) + (1 - rV)EB

�
(X

�
V)

Note the similarity to the structure of the cumulative distribution functions in the mixture model. As a result,
the averaging model predicts a double dissociation if 

and

The conclusions are therefore similar to the case of the mixture model. The averaging model predicts a double
dissociation if the effects of the two lesions are approximately equal. If one lesion is more severe than the other,
then a double dissociation can still be predicted if the two tasks load heavily on different systems.

We believe this analysis provides strong theoretical justification for the current practice of interpreting
a double dissociation as evidence of multiple systems. However, we have also noted some important and severe
limitations on this methodology. For example, it is essential that the observed interaction be of the cross-over
type, and not just any interaction that achieves statistical significance. Also, the same dependent variable should
be measured in two different tasks that sample from separate populations of homogeneous subjects. It is also
important to note that there is an asymmetry in interpreting double dissociation results. Whereas the existence
of a double dissociation (under the appropriate experimental conditions) is strong evidence for multiple
systems, the failure to find a double dissociation must be interpreted more cautiously, because there are several
reasonably plausible ways in which multiple systems models could produce this null result (e.g., see our
discussion of the mixture model).

Single Dissociations

Although other definitions are possible, we operationally define a single dissociation as an interaction of
the type described in the last section for which there is no crossover. As already mentioned, in the absence of
extenuating circumstances, it is diff icult or impossible to draw strong conclusions about whether such data
were produced by single or multiple systems. As we have seen, in many cases it is straightforward for single
system models to predict single dissociations. Even so, there are certain special circumstances in which single
dissociation data have been used to argue for multiple systems.
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Figure 6. Performance operating characteristics of two
tasks.

Perhaps the most common argument that a single dissociation signals multiple systems has been in cases
where two groups perform equally on one task, but one of these groups is impaired, relative to the other, on
a second task. For example, amnesic patients perform poorly on explicit memory tests but they often are
relatively normal on a variety of tests of implicit memory (e.g, Warrington & Weiskrantz, 1970). It is
dangerous, however, to infer simply from this result that there are separate explicit and implicit memory
systems. For example, there have been several formal demonstrations that certain single system models can
account for such data (e.g., Nosofsky, 1988; Nosofsky & Zaki, 1998). In addition, recently it has been argued
that even garden-variety single system models can account for single dissociations of this type if the explicit
memory tests are more reliable than the implicit tests (Buchner & Wippich, 2000; Meier & Perrig, 2000).

These arguments generally assume no a priori knowledge about the nature of the tasks that are used.
When such knowledge is considered, then stronger tests are sometimes possible. One such attempt employs
what has been called the logic of opposition to test for unconscious learning (Jacoby, 1991; Higham, Vokey,
& Pritchard, 2000). Consider a categorization task with two categories, denoted A and B. To begin, subjects
are trained to identify members of these two categories. There are two different test conditions. In the control
condition, subjects are shown a series of stimuli and are asked to respond “Yes” to each stimulus that belongs
to Category A or B and to respond “No” to stimuli that are in neither category. In the opposition condition,
subjects respond “Yes” only if the stimulus belongs to Category A. If it belongs to Category B or to neither
category, then the correct response is “No”. The key test is to compare the accuracy rates in the opposition
condition for these two kinds of stimuli (i.e., those in Category B and those in neither category). The idea is
that, if responding is based solely on conscious learning, then the accuracy rates to these two kinds of stimuli
should be equal, but unconscious learning could cause Category B exemplars to become associated with the
notion that these stimuli are valid category members, thereby causing more “Yes” responses to Category B
exemplars than to stimuli i n neither category. This logic, which is not without controversy (Redington, 2000),
takes advantage of our knowledge that subjects were trained on Category B exemplars but not on the stimuli
in neither category.

Another possible use of a priori knowledge is to focus on the relative diff iculty of the two tasks. For
example, consider the two tasks described by the
performance operating curves shown in Figure 6. When full
resources are available, Task 1 is easier to learn than Task
2 (i.e., criterion performance is achieved in fewer trials for
Task 1 than for Task 2). As resources are withdrawn,
performance naturally declines in both tasks, although at
different rates. A small to moderate decline in the available
resources is more deleterious to the more diff icult Task 2
(e.g., when Rb resources are available for both tasks).
However, as performance on Task 2 nears floor (i.e., worst
possible performance), Task 1 performance begins to
narrow the gap, until eventually performance on both tasks
is equally bad. The point marked RC in Figure 6 denotes the
critical level of resources in which the rate of decline on
Task 1 first exceeds the rate of decline on Task 2.

Now, suppose Tasks 1 and 2 are both learned by the
same system, and consider an experiment with two
conditions. In one, observers learn the two tasks with full
resources available. This condition produces data points
denoted by the closed circles in Figure 6. In the second
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condition, observers learn the tasks with reduced resources. This could be accomplished either by requiring
observers to perform a simultaneous dual task, or perhaps through instruction (e.g., by forcing a quick
response). As long as the observer has available RC or more resources in this latter condition, single-system
models predict that the reduced resources condition will cause more problems in the more diff icult Task 2. For
example, with resources equal to RB, the reduced resources condition produces data points denoted by the
closed squares in Figure 6. The only potential problem with this prediction is if the observer had available less
than RC resources for the learning task in the reduced resources condition. This possibili ty should be easy to
avoid however, by ensuring that performance on Task 2 is well below ceili ng.

Next, consider predictions in this experiment if the observer uses different systems to learn Tasks 1 and
2, and for some reason the experimental intervention to reduce resources works more effectively on the system
that learns Task 1. In this case, the greater interference will be with Task 1 – a result that is problematic for
single system models.

This was the strategy of a recent experiment reported by Waldron and Ashby (in press). Participants in
this study learned simple and complex category structures under typical single-task conditions and when
performing a simultaneous numerical Stroop task. In the simple categorization tasks, each set of contrasting
categories was separated by a unidimensional, explicit rule that was easy to describe verbally. An example is
shown in Figure 7 for the rule “ respond A if the background color is blue, and respond B if the background
color is yellow”. On the other hand, the complex tasks required integrating information from three stimulus
dimensions and resulted in implicit rules that were diff icult to verbalize. An example is shown in Figure 8.
Ashby et al. (1998) hypothesized that learning in such tasks will be dominated by different systems – in
particular, that the simple categories would be learned by an explicit, rule-based system that depends heavily
on frontal cortical structures, whereas the complex categories would be learned primarily by an implicit,
procedural learning system that depends heavily on subcortical structures. Stroop tasks are known to activate
frontal cortex (Bench et al., 1993), and so it was hypothesized that the concurrent Stroop task would interfere
with the explicit system more strongly than with the implicit system. In support of this prediction, the
concurrent Stroop task dramatically impaired learning of the simple explicit rules, but did not significantly
delay learning of the complex implicit rules. These results support the hypothesis that category learning is
mediated by multiple learning systems.

Mapping Hypothesized Systems Onto Known Neural Structures

Testing between single and multiple systems of learning and memory will always be more diff icult when
the putative systems are hypothetical constructs with no known neural basis. For example, the Waldron and
Ashby (in press) dual task study was more effective because it had earlier been hypothesized that the putative
explicit system relied on frontal cortical structures much more strongly than the implicit system. Given this,
and the neuroimaging evidence that Stroop tasks activate frontal cortex (Bench et al., 1993), it becomes much
easier to argue that if there are multiple systems, then the concurrent Stroop task should interfere more strongly
with the learning of the simpler, rule-based category structures.

In general, the memory li terature has enthusiastically adopted this constraint. Most of the memory systems
that have been proposed have become associated with a distinct neural basis. For example, cognitive
neuroscience models of working memory focus on prefrontal cortex (e.g., Fuster, 1989; Goldman-Rakic, 1987,
1995), declarative memory models focus on the hippocampus and other medial temporal lobe structures (e.g.,
Gloor, 1997, Gluck & Myers, 1997; McClelland, McNaughton, & O’Reill y, 1995; Polster, Nadel, & Schacter,
1991; Squire & Alvarez, 1995), procedural memory models focus on the basal ganglia (e.g., Jahanshahi,
Brown, & Marsden, 1992; Mishkin et al., 1984; Saint-Cyr, Taylor, & Lang, 1988; Willi ngham et al., 1989),
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and models of the perceptual representation system focus on visual cortex (Curran & Schacter, 1996; Schacter,
1994; Tulving & Schacter, 1990).

III. Category Learning as a Model of the Single Versus Multiple Systems Debate

Category learning is a good example of an area in which the single versus multiple systems debate is
currently being waged. The issues that have arisen in the category learning li terature are similar to issues that
are being discussed in other areas that are wrestling with this same debate. This is partly because similar
methodologies are used in the different areas to test between single and multiple systems, and partly because
the different sub-disciplines engaged in this debate – motor learning, discrimination learning, function learning,
category learning, and reasoning – have all postulated similar explicit and implicit systems. So, there is a very
real possibili ty that if there are multiple systems of category learning, these same (or highly similar) systems
might also mediate other types of learning. For this reason, this section examines the debate as to whether there
are single or multiple systems of category learning.

Within the field of categorization, the debate as to whether there is one or more than one learning system
is just beginning. There have been no attempts to test the fixed point property, and empirical demonstrations
of double dissociations are rare. Nevertheless, there have been some encouraging attempts to map category
learning systems onto distinct neural structures and pathways, and as mentioned above, there has been at least
one attempt to test for multiple systems by exploiting a known a priori ordering of task diff iculty. Even so, in
the case of category learning, the single versus multiple systems debate is far from resolved. Not only is there
insuff icient empirical evidence to decide this issue, but there is still strong theoretical disagreement. Although
there have been a number of recent articles arguing for multiple category learning systems (Ashby et al., 1998;
Erickson & Kruschke, 1998; Pickering, 1997; Waldron & Ashby, in press), there have also been recent papers
arguing for a single system (e.g., Nosofsky & Johansen, in press; Nosofsky & Zaki, 1998).

Category Learning Theories

As one might expect, the early theories of category learning all assumed a single system. There were a
number of such theories, but four of these have been especially important. Rule-based theories assume that
people categorize by applying a series of explicit logical rules (e.g., Bruner, Goodnow, & Austin, 1956;
Murphy & Medin, 1985; Smith & Medin, 1981). Various researchers have described this as a systematic
process of hypothesis testing (e.g., Bruner et al., 1956) or theory construction and testing (e.g., Murphy &
Medin, 1985). Rule-based theories are derived from the so-called classical theory of categorization, which dates
back to Aristotle, although in psychology it was popularized by Hull (1920). The classical theory assumes that
categorization is a process of testing whether or not each stimulus possesses the necessary and suff icient
features for category membership (Bruner et al., 1956). Much of the work on rule-based theories has been
conducted in psycholinguistics (Fodor, Bever, & Garrett, 1974; Mill er & Johnson-Laird, 1976) and in
psychological studies of concept formation (e.g., Bruner et al., 1956; Bourne, 1966).

Prototype theory assumes that the category representation is dominated by the prototype, or most typical
member, and that categorization is a process of comparing the similarity of the stimulus to the prototype of
each relevant category (Homa, Sterling, & Trepel, 1981; Posner & Keele, 1968, 1970; Reed, 1972; Rosch,
1973, 1977; Smith & Minda, 2000). In its most extreme form, the prototype is the category representation, but
in its weaker forms, the category representation includes information about other exemplars (Busemeyer,
Dewey, & Medin, 1984; Homa, Dunbar, & Nohre, 1991; Shin & Nosofsky, 1992).
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Exemplar theory assumes people compute the similarity of the stimulus to the memory representation of
every exemplar of all relevant categories and select a response on the basis of these similarity computations
(Brooks, 1978; Estes, 1986a; Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1986). The assumption
that the similarity computations include every exemplar of the relevant categories is often regarded as
intuitively unreasonable. For example, Myung (1994) argued that "it is hard to imagine that a 70 year-old
fisherman would remember every instance of fish that he has seen when attempting to categorize an object as
a fish" (p. 348). Even if the exemplar representations are not consciously retrieved, a massive amount of
activation is assumed by exemplar theory. Nevertheless, exemplar models have been used to account for
asymptotic categorization performance from tasks in which the categories: (1) were linearly or non-linearly
separable (Medin & Schwanenflugel, 1981; Nosofsky, 1986, 1987, 1989), (2) differed in baserate (Medin &
Edelson, 1988), (3) contained correlated or uncorrelated features (Medin, Alton, Edelson, & Freko, 1982), (4)
could be distinguished using a simple verbal rule (or a conjunction of simple rules; Nosofsky, Clark, & Shin,
1989), and (5) contained differing exemplar frequencies (Nosofsky, 1988).

Finally, decision bound theory (also called general recognition theory) assumes there is trial-by-trial
variability in the perceptual information associated with each stimulus, so the perceptual effects of a stimulus
are most appropriately represented by a multivariate probability distribution (usually a multivariate normal
distribution). During categorization, the observer is assumed to learn to assign responses to different regions
of the perceptual space. When presented with a stimulus, the observer determines which region the perceptual
effect is in and emits the associated response. The decision bound is the partition between competing response
regions (Ashby, 1992; Ashby & Gott, 1988; Ashby & Lee, 1991, 1992; Ashby & Maddox, 1990, 1992, 1993;
Ashby & Townsend, 1986; Maddox & Ashby, 1993). Thus, decision bound theory assumes that although
exemplar information may be available, it is not used to make a categorization response. Instead, only a
response label is retrieved.

Three Different Category Learning Tasks

Each of these theories has intuitive appeal, especially in some types of categorization tasks. For example,
rule-based theories seem especially compelling when the rule that best separates the contrasting categories (i.e.,
the optimal rule) is easy to describe verbally (Ashby et al., 1998), and an exemplar-based memorization
strategy seems ideal when the contrasting categories have only a few highly distinct exemplars. Not
surprisingly, proponents of the various theories have frequently collected data in exactly those tasks for which
their pet theories seem best suited. If there is only one category learning system, then this strategy is fine.
However, if there are multiple systems, then the different tasks that have been used might load differently on
the different systems. In this case, two researchers arguing that their data best supports their own theory might
both be correct. As we will see below, there is neuropsychological and neuroimaging evidence supporting this
prediction. So, before we examine the single versus multiple systems debate within the categorization literature,
we take some time to describe three different types of categorization tasks that each seems ideally suited to the
specific psychological processes hypothesized by the different theories.

As mentioned above, rule-based theories seem most compelling in tasks in which the rule that best
separates the contrasting categories (i.e., the optimal rule) is easy to describe verbally (Ashby et al., 1998). As
a result, observers can learn the category structures via an explicit process of hypothesis testing (Bruner et al.,
1956) or theory construction and testing (Murphy & Medin, 1985). Figure 7 shows the stimuli and category
structure of a recent rule-based task that used 8 exemplars per category (Waldron & Ashby, in press). The
categorization stimuli were colored geometric figures presented on a colored background. The stimuli varied
on four binary-valued dimensions: background color (blue or yellow; depicted as light or dark gray,
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A

B

Figure 7. Category structure of a rule-based
category learning task. The optimal explicit rule is:
Respond A if the background color is blue (depicted as
light gray), and respond B if the background color is
yellow (depicted as dark gray).

respectively), embedded symbol color (red or green;
depicted as black or white, respectively), symbol
numerosity (1 or 2), and symbol shape (square or circle).
This yielded a total of 16 possible stimuli. To create rule-
based category structures, one dimension is selected
arbitrarily to be relevant. The two values on that
dimension are then assigned to the two contrasting
categories. At the end of training, observers are able to
describe the rule they used in rule-based tasks quite
accurately. Most categorization tasks used in studies that
have argued for rule-based learning have been designed in
a similar fashion (e.g., Bruner et al., 1956; Salatas &
Bourne, 1974), as are virtually all categorization tasks
used in neuropsychological assessment, including the well
known Wisconsin Card Sorting Test (e.g., Grant & Berg,
1948; Kolb & Whishaw, 1990).

Information-integration tasks are those in which
accuracy is maximized only if information from two or
more stimulus components (or dimensions) must be
integrated at some pre-decisional stage (Ashby & Gott,
1988; Shaw, 1982). A conjunction rule (e.g., respond A
if the stimulus is small on dimension x and small on
dimension y) is a rule-based task rather than an information-integration task because separate decisions are
first made about each dimension (e.g., small or large) and then the outcome of these decisions is combined
(integration is not pre-decisional). In many cases, the optimal rule in information-integration tasks is difficult
or impossible to describe verbally (Ashby et al., 1998). That people readily learn such category structures
seems problematic for rule-based theories, but not for prototype, exemplar, or decision bound theories. The
neuropsychological data reviewed below suggests that performance in such tasks is qualitatively different
depending on the size of the categories �  in particular, when a category contains only a few highly distinct
exemplars, memorization is feasible. However, when the relevant categories contain many exemplars (e.g.,
hundreds), memorization is less efficient. An exemplar strategy seems especially plausible when the
categories contain only a few highly distinct exemplars. Not surprisingly, most articles arguing for exemplar-
based category learning have used such designs (e.g., Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 1986;
Smith & Minda, 2000).

Figure 8 shows the stimuli and category structure of a recent information-integration task that used only
8 exemplars per category (Waldron & Ashby, in press). The categorization stimuli were the same as in Figure
7. To create these category structures, one dimension was arbitrarily selected to be irrelevant. For example,
in Figure 8, the irrelevant dimension is symbol shape. Next, one level on each relevant dimension was
arbitrarily assigned a value of +1 and the other level was assigned a value of 0. In Figure 8, a background
color of blue (depicted as light gray), a symbol color of green (depicted as white), and a symbol number of
2 were all assigned a value of +1. Finally, the category assignments were determined by the following rule:

The stimulus belongs to Category A if the sum of values on the relevant dimensions > 1.5;
Otherwise it belongs to Category B.

This rule is readily learned by healthy young adults, but even after achieving perfect performance, they can
virtually never accurately describe the rule they used.
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Figure 9. Category structure of an information
integration category learning task with many
exemplars per category.  Each stimulus is a line
that varies across trials in length and orientation.
Every black plus depicts the length and orientation
of a line in Category A and every gray dot depicts
the length and orientation of a line in Category B.
The quadratic curve is the boundary that
maximizes accuracy.
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Figure 8. Category structure of an information integration
category learning task with only a few exemplars in each
category.

• •

•
•

•

• •
• • •

• •
•
•

• •

•

•

•
•

•

• •
•

•• ••
• • •

•

• •

•
•

••
•

•

• •

A

not
 A

Figure 10. Some exemplars from a prototype distortion
category learning task with random dot patterns.

When there are many exemplars in each category, memorization strategies, which are necessarily
exemplar-based, become more difficult to implement. In these situations, it seems especially plausible that
observers learn to associate category labels with regions of perceptual space (as predicted by decision bound
theory). Figure 9 shows the category structure of an information-integration categorization task in which
there are hundreds of exemplars in each category (first developed by Ashby & Gott, 1988). In this
experiment, each stimulus is a line that varies across trials in length and orientation. Each cross in Figure 9
denotes the length and orientation of an exemplar in Category A and each dot denotes the length and
orientation of an exemplar in Category B. The categories overlap, so perfect accuracy is impossible in this
example. Even so, the quadratic curve is the boundary that maximizes response accuracy. This curve is
difficult to describe verbally, so this is an information-
integration task. Many of the studies supporting decision
bound theory have used this randomization design
(Ashby & Gott, 1988; Ashby & Maddox, 1990, 1992;
Maddox & Ashby, 1993).

A prototype abstraction process does not work well
in the Figure 9 experiment because prototype theory
always predicts linear decision bounds (Ashby & Gott,
1988), and there is much data showing that quadratic
bounds give a much better account of the resulting data
than linear bounds (Ashby & Maddox, 1992). A
prototype abstraction process seems most plausible in
prototype distortion tasks in which each category is



Single Versus Multiple Systems 20

created by first defining a category prototype and then creating the category members by randomly distorting
these prototypes. In the most popular version of prototype distortion tasks the category exemplars are random
dot patterns (Posner & Keele, 1968, 1970). An example of the random dot pattern task is shown in Figure
10. To begin, many stimuli are created by randomly placing a number of dots on the display. One of these
stimuli is then chosen as the prototype for Category A. The others become stimuli not belonging to Category
A. The other Category A exemplars are then created by randomly perturbing the position of each dot in the
Category A prototype. Categories created from these random dot patterns have been especially popular with
prototype theorists (e.g., Homa & Cultice, 1984; Homa, Cross, Cornell , Goldman, & Schwartz, 1973; Homa
et al., 1981; Posner & Keele, 1968, 1970).

Explicit Versus Implicit Category Learning

As mentioned previously, many of the current theories that postulate multiple category learning systems
propose separate explicit and implicit subsystems. The multiple memory systems literature also frequently
uses the terms explicit and implicit, but usually in a slightly different fashion. So before proceeding further,
we briefly discuss the existing criteria that are used to determine whether category learning is explicit or
implicit.

There is widespread agreement, within both the category learning and memory literatures, that explicit
processing requires conscious awareness (e.g., Ashby et al., 1998; Cohen & Squire, 1980). The
disagreements relate more to how implicit processing is defined. Many memory theorists adopt the strong
criteria that a memory is implicit only if there is no conscious awareness of its details and there is no
knowledge that a memory has even been stored (e.g., Schacter, 1987). In a typical categorization task, for
example any of those described in the last section, these criteria are impossible to meet when trial-by-trial
feedback is provided (as it usually is). When an observer receives feedback that a response is correct, then
this alone makes it obvious that learning has occurred, even if there is no internal access to the system that
is mediating this learning. Thus, in category learning, a weaker criterion for implicit learning is typically used
in which the observer is required only to have no conscious access to the nature of the learning, even though
he or she would be expected to know that some learning had occurred. 

The stronger criteria for implicit processing that have been adopted in much of the memory literature
could be applied in unsupervised category learning tasks, in which no trial-by-trial feedback of any kind is
provided. In the typical unsupervised task, observers are told the number of contrasting categories and are
asked to assign stimuli to these categories, but are never told whether a particular response is correct or
incorrect. Free sorting is a similar, but more unstructured task in which participants are not told the number
of contrasting categories (e.g., Ashby & Maddox, 1998). Although unsupervised and free sorting tasks are
ideal for using the stricter criteria to test for implicit learning, so far, the only learning that has been
demonstrated in such tasks is explicit (Ashby, Queller, & Berretty, 1999; Medin, Wattenmaker, & Hampson,
1997).

One danger with equating explicit processing with conscious awareness is that this shifts the debate
from how to define ‘explicit’ to how to define ‘conscious awareness’ . Ashby et al. (1998) suggested that one
pragmatic solution to this problem is to operationally define a categorization rule as explicit i f it is easy to
describe verbally. By this criterion, the rule that separates the categories in Figure 7 is explicit, whereas the
rules best separating the categories in Figures 8 and 9 are implicit. This definition works well i n most cases,
but it seems unlikely that verbalizabilit y should be a requirement for explicit reasoning. For example, the
insight displayed by Köhler’s (1925) famous apes seems an obvious example of explicit reasoning in the
absence of language. So ultimately, a theoretically motivated criterion for conscious awareness is needed.

One way to develop a theory of conscious awareness is by exploiting the relationship between awareness
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4 Crick and Koch (1998) did not take the strong position that working memory is necessary for
conscious awareness. Even so, they did argue that some short-term memory store is required. However,
they left open the possibility that an extremely transient iconic memory might be sufficient.

and working memory. For example, the contents of working memory are clearly accessible to conscious
awareness. In fact, because of its close association to executive attention, a strong argument can be made that
the contents of working memory define our conscious awareness. When we say that we are consciously aware
of some object or event, we mean that our executive attention has been directed to that stimulus. Its
representation in our working memory gives it a moment-to-moment permanence. Working memory makes
it possible to link events in the immediate past with those in the present, and it allows us to anticipate events
in the near future. All of these are defining properties of conscious awareness.

The association between working memory and the prefrontal cortex makes it possible to formulate
cognitive neuroscience models of consciousness. The most influential such model was developed by Francis
Crick and Christof Koch (Crick & Koch, 1990; 1995a; 1998). The Crick-Koch hypothesis states that one can
have conscious awareness only of activity in brain areas that project directly to the prefrontal cortex4. Primary
visual cortex (Area V1) does not project directly to the prefrontal cortex, so the Crick-Koch hypothesis
asserts that we cannot be consciously aware of activity in V1. Crick and Koch (1995a; 1998) described
evidence in support of this prediction. Of course, many other brain regions also do not project directly to the
prefrontal cortex. For example, the basal ganglia do not project directly to the prefrontal cortex (i.e., they first
project through the thalamus), so the Crick-Koch hypothesis predicts that we are not aware of activity within
the basal ganglia. Memory theorists believe that the basal ganglia mediate procedural memories (Jahanshahi
et al., 1992; Mishkin et al., 1984; Saint-Cyr et al., 1988; Willi ngham et al., 1989), so the Crick-Koch
hypothesis provides an explanation of why we don’ t seem to be aware of procedural (e.g., motor) learning.

Category Learning and Memory

The notion that there may be multi ple category learning systems goes back at least to 1978, when
Brooks hypothesized that category learning is mediated by separate "deliberate, verbal, analytic control
processes and implicit, intuitive, nonanalytic processes" (p.207). Nevertheless, most quantitative accounts
of category learning have assumed the existence of a single system (e.g., Estes, 1986a; Hintzman, 1986;
Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1986). Recently, however, quantitative models that
assume multiple category learning systems have been developed (e.g., Ashby et al., 1998; Erickson &
Kruschke, 1998). For example, Ashby et al. (1998) proposed a formal neuropsychological theory of multiple
category learning systems called COVIS (COmpetition between Verbal and Implicit Systems), which
assumes separate explicit (rule-based) and implicit (procedural learning-based) systems. In response to these
multiple systems proposals, Nosofsky and Zaki (1998) and Nosofsky and Johansen (in press) argued that
single system (exemplar) models can account for many of the phenomena that have been used to support the
notion of multiple systems.

Another way to study category learning systems is to emphasize the relationship between category
learning and memory. Of course, every category learning system requires memory. In fact, one could
characterize category learning as the process of establishing some durable record �  that is, a memory �  of the
structure of the relevant categories, or possibly of a rule for correctly assigning new stimuli to one of the
categories. Since much is now known about the neurobiology of memory, this might be a way to learn
quickly about the neurobiology of category learning.

The multiple memory systems that have been proposed each are thought to have a distinct neural basis.
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Cognitive neuroscience models of working memory focus on prefrontal cortex (e.g., Fuster, 1989; Goldman-
Rakic, 1987, 1995), declarative memory models focus on the hippocampus and other medial temporal lobe
structures (e.g., Gloor, 1997; Gluck & Myers, 1997; McClelland et al., 1995; Polster et al., 1991; Squire &
Alvarez, 1995), procedural memory models focus on the basal ganglia (Jahanshahi et al., 1992; Mishkin et
al., 1984; Saint-Cyr et al.,1988; Willingham et al., 1989), and models of the perceptual representation system
focus on visual cortex (e.g., Curran & Schacter, 1997; Schacter, 1994).

In addition, each of the category learning theories described above maps in a natural way onto a
different one of these memory systems. To learn and apply explicit rules, one must construct and maintain
them in working memory. Executive attention is also required to select and switch among alternative rules.
Thus, rule-based theories depend on working memory. Exemplar theory assumes people store and access
detailed representations of specific exemplars they have seen. The declarative memory system seems tailor
made for this type of memory encoding and storage. Indeed, it has specifically been proposed that medial
temporal lobe structures (i.e., the hippocampus) mediate the encoding and consolidation of exemplar
memories (Pickering, 1997). On the other hand, declarative memory retrieval is typically thought to occur
with conscious awareness (e.g., Cohen & Squire, 1980), whereas exemplar theorists are careful to assume
that activation of the exemplar memories does not require awareness (e.g., Nosofsky & Alfonso-Reese, 1999;
Nosofsky & Zaki, 1998; Nosofsky, 1986). 

Decision bound theory assumes people learn to associate abstract response programs (e.g., response
labels) with groups of similar stimuli (Ashby & Waldron, 1999). Thus, the stored memories are of stimulus-
response associations, rather than of rules or previously seen exemplars. This is a form of procedural memory
(Ashby et al., 1998).

The prototype abstraction process assumed by prototype theory is perhaps the most difficult to map onto
existing accounts of memory. The memory of a prototype is durable, so working memory, by itself is
insufficient. Prototype theorists also have been clear that the prototype might not correspond exactly to any
previously seen exemplar, which rules out simple declarative memory. Finally, prototypes are not tied to
responses in any direct way, so procedural memory can also be ruled out. While it is not clear that such a
result is necessary, we will present evidence later that prototype abstraction depends, at least sometimes, on
perceptual learning, and as a result, on the perceptual representation memory system.

It is important to point out that even if multiple memory systems participate in category learning, this
does not necessarily imply that there are multiple category learning systems. For example, it is logically
possible that a single category learning system accesses different memory systems in different category
learning tasks. Such a model could predict double or triple dissociations across tasks. As mentioned in the
last major section, however, such a model also shares many properties with a multiple systems perspective.
As such, it would probably lie somewhere in the middle of the continuum between pure single system and
pure multiple system models. In our view, it would be counterproductive to place a sharp boundary on this
continuum in an attempt to produce a criterion that classifies every model as postulating either single or
multiple systems. Instead the goal, in all areas of learning and memory, should be to understand how humans
perform this vitally important skill. In the case of category learning, understanding what memory systems
are involved is an important first step in this process.

A good example of this blurring between single and multiple systems can be seen with prototype
abstraction. If this process is mediated by a perceptual representation system that depends on perceptual
learning in visual cortex, then it is not clear that prototype abstraction would meet our criteria as a separate
system. When the stimuli are visual in nature, then any category learning system must receive input from the
visual system. If some category learning system X depends on input from the brain region mediating
prototype abstraction, then system X and the prototype abstraction system would not be mediated by separate
neural pathways �  a criterion that we earlier decided was a necessary condition for separate systems. For
example, under this scenario, a double dissociation between system X and the prototype system should be
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impossible. Damage to the neural structures downstream from visual cortex that mediate system X should
induce deficits in category learning tasks mediated by system X, but not in prototype abstraction tasks. On
the other hand, damage to visual cortex should impair all types of visual category learning. Thus, if prototype
abstraction is mediated within visual cortex, then any group impaired in prototype abstraction should also
be impaired on all other category learning tasks. In addition, it should be extremely diff icult, or impossible,
to find neuropsychological patient groups that are impaired in prototype abstraction, but not in other types
of category learning. As we will shortly see, this latter prediction is supported by current neuropsychological
category learning data.

Under the assumption that the category learning tasks described above differentiall y load on different
memory systems, then theoretically, it should be possible to find neuropsychological populations that
establish at least a triple dissociation across the tasks. Ashby and Ell (under review) reviewed the current
neuropsychological category learning data to test this prediction. Presently, there is extensive category
learning data on only a few neuropsychological populations. The best data come from four different groups:
1) patients with frontal lobe lesions, 2) patients with medial temporal lobe amnesia, and two types of patients
suffering from a disease of the basal ganglia �  either 3) Parkinson’s or 4) Huntington’s disease. Table 1
summarizes the performance of these groups on the three different types of category learning tasks.

Table 1. Performance of various neuropsychological populations on three category learning tasks

Neuropsychological
Group

Task

Rule-
Based

Information-integration
Prototype  
Distortion   Many

Exemplars
Few Exemplars

Frontal Lobe Lesions Impaired ? Normal ?

Parkinson’s Disease Impaired Impaired Impaired Normal

Huntington’s Disease Impaired Impaired Impaired Normal

  Medial Temporal Lobe
 Amnesia

Normal Normal
Late Training

 Deficit
Normal

Note first that Table 1 does not establish a triple dissociation. At best, one could argue from Table 1
only for a double dissociation – between frontal lobe patients and medial temporal lobe amnesiacs on rule-based
tasks and information-integration tasks with few exemplars per category. Specifically, frontal patients are
impaired on rule-based tasks (e.g., the Wisconsin Card Sorting Test; Kolb & Whishaw, 1990) but medial
temporal lobe amnesiacs are normal (e.g., Janowsky, Kritchevsky, & Squire, 1989; Leng & Parkin, 1988). At
the same time, the available data on information-integration tasks with few exemplars per category indicates
that frontal patients are normal (Knowlton, Mangels, & Squire, 1996), but medial temporal lobe amnesiacs
are impaired (i.e., they show a late-training deficit -- that is, they learn normally during the first 50 trials or so,
but thereafter show impaired learning relative to age-matched controls; Knowlton, Squire, & Gluck, 1994).
Therefore, the neuropsychological data support the hypothesis that at least two memory systems participate
in category learning. Of course, until more data are collected on the information-integration tasks, this
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conclusion must be considered tentative.
Note also that Table 1 supports the prediction that it should be diff icult to find patient groups that are

impaired in the prototype distortion task, but not in the other types of tasks. We know of no data on the
performance of frontal lobe patients in prototype distortion tasks, but if learning in these tasks is mediated
within visual cortex, then frontal patients should not be impaired in prototype distortion tasks.

If three or more memory systems participate in category learning, then why doesn’ t Table 1 document
a triple dissociation? There are several reasons why a triple dissociation might not be observed in Table 1, even
if multiple memory systems are involved. First, Table 1 is incomplete. There are several cells with no known
data. For example, we know of no data on the performance of frontal patients in information-integration tasks
with many exemplars per category. Conclusions in some other cells are based on very li ttle data. As mentioned
above, this is the case for the late-training deficit reported for medial temporal lobe amnesiacs in information-
integration tasks with few exemplars per category. Second, even with unlimited data in each cell , there is no
guarantee that these are four patient groups appropriate for establishing a triple dissociation. The groups
included in Table 1 were selected because they are the groups for which there is the most current data, rather
than for some theoretical purpose. For example, the ideal groups might each have focal damage to a different
memory system. This condition is surely not met for the Table 1 groups. For example, Parkinson’s and
Huntington’s diseases affect similar structures (i.e., the basal ganglia). Of course, to select groups that satisfy
this condition requires specific hypotheses about the neural structures and pathways that mediate the putatively
separate systems. There are two ways to generate such hypotheses. One is to use Table 1 and recent
neuroimaging results to make such inferences, and another is to examine current neuropsychological theories
of multiple systems in category learning. We follow these two approaches in the next section.

The Neurobiological Bases of Category Learning

Patients with frontal or basal ganglia dysfunction are impaired in rule-based tasks (e.g., Brown &
Marsden, 1988; Cools et al.,1984; Kolb & Whishaw, 1990; Robinson, Heaton, Lehman, & Stilson, 1980), but
patients with medial temporal lobe damage are normal in this type of category learning task (e.g., Janowsky
et al., 1989; Leng & Parkin, 1988). Thus, an obvious first hypothesis is that the prefrontal cortex and the basal
ganglia participate in this type of learning, but the medial temporal lobes do not. Converging evidence for the
hypothesis that these are important structures in rule-based category learning comes from several sources. First,
an fMRI study of a rule-based task similar to the Wisconsin Card Sorting Test showed activation in the right
dorsal-lateral prefrontal cortex, the anterior cingulate, and the right caudate nucleus (i.e., head) (among other
regions) (Rao et al., 1997). Second, many studies have implicated these structures as key components of
executive attention (Posner & Petersen, 1990) and working memory (e.g., Fuster, 1989; Goldman-Rakic,
1987), both of which are likely to be critically important to the explicit processes of rule formation and testing
that are assumed to mediate rule-based category learning. Third, a recent neuroimaging study identified the
(dorsal) anterior cingulate as the site of hypothesis generation in a rule-based category-learning task (Elli ott
&  Dolan, 1998). Fourth, lesion studies in rats implicate the dorsal caudate nucleus in rule switching (Winocur
& Eskes, 1998).

Next, note that in information integration tasks with large categories, only patients with basal ganglia
dysfunction are known to be impaired (Filoteo, Maddox, & Davis, submitted; Maddox & Filoteo, in press).
In particular, medial temporal lobe patients are normal (Filoteo, Maddox, & Davis, in press). So a first
hypothesis should be that the basal ganglia are critical in this task, but the medial temporal lobes are not. If
the number of exemplars per category is reduced in this task to a small number (e.g., 4 to 8), then medial
temporal lobe amnesiacs show late training deficits – that is, they learn normally during the first 50 trials or
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so, but thereafter show impaired learning relative to age-matched controls (Knowlton et al., 1994). An obvious
possibili ty in this case, is that normal observers begin memorizing responses to at least a few of the more
distinctive stimuli – a strategy that is not available to the medial temporal lobe amnesiacs, and which is either
not helpful or impossible when the categories contain many exemplars. Since patients with basal ganglia
dysfunction are also impaired with small categories requiring information-integration (Knowlton, Mangels et
al., 1996; Knowlton, Squire et al., 1996), a first hypothesis should be that learning in such tasks depends on
the basal ganglia and on medial temporal lobe structures. The hypothesis that the basal ganglia are active in
information-integration tasks was supported by Poldrack, Prabhakaran, et al. (1999), who used fMRI to
measure neural activation at four different time points of learning in a probabili stic version of the information-
integration task with few exemplars per category. They reported learning related changes within prefrontal
cortex and in the tail of the right caudate nucleus. Interestingly, they also reported a simultaneous suppression
of activity within the medial temporal lobes. Thus, the available neuroimaging data predict that the deficits of
basal ganglia disease patients in information-integration tasks may arise from dysfunction in the tail of the
caudate nucleus.

Table 2. Brain Regions that Current Neuropsychological Data Implicate in the Various
Category Learning Tasks

  Brain Region

Task

Rule-
Based

Information-integration
Prototype   
Distortion   Many

Exemplars
Few

Exemplars

Prefrontal Cortex X    

Visual Cortex          X

Basal Ganglia X X X  

   Medial Temporal Lobe X  

Finally, none of these four patient groups are impaired on the prototype distortion tasks, which
suggests that learning on these tasks does not depend on an intact medial temporal lobe or basal ganglia
(Knowlton, Squire et al., 1996; Knowlton, Ramus, & Squire, 1992; Kolodny, 1994; Meulemans, Peigneux,
& Van der Linden, 1998). As mentioned above, it has been suggested instead that learning might depend on
the perceptual representation memory system – through a perceptual learning process (Knowlton, Squire et al.,
1996). In the random dot pattern experiments, this makes sense because all category A exemplars are created
by randomly perturbing the positions of the dots that form the category A prototype (see Figure 9). Thus, if
there are cells in visual cortex that respond strongly to the category A prototype, they are also likely to respond
to the other category A exemplars, and perceptual learning will i ncrease their response. If this occurs, the
observer could perform well in this task by responding “yes” to any stimulus that elicits a strong feeling of
visual famili arity. Recent fMRI studies of subjects in prototype distortion tasks show learning related changes
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Figure 11. A model of the explicit category learning
system. Black projections are excitatory, gray
projections are inhibitory, and dashed projections are
dopaminergic. PFC = prefrontal cortex, ACC =
anterior cingulate cortex, Thal = thalamus, GP =
globus palli dus, Cau = caudate nucleus, VTA = ventral
tegmental area, SN = substantia nigra.

in visual cortex (Reber, Stark, & Squire, 1998), and are thus consistent with this hypothesis.
Table 2 summarizes the neural implications of the current neuropsychological and neuroimaging data.

Note that Table 2 is consistent with current theories about the neurobiological bases of memory – in particular,
that the basal ganglia are important in procedural memory, and the medial temporal lobes are critical for
declarative memory. Despite the arguments and evidence in support of the Table 2 conclusions, however, much
more work is needed before Table 2 can be considered more than speculative.

The Explicit System

Several recent neurospsychological theories agree with some of the same conclusions drawn in Table
2. For example, Figure 11 describes a recent neurobiological model of the explicit system (Ashby et al., 1998,
Ashby, Isen, & Turken, 1999). The key structures are the anterior cingulate, the prefrontal cortex, and the head
of the caudate nucleus. Figure 11 shows the model during a trial of the rule-based category learning task
ill ustrated in Figure 7. Various salient explicit rules reverberate in working memory loops between prefrontal
cortex (PFC) and thalamus (Alexander, Delong, & Strick, 1986). In Figure 11, one such loop maintains the
representation of a rule focusing on the shape of the
symbols and one loop maintains a rule focusing on symbol
number. An excitatory projection from the PFC to the head
of the caudate nucleus prevents the globus palli dus from
interrupting these loops. The anterior cingulate selects new
explicit rules to load into working memory, and the head
of the caudate nucleus mediates the switch from one active
loop to another (facili tated by dopamine projections from
the ventral tegmental area and the substantia nigra).

The Figure 11 model is consistent with the
neuroimaging data described in the previous section, and
it accounts for the rule-based category learning deficits
described in Table 1. First, of course, it is obvious that the
model predicts that patients with lesions of the prefrontal
cortex will be impaired on rule-based category learning
tasks. It also predicts that the deficits seen in Parkinson’s
disease are due to dysfunction in the head of the caudate
nucleus. Postmortem autopsy reveals that damage to the
head of the caudate is especially severe in Parkinson’s
disease (van Domburg & ten Donkelaar, 1991), so the
model predicts that this group should show widespread and
profound deficits on rule-based categorization tasks. The
neuropsychological evidence strongly supports this
prediction (e.g., on the WCST; Brown & Marsden, 1988;
Cools et al., 1984). In fact, the model described in Figure
11 predicts that, because of its reciprocal connection to the
prefrontal cortex, many of the well documented “ frontal-
like”  symptoms of Parkinson’s disease might actually be
due to damage in the head of the caudate nucleus.
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Figure 12. A procedural-memory-based category
learning system. Excitatory projections end in solid circles,
inhibitory projections end in open circles, and
dopaminergic projections are dashed. PFC = prefrontal
cortex, Cau = caudate nucleus, GP = globus palli dus, and
Th = thalamus.

The Procedural Learning System

Figure 12 shows the circuit of a putative procedural memory-based category learning system (proposed
by Ashby et al.,1998; Ashby & Waldron, 1999). The key structure in this model is the caudate nucleus, a major
input structure within the basal ganglia. In primates, all of extrastriate visual cortex projects directly to the tail
of the caudate nucleus, with about 10,000 visual cortical cells converging on each caudate cell (Wilson, 1995).
Cells in the tail of the caudate (i.e., medium spiny cells) then project to prefrontal and premotor cortex (via the
globus palli dus and thalamus; e.g., Alexander et al., 1986). The model assumes that, through a procedural
learning process, each caudate unit learns to associate a category label, or perhaps an abstract motor program,
with a large group of visual cortical cells (i.e., all that project to it). This learning is thought to be facili tated
by a reward mediated dopamine signal from the substantia nigra (pars compacta) (e.g., Wickens, 1993).

Lesions of the tail of the caudate, in both rats and monkeys, impair the abili ty of the animal to associate
one motor response with one visual stimulus and a different response with some other stimulus (e.g., vertical
versus horizontal li nes; McDonald & White, 1993, 1994; Packard et al., 1989; Packard & McGaugh, 1992).
For example, in one study, rats with lesions in the tail of the caudate could not learn to discriminate between
safe and unsafe platforms in the Morris water maze when the safe platform was marked with horizontal li nes
and the unsafe platform was marked with vertical li nes (Packard & McGaugh, 1992). The same animals
learned normally, however, when the cues signaling which platform was safe were spatial. Because the tail of
the caudate nucleus is not a classic visual area, it is unlikely that these animals have an impaired abili ty to
perceive the stimuli . Rather, it seems more likely that their deficit is in learning the appropriate stimulus-
response associations. The Figure 12 model predicts that this same type of stimulus-response association
learning mediates performance in the information-integration category learning tasks described in Figures 8
and 9 .

The Figure 12 model accounts for the
category learning deficits of Parkinson’s and
Huntington’s disease patients in information-
integration tasks because both of these
populations suffer from caudate dysfunction. It
also explains why frontal patients and medial
temporal lobe amnesiacs are relatively normal
in these tasks – that is, because neither
prefrontal cortex nor medial temporal lobe
structures play a prominent role in the Figure
12 model.

The model shown in Figure 12 is
strictly a model of visual category learning.
However, it is feasible that a similar system
exists in the other modali ties, since they almost
all  also project directly to the basal ganglia,
and then indirectly to frontal cortical areas
(again via the globus palli dus and the
thalamus; e.g., Chudler, Sugiyama, & Dong,
1995). The main difference is in where within
the basal ganglia they initially project. For
example, auditory cortex projects directly to
the body of the caudate (i.e., rather than to the
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tail ; Arnalud, Jeantet, Arsaut, & Demotes-Mainard, 1996).

The Perceptual Representation and Medial Temporal Lobe Category Learning Systems

No one has yet proposed a detailed category learning model that is based on the perceptual
representation memory system. However, as noted above, based on work in the memory li terature, it seems
likely that such a category learning system would be based in sensory cortex (Curran & Schacter, 1996;
Schacter, 1994).

In cognitive psychology, one of the most popular and influential theories of category learning is
exemplar theory (Brooks, 1978; Estes, 1986b; Medin & Schaffer, 1978; Nosofsky, 1986), which assumes that
categorization decisions are made by accessing memory representations of previously seen exemplars. Although
most exemplar theorists have not taken a strong stand about the neural basis by which these memory
representations are encoded, those who have assume that the medial temporal lobes are heavily involved (e.g.,
Pickering, 1997). Despite the popularity of exemplar theory within cognitive psychology however, the most
convincing direct neuropsychological evidence in support of a key role of the medial temporal lobes in category
learning remains the late-training deficit identified in Table 1 (Knowlton et al., 1994). Even so, this finding is
not without controversy, since a recent neuroimaging study found suppression of medial temporal lobe activity
in this same task (Poldrack, Prabhakaran et al., 1999). Although many neurobiological models of hippocampal
function have been proposed, there have been only a few attempts to apply these models to category learning
(Gluck, Oliver, & Myers, 1996; Pickering, 1997).

Summary

Although hotly debated, the question of whether human category learning is mediated by one or several
category learning systems is currently unresolved. Recent neuropsychological and neuroimaging data support
the hypothesis that different memory systems may participate in different types of category learning tasks, but
there is li ttle current data that allow stronger conclusions to be drawn.

IV. Conclusions

The debate as to whether learning and memory is mediated by one or several distinct systems is being
waged in many areas of cognitive psychology. Although the setting of these debates differs – from memory to
function learning to discrimination learning to category learning – there are a number of common themes that
tie all these debates together. First, the methodologies that are most appropriate for testing between single and
multiple systems are the same no matter what the domain. For example, the fixed-point property and double
dissociations are powerful tools that can (and should) be used in any area trying to resolve this issue. Second,
regardless of the field, it is unrealistic to expect any single study to resolve the single versus multiple systems
debate. Instead, it is imperative that all available evidence be evaluated simultaneously. For example, given
three data sets that all seemingly point toward multiple systems, it is not valuable to show that there exists three
different single-system models that are each consistent with one set of data. The important question is really:
does the single model that best accounts for all three data sets simultaneously postulate one or multiple systems
of learning and memory? Third, all fields engaged in the single versus multiple systems debate should look
seriously toward cognitive neuroscience as a way to add more constraints to the existing models, and as a
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mechanism for building bridges to other related areas of cognitive psychology.
In our view, however it is resolved, the single versus multiple systems debate is likely to prove a

valuable experience for whatever field engages it. The benefit of asking whether there are single or multiple
systems of learning and memory is that this question organizes new research efforts, it encourages collecting
data of a quali tatively different nature than has been collected in the past, and it also immediately ties the field
in question to the memory li terature and a variety of other seemingly disparate li teratures. The one danger that
must be resisted is engaging in endless debate about what constitutes a system. One’s definition of system will
obviously affect how the single versus multiple systems question is answered, but the process of asking, and
all i ts associated benefits, is far more important than the answer itself.
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