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Single Versus M ultiple Systems of L earning and Memory
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Many areas in cognitive psychology are aurrently debating whether learning and memory are
mediated by one or more functionall y distinct processng systems. Included in thislist arethefields
of memory, category learning, function learning, discrimination, and reasoning. Within each field,
many of the multi ple systems accounts have hypothesized at least two similar systems: an expli cit
system that is rule-based, and an impli cit system that operateslargely without conscious awareness
This chapter explores the debate between single and multiple systems. The focus is on the
methodol ogiesthat have been proposed for testing between thesetwo positi ons. In particular, we ask
the following questions: 1) What congtitutes a separate system? 2) What is the appropriate way to
resolve this debate empirically?, and 3) What are the best empirical methodologies for testing
between single and multi ple sysems? Findlly, as amodel of this debate, we focus on the question of
whether human category learning is mediated by single or multi ple systems.

One of the most hatly debated current isaues in psychdogy and reuroscienceis whether human learning
and memory is mediated by a singe processng system or by multiple qualitatively distinct systems. Although
it is now generally acoepted that there are multiple memory systems (Klein, Cosmides, Tooby, & Chance, in
press Squire, 1992 Schacter, 1987 Mishkin, Malamut, & Bachevalier, 1984 Zola-Morgan, Squire, &
Mishkin, 1982 Cohen & Squire, 1980 O’'Kede & Nade, 1978 Gaffan, 1974 Hirsh, 1974 Corkin, 1965,
thisisaueis far from resolved in the case of learning and dher cogntive processes. Even so, arguments for
multiple systems have been made in such dverse fidds as reasoning (Sloman, 1996, motor learning
(Willi ngham, Nissen, & Bullimer, 1989, discriminationlearning(Kender & Kender, 1962), functionlearning
(Hayes & Broadbent, 1988, andcategary learning (Ashby, Alfonso-Reese, Turken, & Waldron, 1998 Brooks,
1978 Erickson& Kruschke, 1998. Interestingy, many d these papers havehypothesized at |east two simil ar
systems: 1) an explicit, rule-based system that is tied to language function and conscious awareness and 2)
an implicit system that may na have acoessto conscious awareness In many cases, there has been resistance
to these proposals, anda number of researchers haveresponded with papers arguingthat singe system modds
can acoount for many o the phenomena that have been used to support the nation d multiple systems
(Nosofsky & Johansen, in press Nosofsky & Zaki, 1998 Poldrack, Selco, Field, & Cohen, 1999.

This chapter explores the debate between singe and multiple systems. Thefocusis onthe mehodloges
that have been proposed for testing between these two positions. Thus, rather than attempting to resolve the
debate by arguing for one position a ancther, our goels are to answer the following questions: 1) What
constitutes a separate system? 2) What isthe appropriate way to resolvethis debate empiricaly?, and 3) What
are the best empirical methoddoges for testing between singe and multiple systems? Many o the diff erent
areas currently engaged in the singe versus multiple systems debate use simil ar methoddogesto test between
these two gpposing arguments, and as mentioned above, they have all postulated similar explicit and implicit
systems. For this reason, a detail ed study o the debate in ore area will most likely benefit the other areas as
well. Thus, in the last mgjor section, as a modd of this debate, we focus on the question d whether human
categary learningis mediated by singe or multiple systems.

! Preparation of this article was supported by grant BCS99-75037 f rom the National Science
Foundation. Correspondence concerning this article should be addressed to F. Gregory Ashby, Department
of Psychology, University of California, Santa Barbara, 93106, USA. Email: ashby@psych.ucsb.edu.
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I. What Is A System?

Before one can examine methods for testing between singe and multiple systems, one must first decide
what is meant by a separate system. This question turns out to be as difficult as any that we will examinein
this chapter. This is because all tasks in which we are interested are performed somewhere in the brain, and
at orelevd, thebrainis part of asingesystem (e.g., thecentral nervous g/stem). At theother extreme, astrong
argument can be made that each singe cdl, or even each singeion channd, forms its own system. So there
isacontinuum of leves, from macroscopic to microscopic, at which a system could be defined. It seems clear
however, that thelevel chasen should match thetask in question. Thus, amore macroscopic systemisrequired
to learn a new category of automobil es than to detect a Sinewave grating d a certain arientation. In the latter
case, one could reasonably ask whether a column o celsin visual cortex defines the system, whereas in the
former casethisis clearly too reductionistic.

Given that an appropriate level andtask are sdected, what criteria should we useto decide whether some
modd postulates one or more systems? Suppose we have a modd with two modules S; and S,. The question
is: do S, and S, define separate systems, or should they be viewed as two components of a singe system? We
believethereis nosinge criterionthat can be used to answer this question. Instead, we propose a hierarchy o
criteria—from the mathematical to the psychdogcal to the neurobiological. Two modules that med all these
criteria are clearly separate systems. Modules that med none of the criteria clearly do nd constitute separate
systems, and modules that med some, but nat al the criteria ae in some ambiguous gray region alongthe
singe system - multiple system continuum.

Supposethe modd for S, is characterized by a set of parameters denated by the vector 8, and the mode
for S, is characterized by the parameters 0,. For any specific set of numerical values of 8, and 0,, the models
of S; and S,, respectivey, each predict a certain probability distribution of the relevant dependent variable,
whatever that might be. Denote these probability distributions by f,(x|0,) and f,(x|0.), respectively. As the
numerical values of 8, and 0, change, these predicted probabili ty distributions will also change. Therefore, let
{f.(x|08,)} and{f,(x|0,)} denatethesat of all possible probabili ty density functions that can be generated from
the S, and S, modds, respectivdy (i.e., any numerical changein 0, or 0, creates a new member of these sets).
Then a mathematical criterion for S, and S, to be separate systems is that {f,(x|0,)} and {f,(x|0,)} are nat
identical, and reither is a subset of the other. In ather words, the moddls of S, and S, are nat mathematically
equivalent and oreis na a specia case of the other —i.e., they each make at least some unique predictions. If
the modds were completely mathematicall y equivalent, so noexperiment could ever berun that could produce
data that might diff erentiate the two, then it is difficult to seehow they could qualify as sparate systems.

Note that an implicit assumption d this definition is that S, and S, each make predictions about
observable behavior (sincethey each predict some probabili ty distribution ontherdevant dependent variable).
This itself, is a stringent requirement that diminates many posshle modds. For example, signal detection
theory postulates ssparate sensory and decision processes, each described by its own parameter (d'° and X,
respectively). But either process by itsdlf, isincapable of making predictions about behavior. Instead, thetwo
subsystems are assumed to always work together to produce a behavioral response. As such, standard signal
detectiontheory isasingesystemtheory, eventhoughit postulates functionall y separate sensory and decisional
subsystems.

At the psychological leve, to qualify as sparate systems S, and S, should postulate that diff erent
psychdogcal processs are required to complete the task in question successully. For example, a multiple
systems account of categary learning might postulate separate prototype abstraction and rule-based systems,
but amodd that proposed two diff erent prototype abstraction processes might be better described asasinge
system modd. This criterionwould also apply the singe system labd to a theory that postulated two separate
signal detection systems, one say, with a more efficient sensory processand the other with a more dficient
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decision process Thisis becauseboth systemswould postulate similar (but nat identical) sensory and decision
processes that are active onall trials.

At the neurobiological level, separate systems dould be mediated by separate neural structures or
pathways. In most cases, there will be widespread agreament within the field o neurobiology about whether
apair of structures are part of the same or diff erent systems, so this criterionshould usually be straightforward
totest. Within cogritive psychdogy, this should bethe gdd standard for establishingthe eistence of separate
systems. Itishighly likely that if the neurobiological condtionis met, then the psychdogical and mathematical
condtions will also be met. However, it is very easy to find examples in which the reverse implication fail s.
For example, one could easily construct two dfferent exemplar-based category learning modds that are
mathematically identifiable (i.e., so the mathematical condtionis met), but that postulate the same processof
accessng categary exemplars and computing their simil arity to the presented stimulus, andtherefore are also
mediated by the same neural structures and pathways.

Just asthetheoretical criteriafor the istenceof separate systems can beformulated at several diff erent
levels of analysis, so tooisit vitally important to appeal to converging erations when empiricdly testing
betweean singeandmultiplesystems of learningandmemory. It isextremdy unlikey that any singe experiment
will yield data that definitively decides the question d whether there are singe or multiple systems in any
specific area of learning a memory. For any singe set of data that purportedly supports the existence of
multiple systems, for example, it is highly likely that a clever researcher will be able to construct a singe
system modd that can acoount for those data. Thus, it is vital that when evaluating any new modd, whether
it postulatesingeor multiplesystems, datais considered from many dff erent experimental paradigms. Ideally,
such data would comefrom several diff erent levels of analysis—includingbehavioral neuroscience, traditional
cognitive psychdogy, as well as cogritive neuroscience and reuropsychdogy.

I1. Specific Methodological Tests of Single Versus M ultiple Systems

A formal investigation d the dficacy of various methods for testing between singe and multiple systems
of learningand/or memory requires morestructurethan our previous discusgons. Consider an experiment with
several different condtions in which the dependent variable on condtioni is denated by the randam variable
X;. Denate the probabili ty density function (pdf) of X; in condtioni by g(x). As concrete examples, X, and
X, might be the response times (RTs) from an experiment with two dff erent condtions that load on dff erent
putative memory systems, or they might bethe number of trials required to reach somecriterionaccuracy leve
inthis same experiment. In the former case, g;(X) might be the RT distribution produced by a singe subject in
condtioni, but in the latter case g;(X) would be the trials-to-criterion dstribution acrossa group of subjects
whoall participatedin condtioni (i.e., because each subject produces many RTs, but only orevaluefor trials-
to-criterionin each condtion).

Next consider an arganism with two separate memory systems, either of which might be sufficient to
complete the experimental task by itself. Let X ,; and Xg; denate the value of the dependent variable ontrials
when condtion i is completed by systems A and B, respectively, and let fo(x|i) and fg(x|i) denate their
respective pdfs. The pdf g(x) is the distribution d observable data values and so it can always be estimated
directly. Aswewill see however, whether the pdfsf,(x|i) andfg(x|i) can be estimated drectly depends onthe
modde we asume.

Inthis sction, wewill consider threediff erent types of multiple systems modds. Inthe strong moded, the
observer usssorly system A in experimental condtion 1, and orly system B in experimental condtion2. Thus,

6(x) = fa(x[1) and g(x) = f5(x|2). D
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Theasaumptionthat diff erent systems are used in the two tasks has been call ed sel ective influencein thesinge
versus multiple systems literature (Dunn & Kirsner, 1988, after a similar assumption in the response time
literature that was identified by Sternberg (1969. Almost all of the formal analysis of methoddogdies that
purport to test between singe and multiple systems (e.g., double dissociations) are based onthis grongmodd.

In practice however, it seems possble that both systems would contribute to performance in both
condtions, with the reative contributions of systems A and B varying from condtion 1 to condtion 2. For
example, explicit memory systems may cortributeto performance on putativeimpli cit memory tasks (and vice
versa). Thereare two dovious modds of how this division d labor might procead. In the mixture model, the
observable response is determined by a singe system on each trial, but memory system A determines the
response on some trials and memory system B determines the response onthe remainingtrials. Let p, denate
the probabili ty that memory system A determines the responsein condtioni. Then the mixture modd predicts
that the observable pdf is a probabili ty mixture of the two component pdfs — that is,

g () = pi fax]i) + (1 - p) fa(x]i). )

Thethird posghility that we will consider is that both systems contribute to the observable response on every
trial. In fact, in the averaging model the observable dependent variable is a weighted average of the outputs
of the two component systems. In particular,

Xi =1 X+ (1-17) Xgj, (©)

where 0 < r; <1 is the weight given memory system A in condition i. The observable pdf is found from a
generalization of the so-called convolution integral:

0,00 = oy [ 107 Baw, (@)

where f(xa,Xg|i) isthejoint pdf of X, and Xg;.

Equations 2 and 3 areinasimilar form, but mathematically their behavior is very different. For example,
suppose systems A and B can both complete task i, but that system A is much better adapted to performing
thistask than system B. Then f,(x|i) and fg(x|i) will have very different means. In the mixture modd, thiswill
be obvious because on trials when the observer uses system A, RT will be short, but RT will belong on trials
when the observer uses system B. Infact, if the A and B means arefar enough apart, then the observable pdf,
g(x), will be bimodal. However, in the averaging mode the observer does the same thing on every trial, and
as aresult, RT will always be of intermediate value and g,(x) will therefore be unimodal. For these reasons,
mixturemoddswill generally be easier to discriminate from single system models than will averaging modds,
which like single system models assume observers do the same thing on all trials.

The Fixed-Point Property of Binary Mixtures

An obvious signature of a mixture modd would be a bimodal pdf (in the case of binary mixtures).
Unfortunatdly, mixture models will produce unimodal pdfs unless the component distributions are far apart.
Thus, it is important to find some other less obvious signature left by mixture modds. A solution to this
problem was discovered more than 30 years ago.

The issue of whether choice RT was mediated by a mixture model or a single system moded achieved
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intense scrutiny during the 1960s and 1970s (e.g., Falmagne, 1968 Falmagne & Theios, 1969; Lupker &
Theios, 1977, Townsend & Ashby, 1983 Ydlott, 1969 1971). Theinterest was generated by Ydlott’s (1969
proposal that some proportion d responses in speaded choice tasks were simple guesses, and thus the
observable RTs were a mixture of fast guesses and slower times from trials when complete processng
occurred. Inresponse, Falmagne (1969 proposed aclever test of mixture models that he call ed the fixed-point
property. Consider a special case of Equation 2 in which the mixture probability p, varies across the
experimental condtions (i.g,. varies with i), but the component system pdfs do nd —that is,

fa(x|i) = fa(X) and fz(x|i) = fz(x), for all valuesof i.

In each experimental condtion, all we can estimate, of course, is the observable pdf, g(x). The fixed-point
property of binary-mixtures gatesthat all such mixtures must intersect at the sametimepoint, if they intersect
at all (Falmagnre, 1968.

Figure 1 shows examples of g,(x) when the component pdfs, f,(x) andfg(x), are each namal distributions
with equal variance, and the mixture probability p; varies across condtions from 0.2 to 0.8. Note that the
resulting pdfs (which arenat themsdvesnarmal) all i ntersect at the point x = 0.5. Althoughit is mathematically
posdble that a singe-system modd could coincidentally mimic this result, such a possbility seams highly
unlikely, so a set of empirical pdfs that satisfy the fixed-point property should be taken as grongevidence of
multiple systems. On the other hand, the converse result is much weaker. There are many reasons why the
mixture modd might fail to dsplay the fixed-point property, so datainwhich thefixed-point property fails do
not constitute strongevidence against the mixture modd . For example, it might be the case that the component
pdfs change acrosscondtions, in addtion to the mixture probabili ty p;.

The fixed-point property has nat been used to test for singe versus multiple systems of learning a
memory, but thereis noreason, in principle, why it could nd. For example, consider the category structures
shown in Figure 2. Suppase a researcher believes that learning d these structures will depend heavily on
memorizationwhen thereare only afew exemplars per category, but asthe number of exemplarsisincreased,
observers begin learning and applying a more abstract rule. This dual-system hypothesis could be tested via
the fixed-point property. For example, consider the stimulus labedled T in Figure 2. Note that this gimulus
appearsin every condtion. Supposethe condtions are
ordered so that the small est categaries arelearned first 0.4r

and more exemplars are successvely added (so the | T —la
order isFigure 2a- 2b- 2c). In each condtion, enough ' /o NN | bt
data is collected to estimate the RT distribution for 03f /’;/ Y
stimulus T. If thetheory isright, then in Figure 2a, the 0.25] S N

RT distribution for stimulus T will be determined /0y \g\
primarily by amemorizationstrategy andin Figure2c 5 °*[ " VA

by applying an abstract rule. If during the transition, 0.5 // \ \

the observer intermixes trials in which the response to ol / Y. \
stimulus T is generated by thesetwo systems, then the Y NN
stimulus T RT distributions acrosscondtions should ~ °% P \\
satisfy the fixed-point property. o= == ‘

Figure 1. Examples of probability density functions that
satisfy the fixed-point property (seetext for detail s).



Single Versus Multiple Systems

In this case, dual systems are supported if the
observable RT pdfs all intersect at the same point.

a) 600

b) 600

+ T

: ; ; T 400 * T 400 =t
Un_fortunately, the\_/er, |_f t_hey do na satisfy the fixed- S rﬁ&a;fo %0
point property, it is difficult to draw any strong & o o £ 200 o%

conclusions. Recall that a necessary condtion for the
fixed-point property to hdd is that fA(x|i) = fA(x) and
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fg(x|i) = fzg(x) —in aher words, the component system ¢ soo
pdfs for thetimeto categarizestimulus T arethe samein
all threecondtions siown in Figure 2. This is a strong
asumption that could fail for a variety of reasons. For
example, the rule-based system might use a dlightly .

different rule in the three conditions. There is much ° Dmensint
evidencethat categarizationRT is srondy affectedby the rigre 2. Example of category structurestowhich the
distance from the stimulus to the category boundary fixed point property might be applied. & A
(Ashby, Boynton, & Leg 1994 Maddox, Ashby, & memorization strategy may be utilized to learn this
Gottlob, 1998), so if the boundary (i.e., rule) changes, structurewith few exemplars. However, asthe number
then thedistancebetween T and theboundary will change, of exemplars increases (in b and c), it seems more
and so will the time it takes the rule-based system to likely that an abstract rule may be applied.
categorize stimulus T. Similarly, it may be that the

memorization system slows dowvn when the number of

exemplars that must be memorized increases. This would cause the pdf from the memorization system to
change (i.e., moveto theright) as more stimuli are added from one condtion to the next.

+ Category A
O Category B
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600

Double Dissociations

The most widdly used current method for establishing that there are multiple systems of learning a
memory isto finda double disociation between two tasks that load diff erently onthe two systems. Many such
examplesexist. To nameone, severa studies havefoundthat ratswith lesions of thetail of the caudate nucleus
areimpairedin visual discriminationlearningbut nat in spatial learning, whereasrats with lesionsto thefornix
(the output structure of the hippocampus) show the A
opposite pattern — namely, they are impaired in spatial
learning but are normal in visual discrimination learning
(Packard, Hirsch, & White, 1989 Packard & McGaugh,

1992 McDonald & White, 1994. An example of the st
pattern o results one would expect in such a situation is criterion
given in Figure 3. Note that the dependent variable is
trials-to-criterion.

Thereare severa properties of the Figure 3 results
that are necessary for them to qualify as a double
dissociation aterm first coined by Teuber, 1955. First,
the interadion must be of the cross-over type. A non
crossoverinteradion dees not qualify as a doulde . . .
dissociation, no matter what its level of statisticd Sils?;rcieat?bn Eé%;?'fw;ﬁilzﬁimé?gﬁe(;?rl:i?:g

significance.This is because it is relatively eay for gg spatial learning for two different types of lesions
single system models to acourt for NON-CrosOVer (il of the caudate nucleus or fornix).

I Caudate Lesion
fz27} Fornix Lesion

—>

Spatial
Learning

Visual Discrimination
Learning
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interactiongthisis demonstrated below). Semnd, the qossover interadion must come from measuring the
same dependent variable in two different tasks. Thus, a crosgateradion, by itself is not sufficient to
gualify as a doulde dissciation. Again, this is because it is draightforward for single system models to
accountfor crossover interadions in 2 x 2 designs when only one task is used and dfferent dependent
variables are measured (more detail on this is provided later in this section).

A third condtion, which is nat strictly necessary but gredly strengthens the agument that a doulle
dissociation supports multipkystems, is that the two groups in the experiment ead are representative of
somehamogeneous popuation. In the Figure 3 example, the sameresults would be assumed to hdd for any
groupof rats that recéved these same lesions. McCloskey (1993 in particular, has forcefully argued this
point. Of the phrase "homogeneous popuation”, both words areimportant. For example, McCloskey (1993
showedthat spurious conclusions are possble (or perhaps likdly) if ead group contains a mixture of
observerswith dff erent types of lesions. Thishomogeneity requirement makestheinterpretation d adoute
dissociatiorespedally problematic if ead groupcomprises humanswho have suff ered some particul ar type
of lesion. Sincehuman lesions are generaly the result of acddent or stroke, notwo are dike. For example,
they are often urilateral and dona resped the neuroanatomica boundaries established by Broadman and
others.From this perspedive, neurodegenerative disease groups (e.g., Parkinson's disease) are probably
better candidates for doule dissociation studies, but even in Parkinson's disease there is widespreal
individual difference in the neuroanatomicd locus and extent of damage (e.g., van Domburg & ten
Donkelaar,1991). For thisreason, it isimpaortant that, whenever possble, any doube dissociations reported
in humans are replicated in nonhuman animals under more controlled conditions.

Theterm "popuation” in the phrase "homogeneous popuation' is equaly important. For example,
supposene of our groupsis hormal, hedthy, adult humans, and that a single neuropsychad ogicd patient is
discoveredvho, when defined asthesecond goup, produces datathat satisfiesadouldedissociation. Several
researcherbave anphasized the dangers in attempting to make inferences from such data (e.g., Shalice,
1988 Van Orden, Pennington, & Stone, in presg. For example, sincewe have no datafrom this particular
patientbeforehisor her neurologicd trauma, we do nd know whether the patient would have produced these
idiosyncraticdatabeforethetrauma, andthus, that the peauliar data aetheresult of the neurologicd damage.
Whenone samplesfrom any variable popuation, eventuall y an extreme outli er isencountered that might not
be representative of any existing population.

Anotherpopuar argument against doulle dissociation logic isthat it leads to the @mnclusionthat there
aretoomany functionall y separate systems (e.g., Van Orden et a., in press. For example, consider two tasks
- both are YES/NO detection tasks where the sighal is asine wave grating and the noiseisauniform field.
In the first task, however, the frequency of the signal grating isf, degrees and in the second task the signal
has frequency f, degrees. Our two groups are animals with lesions to specific spatial frequency columnsin
primary visual cortex. Group 1 has alesion to columns sensitive to spatial frequencies centered at f; degrees,
and Group 2 has alesion to columns sensitive to frequencies centered at f, degrees. This experiment should
produce a double dissociation, so the standard conclusion would be that there are separate systems for the
detection of gratings of f, and f, degrees. Furthermore, if we repeat this experiment with other frequencies,
wewill haveto conclude that anumber of other such systems also exist. In asense, our logicis correct since
visual psychophysiologists often treat different cortica columns (or hypercolumns) as separate (mini)
systems. On the other hand, from the perspective of cognitive psychology this conclusion seems too
reductionistic. Cognitive psychologists might be satisfied to learn, for example, only that there are separate
systemsfor spatial frequency and orientation perception. At thispoint, any moredetail would just overwhelm
theory development.

From a practica perspective, the problems arise in our hypothetical detection experiment because the
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two tasks are so similar?. According to standard signal detection theory, they require the same sensory and
decision processes. Therefore, a practical solution to the problem is to use current theory regarding the
function of the postulated systems to aid in selecting the tasks to be used in the double dissociation
experiment. In particular, two tasks should be used only if there is current theoretical debate as to whether
they are mediated by one or more separate systems.

In the remainder of this section, we formally examine the validity of claims that adouble dissociation
is strong evidence for multiple systems. We assume throughout this discussion that the double dissociation
was produced in an experiment that satisfies al of the guidelines described above (and avoids the pitfals).

To begin, consider the strong multiple systems model described in Equation 1. Suppose system A is
based in the hippocampus (e.g., the fornix) and specializesin spatial memory tasks and system B is based
in the caudate nucleus and specializes in visua discrimination tasks. Denote the pdf of system A in the
spatial memory task when the fornix is lesioned by f,'(x|S), and the pdf of system B in the visual
discrimination task when the caudate is lesioned by f;'(x| V). Such lesionswill impair the two systems. We
can document this by assuming that lesions affect the entire pdfs. Specificaly, we assume that the
performance of system A in the normal and lesioned groups is related via

P(X, < X) > P(X," < X), for all values of x. (5)

Thesetwo functionsare called the cumul ative probability distribution functions, denoted by F,(x) and F,'(x),
respectively, so Equation 5 is equivalent to

FAa(X) > FA'(x), for al x. (6)

Similarly, we assume
Fa(¥) > F5'(%), for all x. (7

Note that the orderings specified by Equations 6 and 7 guarantee that the means will aso be ordered
(although in the reverse direction - i.e., lesions will increase mean trials-to-criterion). Figure 4a presents
hypotheticd cumulative distribution functions (Ieft) and the relative ordering of the means (right) predicted
by Equations 6 and 7.

Let G,,(x) denote the cumulative distribution function of trials-to-criterion for group J (J=F or C for
fornix or caudate lesions) intask | (I = Sor V for spatial memory or visua discrimination). We assume that
this function provides a compl ete description of the dependent variable of interest (e.g., trials-to-criterion).

In this strong multiple systems model, the observable cumulative distribution functions in the four
conditions are:

Spatial Memory Task Visual Discrimination Task
Fornix Lesion Gs(¥) = F,'(x]9) Gye(¥) = Fg(x|V)
Caudate Lesion Goc(®¥) = FA(X|S) Gyc(¥) = F5'(x|V)

2 In fact, one might easily argue that they are so similar that they should be considered the same task, a
conclusion that would violate our earlier condition that two different tasks are needed to test for a double
dissociation.
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Equations 6 and 7 guarantee that this model produces the cross-over doubl e dissociation. Figure 4b presents
agraphical example of these orderings.
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Figure 4. Cumulative distribution functions (Ieft) and means (right) in four conditions of a hypothetical experiment
(seetext for details). @) Orderingsinduced by Equations 6 and 7. b) Predictions of the strong multiple syssems model.
¢) Predictionsfor asingle system model that satisfies Equation 8 (i.e., fornix lesionsare more detrimental than caudate
lesions).

Next, consider what a single system mode predicts in this experiment. Even if the same system is used
on every trial of all conditions, that system might not be equally suited to the two types of task, and the two
types of lesions might not inflict the same amount of damage to the system. With these caveatsin mind, single
system moddls predict:

Spatial Memory Task Visual Discrimination Task
Fornix Lesion Gs(X) = F£(X|9) Gve(¥) = F(X|V)
Caudate Lesion Gsc(X) = FS(X|S) Gve(®¥) = FJ (x| V)

where the subscripts F and C refer to the fornix and caudate, respectively. Now, if the fornix lesion causes
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more damage to the system than the caudate lesion, then we assume that the ability of the system to perform
in any task is poorer with fornix lesions than with caudate lesions. Thus,

FS(X|S) > F¢(x|S) and FJ' (x| V) > FZ (x| V), for all x.
(8

Similarly, if the caudate lesion causes more damage, then
FL(X|S) > FJ(x|S) and F (x| V) > FJ (x| V), for all x. 9)

In either case, thereis no crossover interaction and therefore, no dauble dissociation (seeFigure 4c for an
example of the Equation 8 predictions).

Thereare several pointsworth nding here. First, evenif Equation8 or 9 hdds, aninteractionispossble
in the singe system nodd — only a crossover interaction is precluded. Addtive dfects (i.e., nointeraction)
would occur only if the deleterious €eff ect of the more damaginglesionwas exactly the samein both tasks. This
might occur, but thereis noreasonit should be expected.

Second this analysis makes it clear that a singe system modd can predict a double dissociation if
Equations 8 and 9 both fail -- that is, if the deficit is more severe with thefirst lesionin oretask andwith the
secondlesionin the other task. For example, singe system modds predict a double dissociation if

FS(X|S) > F¢(x|S) and F (x| V) > FJ (x| V), for all x. (10

This point was noted by Dunn and Kirsner (1988, who called Equation 10 a negative relation between the
tasks. With lesion data, it is difficult to imagine how this might occur in a true singe-system nodd. One
possbili ty though, isthat the singe system is composed o several subsystems — one of which is knocked out
by fornix lesions and anather by caudatelesions. A doubledissociation could result if the subsystem damaged
by thefornix lesionwas moreimportant in the spatial memory task and the subsystem damaged by the caudate
lesion was more important in the visual discrimination task. There are several problems with this senario,
however. First, if the subsystems are arranged in series, with the output of one serving as the input for the
other, then it is nat clear that a double dissociation would result. Damage to the upstream subsystem would
cause poar performance on both tasks because theinput to the downstream, undamaged subsystem would be
corrupted. Ontheother hand, damageto the downstream subsystemwould aff ect performanceonly on onetask,
because the input and procesgng in the upstream subsystem would be unaff ected by such alesion. Thus, the
only way the double dissociation is guaranted is if the two subsystems operate in parallel. Such a parall e
system, however, shares many properties with multiple systems, so it is unclear that its existence should be
taken as support for a singe system.

If diff erent dependent variables areused for thetwo groups, thenit becomeseasy for singesystem nodds
to predict crossover double dissociations. For example, consider the hypothetical categorization RT data
shown in Figure 5a. In this experiment, subjects must decide whether each presented stimulusis or isnat a
member of category A. Figure5ashows mean RT for “A” and“nat A” responses asafunction d the simil arity
between the stimulus and the category A prototype. Thesedata ae easily predicted by a sinde system nodd
that assumes subjects compute the similarity of the stimulus to the category A prototype, and then compare
this smilarity to a criterion. Simil arities above the criterion dicit an “ A” response and simil arities below the
criteriondicit a “nat A” response. Such a modd predicts the Figure 5a data if the timeto determine whether
the simil arity is above or below criterion decreases with the magnitude of the diff erence between the simil arity
andthe criterion. Clearly, in such a case, it would be a mistaketo infer from Figure 5a that there are separate
systemson“A” and“nat A” trials.
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From the perspective of double dissciation logc, ) A

there are several problems with the Figure 5a example.

First, there are neither two groups nor two tasks. Instead,

the Figure 5a data are from one group of subjectsin ore

task. Second datafromtwo dff erent typesof responseare
plotted in Figure 5 — RT for “A” responses and RT for RT
“nat A” responses. Notethat this contrasts with thedouble
dissociation shown in Figure 3, in which the response is

the same in al condtions. In Figure 5a, data from one
experimental condtion are divided into two categories
(according to the response given). Then a variable is ; —
constructed (simil arity-to-prototype) that subdividesthese Similarity to Prototype
two categories in such away that a crossover interaction

ocaurs. It is important to nde, however, that other

variables could be defined that subdivide the categories  b) A
differently, andfor which theinteraction might disappear.

For example, the same data ae replotted in Figure 5b
against the variable “psychdogcal distance to category
bound.” RT

If performance in some task is mediated by a singe
system, then it is natural that there may exist negative
relations between dff erent kinds of responses, or diff erent
dependent variables(e.g., spead versusaccuracy). Clearly,
it would be amistaketo apply dauble dissociationlogic to
acrossover interactionin such a case.

Theseanalysesprovidearigorousjustificationfor the
practice of inferring multiple systems when dauble
dissociations are found, but only under afairly limited set Figure 5. Hypothetical categorization RT data. a)
of circumstances (e.g., different tasks, same response, Mean RT plotted as a function of similarity to
separatehomogeneous populations). Ontheother hand, the Prototypein an A-not A task. b) Data from the same
only multiple systems modd we have so far considered is experiment plotted asaf_unctlon of distanceto category
thestrongmodd that asaumes slectiveinfluence-- that is, bound (seetext for details).
that the observer uses sparate systemsin thetwo tasks under study. Perhapsamoreplausible multiple systems
aternativeis that the observer uses both systems in both condtions, but the two tasks load dff erently onthe
two systems and the observable responseis determined either by only one of the systems onany gven trial or
by a weighted average of the two system outputs. In aher words, it is of interest to consider the condtions
under which the mixture and averaging models predict a double dissociation. To our knowledge, this question
has nat previously been investigated.

We beginwiththemixturemodd. L et ps andp, denatethe probabili ty that the hippocampal -based system
is used onany gven trial of the spatial memory task and the visual discrimination task, respectivey. We
assume that observers are more likely to use the hippocampal system in the spatial memory task and the
caudate system in the visual discriminationtask. This means that ps > %2 > p,,. As before, we asaumethat the
eff ect of thelesionsis as described in Equations 6 and 7. Under these assumptions, the cumulative distribution
functions in each condtion are given by:

‘ —>
Distance to Category Bound



Single Versus Multiple Systems 12

Spatial Memory Task Visual Discrimination Task
Fomix — GeX) = PsFA(XS) + (L-PFs(X|S)  Gye(¥) = py FA(XV) + (1 - py)Fe(x|V)
Lesion
Caudate Gsc(¥) = Ps Fa(x[S) + (1 - p)Fs'(X[S) Gyc(®) = pv Fa(X|V) + (1 - py)Fg'(x|V)
Lesion

It isnat difficult to show? that this mixture modd predicts a (crossover) double dissociationif and orly if for
al values of x,

pe _ Fg(XS) - F,'(XIS)
1-ps  Fu(XS) - F, (xI5)" o
and
1-p,  Fa(V) = F,'(xIV) (11)

P Fe(xIV)=Fg'(xIV)’

Sinceps > %2 > py, theleft sideis greater than 1 in both equations. By Equations 6 and 7, the numerator and
denominator of the right hand side are positive in both equations. Thus, the mixture modd predicts a double
dissociation anytime the df ects of the lesions are the same on the two systems. If they are not —for example
if the caudate lesion more df ectively impairs the caudate-based system than the fornix lesion impairs the
hippocampal -based system — then whether or nat the mixture mode predicts a double dissociation dgpends on
the mixture probabili ties ps and py,. If the experimenter is eff ective at findng two tasks that each load heavily
on dfferent systems, then ps will be near 1 and p, will benear 0, andtheleft side of Equations 10 and 11 will
both be large. In this case, a double dissociationwill occur even if there are large diff erences in the dficacy
of the various lesions. Thus, with the mixture modd of multiple systems, a double dissociation is not
guaranteed, but it should generally be possble to find tasks and condtions (e.g., lesions) that produce ore.
The predictions of the averagingmodd are qualitatively similar to those of the mixture modd if we shift
our focus from the cumulative distribution functions, F,(x) and Fg(X), to the means E(X ;) and E(Xg;) (e.g.,
this allows us to avoid dealing with the convdutionintegral of Equation4). Let rg and r,, denote the weights
given thehippocampal -based system onany gventrial of thespatial memory task andthevisual discrimination
task, respectively. We asume that observers weight the hippocampal system nore heavily in the spatial
memory task and the caudate system more heavily in the visual discriminationtask. Thusrg > %2 > ry,. As
before, we assumethe lesions impair performance [i.e., since the dependent variableistrials-to-criterion, this

%I the caudate group performs better than the fornix group in the spatial memory task, then
Ps Fa(X|S) + (1 - pg)Fs' (X[ S) > ps Fa'(X|S) + (1 - ps)Fs(X|S), for all x,
which implies that
Ps [Fa(X|S) - Fa' (X[ S)] > (1 - ps) [Fa(x|S) - F&'(x| )], for all x.

Equation 10 foll ows readily from this result. Equation 11 foll ows in a similar fashion from the result that a double
dissociation requires the fornix group to perform better than the audate group in the visual discrimination task.
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means that E,'(X) > EA(X) and Eg'(X) > Eg(X)]. Under these assumptions, the observable means in each
condtion are given by:

Spatial Memory Task Visual Discrimination Task
Fomix  EsdX) =rsEX(X|S) + (1-19Ba(X|9)  Ev(X)= 1y EL(X|V) + (1-1\)Es(X|V)
Lesion
Caudate  Egc(X) =rs EA(X[S) + (1 - 1B (X[S) Evc(X) =1y EA(X|V) + (1 - 1\)Eg (X[ V)

Lesion

Notethe simil arity to the structure of the cumulative distribution functions in the mixture modd. As aresullt,
the averaging modd predicts a double dissociation if
s o E.'(XIS) - E,(XIS)
1-rs  E,'(XIS)-EL(XIS)’ (12)

and

2 (XIV) —E L (X]V)
o (XIV) —Eg(X|V) "(13)

Theconclusions aretherefore simil ar to the case of the mixture modd. The averagingmodd predictsadouble
dissociationif the df ects of thetwo lesions areapproximatey equal. If onelesionis more severethan theother,
then a double dissociation can still be predicted if the two tasks load heavily on dff erent systems.

We bdlieve this analysis provides grongtheoretical justification for the current practice of interpreting
adoubledissociationas evidence of multiple systems. However, wehavealso naed someimportant andsevere
limitations onthis methoddogy. For example, it is essntial that the observed interaction be of the crossover
type and rot just any interactionthat achieves gatistical significance. Also, the samedependent variable shauld
be measured in two dff erent tasks that sample from separate populations of homogeneous subjects. It isalso
important to ndethat thereis an asymmetry in interpreting daible dissociation results. Whereas the existence
of a double dissociation (under the appropriate experimental condtions) is grong evidence for multiple
systems, thefail ureto findadoubledissociationmust beinterpreted more cautiously, becausethereare several
reasonably plausible ways in which multiple systems modds could produce this null result (e.g., seeour
discusdgon d the mixture modd).

Sngle Dissociations

Although other definitiors are possble, we operationally define a singe dissociation as an interaction d
the type described in the last section for which thereis no crossover. As already mentioned, in the absence of
extenuating circumstances, it is difficult or impossble to draw strong conclusions about whether such data
were produced by singe or multiple systems. As we have seen, in many casesit is graightforward for singe
system modd s to predict singe dissociations. Even so, there are certain special circumstances in which singe
dissociation data have been used to argue for multiple systems.
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Perhaps the most common argument that a singe disociation signals multiple systems has been in cases
wheretwo groups perform equally on ore task, but one of these groups isimpaired, rdative to the other, on
a second task. For example, amnesic patients perform poorly on explicit memory tests but they often are
relativdly normal on a variety of tests of implicit memory (eg, Warrington & Waeiskrantz, 1970. It is
dangerous, however, to infer simply from this result that there are separate explicit and implicit memory
systems. For example, there have been several formal demonstrations that certain singe system nmodes can
account for such data (e.g., Nosofsky, 1988 Nosofsky & Zaki, 1998. In addtion, recently it has been argued
that even garden-variety singe system modes can acocount for singe dissociations of thistypeif the explicit
memory tests are more reliable than the implicit tests (Buchner & Wippich, 200Q Meier & Perrig, 2000.

These arguments generally assume no a priori knowledge about the nature of the tasks that are used.
When such knovledgeis considered, then stronger tests are sometimes possble. One such attempt employs
what has been called thelogic of opposition to test for unconscious learning (Jacoby, 1991; Higham, Vokey,
& Pritchard, 2000. Consider a categarization task with two categories, denated A and B. To begin, subjects
aretrained to identify members of these two categaries. There aretwo dfferent test condtions. In the cortrol
condtion, subjects are shown a series of stimuli and are asked to respond“Yes’ to each stimulus that belongs
to Category A or B andto respond“No” to stimuli that arein reither category. In the opposition condtion,
subjects respond” Yes’ only if the stimulus belongs to Categary A. If it belongs to Categary B or to neither
categary, then the correct response is “No”. The key test is to compare the accuracy rates in the opposition
condtionfor these two kinds of stimuli (i.e., thosein Category B and thase in neither categary). Theideais
that, if respondngis based solely onconscious learning, then the accuracy rates to these two kinds of stimuli
should be equal, but unconscious learning could cause Category B exemplars to become asciated with the
nation that these stimuli are valid category members, thereby causing more “Yes’ responses to Category B
exemplars than to stimuli in reither category. Thislogc, whichisnat without controversy (Redington, 2000,
takes advantage of our knowledge that subjects were trained onCategary B exemplars but nat onthe stimuli
in reither category.

Anather possble use of a priori knowledge is to focus on the relative difficulty of the two tasks. For
example, consider the two tasks described by the
performanceoperatingcurves srovnin Figure6. Whenfull
resources are avail able, Task 1 is easier to learn than Task
2 (i.e, criterion performanceis achieved in fewer trials for
Task 1 than for Task 2). As resources are withdrawn,
performance naturally declines in both tasks, although at
different rates. A small to moderate declinein the avail able
resources is more deleterious to the more difficult Task 2
(eg., when R, resources are available for both tasks).
However, asperformanceonTask 2 nearsfloor (i.e., worst
posdgble performance), Task 1 performance begins to
narrow the gap, until eventually performance onboth tasks
isequally bad. The point marked R in Figure 6 denatesthe
critical leve of resources in which the rate of decline on :
Task 1 first exceals the rate of decline on Task 2. Re Ry full

Now, suppose Tasks 1 and 2 are both learned by the Resources
same system, and corsider an experiment with two
condtions. In ore, observers learn the two tasks with full
resources available. This condtion produces data points _. : -
denated by the closed circles in Figure 6. In the second gslggea Performanceoperating characteristicsof two

Trials-to-Criterion
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condtion, observers learn the tasks with reduced resources. This could be accomplished either by requiring
observers to perform a simultaneous dual task, or perhaps through instruction (e.g., by forcing a quick
response). As longas the observer has avail able R or more resources in this latter condtion, singe-system
mode s predict that the reduced resources condtionwill cause more problemsinthe moredifficult Task 2. For
example, with resources equal to Rg, the reduced resources condtion produces data points denoted by the
closed squaresin Figure 6. The only potential problem with this predictionis if the observer had avail ableless
than R resources for the learning task in the reduced resources condtion. This posshili ty should be easy to
avoid hawever, by ensuring that performance on Task 2 is well beow celling.

Next, consider predictions in this experiment if the observer uses diff erent systemsto learn Tasks 1 and
2, andfor somereasonthe experimental interventionto reduce resources works more df ectively onthe system
that learns Task 1. In this case, the greater interference will be with Task 1 —a result that is problematic for
singe system nmodds.

This was the strategy o a recent experiment reported by Waldron and Ashby (in press. Participantsin
this study learned simple and complex category structures under typical singe-task condtions and when
performing a simultaneous numerical Strogp task. In the simple categarization tasks, each set of contrasting
categaries was sparated by a unidimensional, explicit rule that was easy to describe verbally. An exampleis
showvnin Figure 7 for the rule “respond A if the background color is blue, and respondB if the background
color isydlow”. On the other hand, the complex tasks required integrating information from threestimulus
dimensions and resulted in implicit rules that were difficult to verbalize. An exampleis shown in Figure 8.
Ashby et al. (1998 hypothesized that learning in such tasks will be dominated by dfferent systems — in
particular, that the simple categories would be learned by an explicit, rule-based system that depends heavily
on frontal cortical structures, whereas the complex categories would be learned primarily by an implicit,
procedural learning system that depends heavily onsubcortical structures. Stroop tasks are known to activate
frontal cortex (Bench et al., 1993, and so it was hypothesized that the concurrent Stroop task would interfere
with the eplicit system more strondy than with the implicit system. In support of this prediction, the
concurrent Stroop task dramatically impaired learning d the simple eplicit rules, but did nd sigrificantly
delay learning d the complex implicit rules. These results support the hypothesis that category learning is
mediated by multiple learning systems.

Mapping Hypothesized Systems Onto Known Neural Structures

Testing between singe and multiple systems of learning and memory will always be more difficult when
the putative systems are hypothetical constructs with no knavn neural basis. For example, the Waldron and
Ashby (in pres9 dual task study was more df ective because it had earlier been hypothesized that the putative
explicit system relied onfrontal cortical structures much more strondy than the implicit system. Given this,
andthe neuroimaging evidencethat Stroop tasks activate frontal cortex (Bench et al., 1993, it becomes much
easier to arguethat if thereare multiple systems, then the concurrent Stroop task should interferemorestrondy
with the learning d the simpler, rule-based categary structures.

Ingeneral, thememory literature has enthusiasticall y adgpted this constraint. M ost of thememory systems
that have been proposed have become associated with a distinct neural basis. For example, cogritive
neuroscience modds of workingmemory focusonprefrontal cortex (e.g., Fuster, 1989 Goldman-Rakic, 1987,
1995, declarative memory model s focus on the hippocampus and aher medial temporal 1obe structures (e.g.,
Gloar, 1997 Gluck & Myers, 1997 McCldland, McNaughton, & O’ Rellly, 1995 Polgter, Nadel, & Schacter,
1991 Squire & Alvarez, 1995, procedural memory modes focus on the basal gandia (e.g., Jahanshahi,
Brown, & Marsden, 1992 Mishkin et a., 1984 Saint-Cyr, Taylor, & Lang, 1988 Willi nghem et al., 1989,
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andmodd s of the perceptual representationsystemfocuson visual cortex (Curran & Schacter, 1996 Schacter,
1994 Tulving & Schacter, 1990.

I11. Category Learning as a Mode of the Single Versus Multiple Systems Debate

Categary learning is a goodexample of an area in which the singe versus multiple systems debate is
currently beingwaged. Theisauesthat have arisenin the ategary learning literature are similar to isaues that
are being dscussd in ather areas that are wrestling with this same debate. This is partly because similar
methoddogdies are used in the diff erent areas to test between singe and multiple systems, and partly because
thediff erent sub-discipli nesengaged in this debate— motor learning, discriminationlearning, functionlearning,
categary learning, andreasoning— haveall postulated similar explicit andimplicit systems. So, thereisavery
real posshility that if there are multiple systems of category learning, these same (or highly similar) systems
might also mediate other types of learning. For thisreason, this sectionexamines the debate asto whether there
are singe or multiple systems of categary learning.

Within thefield o categorization, the debate as to whether thereis one or more than orelearning system
isjust beginning. There have been noattemptsto test the fixed point property, and empirical demonstrations
of double dissociations are rare. Nevertheless there have been some encouraging attempts to map category
learning systems onto dstinct neural structures and pathways, and as mentioned above, there has been at |east
one attempt to test for multiple systems by exploitinga known a priori ordering d task difficulty. Even so, in
the case of category learning, the singe versus multiple systems debate is far from resolved. Not only is there
insufficient empiricd evidenceto decidethisisaue, but thereis dill strongtheoretical disagreament. Although
there have been anumber of recent articles arguingfor multiple category learning systems (Ashby et al., 1998
Erickson& Kruschke, 1998 Pickering, 1997 Waldron& Ashby, inpress), there have also been recent papers
arguing for asinge system (e.g., Nosofsky & Johansen, in press Nosofsky & Zaki, 1998.

Category Learning Theories

As one might expect, the early theories of category learning all assumed a singe system. Therewerea
number of such theories, but four of these have been especially important. Rule-based theories assume that
people categorize by applying a series of explicit logical rules (e.g., Bruner, Goodnav, & Austin, 1956
Murphy & Medin, 1985 Smith & Medin, 1981). Various researchers have described this as a systematic
processof hypothesis testing (e.g., Bruner et al., 1956 or theory construction and testing (e.g., Murphy &
Medin, 1985. Rule-basedtheoriesarederived fromtheso-call ed class cal theory of categorization, which dates
back to Aristotle, althoughin psychdogyit was popularized by Hull (1920. Theclasdcd theory assumesthat
categarization is a process of testing whether or nat each stimulus possesses the necessary and sufficient
features for category membership (Bruner et al., 1956. Much o the work onrule-based theories has been
conducted in psychdinguistics (Fodar, Bever, & Garrett, 1974 Miller & Johrson-Laird, 1976 and in
psychdogical studies of concept formation (e.g., Bruner et al., 1956 Bourne, 1966).

Prototype theory asaumes that the categary representationis dominated by the prototype, or most typical
member, and that categarizationis a processof comparing the similarity of the stimulus to the prototype of
each rdevant category (Homa, Sterling, & Trepd, 1981; Posner & Kede, 1968 1970 Real, 1972 Rosch,
1973 1977 Smith & Minda, 2000. Initsmost extremeform, the prototypeisthe category representation, but
in its weaker forms, the category representation includes information about other exemplars (Busemeyer,
Dewey, & Medin, 1984 Homa, Dunbar, & Nohre, 1991, Shin & Nosofsky, 1992.
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Exemplar theory assumes people compute the similarity of the stimulus to the memory representation of
every exemplar of all relevant categories and select a response on the basis of these similarity computations
(Brooks, 1978; Estes, 1986a; Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1986). The assumption
that the similarity computations include every exemplar of the rdevant categories is often regarded as
intuitively unreasonable. For example, Myung (1994) argued that "it is hard to imagine that a 70 year-old
fisherman would remember every instance of fish that he has seen when attempting to categorize an object as
afish" (p. 348). Even if the exemplar representations are not consciously retrieved, a massive amount of
activation is assumed by exemplar theory. Neverthdess, exemplar models have been used to account for
asymptatic categorization performance from tasks in which the categories: (1) were linearly or non-linearly
separable (Medin & Schwanenflugd, 1981; Nosofsky, 1986, 1987, 1989), (2) differed in baserate (Medin &
Eddson, 1988), (3) contained correlated or uncorrdated features (Medin, Alton, Edelson, & Freko, 1982), (4)
could be distinguished using a simple verbal rule (or a conjunction of simplerules; Nosofsky, Clark, & Shin,
1989), and (5) contained differing exemplar frequencies (Nosofsky, 1988).

Finally, decision bound theory (also called general recognition theory) assumes there is trial-by-trial
variability in the perceptual information associated with each stimulus, so the perceptual effects of a stimulus
are most appropriately represented by a multivariate probability distribution (usually a multivariate normal
distribution). During categorization, the observer is assumed to learn to assign responses to different regions
of the perceptual space. When presented with a stimulus, the observer determines which region the perceptual
effect isin and emits the associated response. The decision bound is the partition between competing response
regions (Ashby, 1992; Ashby & Gott, 1988; Ashby & Lee, 1991, 1992; Ashby & Maddox, 1990, 1992, 1993;
Ashby & Townsend, 1986; Maddox & Ashby, 1993). Thus, decision bound theory assumes that although
exemplar information may be available, it is not used to make a categorization response. Instead, only a
response labd is retrieved.

Three Different Category Learning Tasks

Each of thesetheories hasintuitive appeal, especially in sometypes of categorization tasks. For example,
rule-based theories seem especially compe ling when the rulethat best separatesthe contrasting categories(i.e.,
the optimal rule) is easy to describe verbally (Ashby et al., 1998), and an exemplar-based memorization
strategy seems ideal when the contrasting categories have only a few highly distinct exemplars. Not
surprisingly, proponents of the various theories have frequently collected data in exactly thosetasks for which
their pet theories seem best suited. If there is only one category learning system, then this strategy is fine.
However, if there are multiple systems, then the different tasks that have been used might load differently on
the different systems. Inthis case, two researchers arguing that their data best supportstheir own theory might
both be correct. Aswewill see below, thereis neuropsychological and neuroimaging evidence supporting this
prediction. So, beforeweexaminethesingleversus multiple systems debatewithinthe categorization literature,
wetake sometimeto describe three different types of categorization tasks that each seemsideally suited to the
specific psychological processes hypothesized by the different theories.

As mentioned above, rule-based theories seem most compeling in tasks in which the rule that best
separates the contrasting categories (i.e., the optimal rule) is easy to describeverbally (Ashby et al., 1998). As
aresult, observers can learn the category structures via an explicit process of hypothesistesting (Bruner et al.,
1956) or theory construction and testing (Murphy & Medin, 1985). Figure 7 shows the stimuli and category
structure of a recent rule-based task that used 8 exemplars per category (Waldron & Ashby, in press). The
categorization stimuli were colored geometric figures presented on a colored background. The stimuli varied
on four binary-valued dimensions: background color (blue or ydlow; depicted as light or dark gray,
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respectively), embedded symbol color (red or green;
depicted as black or white, respectively), symbol [
numerosity (1 or 2), and symbol shape (square or circle).
Thisyielded atotal of 16 possible stimuli. To createrule-
based category structures, one dimension is sdlected m PY

arbitrarily to be relevant. The two values on that u o n ®
dimension are then assigned to the two contrasting A
categories. At the end of training, observers are able to

describe the rule they used in rule-based tasks quite B
accurately. Most categorization tasks used in studies that
have argued for rule-based learning have been designed in

a similar fashion (e.g., Bruner & a., 1956; Salatas &
Bourne, 1974), as are virtually all categorization tasks
used in neuropsychological assessment, including the well
known Wisconsin Card Sorting Test (e.g., Grant & Berg,
1948; Kolb & Whishaw, 1990).

Information-integration tasks are those in which Figure 7. Category structure of a rule-based
accuracy is maximized only if information from two or category learning task. The optimal explicit ruleis:
more stimulus components (or dimensions) must be Respond A if the background color isblue (depicted as
integrated at some pre-decisional stage (Ashby & Gott, light gray), and respond B if the background color is
1988; Shaw, 1982). A conjunction rule (e.g., respond A Ye!low (depicted as dark gray).
if the stimulus is small on dimension x and small on
dimensiony) is arule-based task rather than an information-integration task because separate decisions are
first made about each dimension (e.g., smdl or large) and then the outcome of these decisionsis combined
(integrationisnot pre-decisional). Inmany cases, the optimal ruleininformation-integration tasksisdifficult
or impossible to describe verbally (Ashby et ., 1998). That people readily learn such category structures
seems problematic for rule-based theories, but not for prototype, exemplar, or decision bound theories. The
neuropsychological data reviewed below suggests that performance in such tasks is qualitatively different
depending on the size of the categories - in particular, when a category contains only afew highly distinct
exemplars, memorization is feasible. However, when the relevant categories contain many exemplars (e.g.,
hundreds), memorization is less efficient. An exemplar strategy seems especiadly plausible when the
categoriescontain only afew highly distinct exemplars. Not surprisingly, most articlesarguing for exempl ar-
based category learning have used such designs(e.g., Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 1986;
Smith & Minda, 2000).

Figure 8 showsthe stimuli and category structure of arecent information-integration task that used only
8 exemplars per category (Waldron & Ashby, inpress). The categorization stimuli werethesameasin Figure
7. To create these category structures, one dimension was arbitrarily selected to beirrelevant. For example,
in Figure 8, the irrdevant dimension is symbol shape. Next, one level on each relevant dimension was
arbitrarily assigned a value of +1 and the other level was assigned avalue of 0. In Figure 8, abackground
color of blue (depicted as light gray), asymbol color of green (depicted as white), and a symbol number of
2 weredl assigned avdue of +1. Findly, the category assignments were determined by the following rule:

The stimulus belongs to Category A if the sum of values on the relevant dimensions > 1.5;
Otherwise it belongs to Category B.

Thisruleisreadily learned by heathy young adults, but even after achieving perfect performance, they can
virtually never accurately describe the rule they used.
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Figure 9. Category structure of an information
integration category learning task with many

exemplars per category. Each stimulusisaline
that varies across trials in length and orientation.
Every black plus depictsthelength and orientation
of alinein Category A and every gray dot depicts
the length and orientation of alinein Category B.
The quadratic curve is the boundary that
maximizes accuracy.
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Figure 8. Category structure of an information integration
category learning task with only a few exemplarsin each
category.

When there are many exemplars in each category, memorization strategies, which are necessarily
exemplar-based, become more difficult to implement. In these situations, it seems especidly plausible that
observers|earn to associate category label s with regions of perceptua space (as predicted by decision bound
theory). Figure 9 shows the category structure of an information-integration categorization task in which
there are hundreds of exemplars in each category (first developed by Ashby & Gott, 1988). In this
experiment, each stimulusis alinethat varies acrosstrials in length and orientation. Each crossin Figure 9
denotes the length and orientation of an exemplar in Category A and each dot denotes the length and
orientation of an exemplar in Category B. The categories overlap, so perfect accuracy isimpossiblein this
example. Even so, the quadratic curve is the boundary that maximizes response accuracy. This curve is
difficult to describe verbally, so this is an information-
integration task. Many of the studies supporting decision

bound theory have used this randomization design o’ «* 0@ ¢C

(Ashby & Gott, 1988; Ashby & Maddox, 1990, 1992; e .. .

Maddox & Ashby, 1993). e . e o A
A prototype abstraction process does not work well

in the Figure 9 experiment because prototype theory not

always predicts linear decision bounds (Ashby & Gott, . ° S “° °% o

1988), and there is much data showing that quadratic °®, 0 . A

bounds give a much better account of the resulting data ° : ° .

than linear bounds (Ashby & Maddox, 1992). A
prototype abstraction process seems most plausible in Figure10. Someexemplarsfromaprototypedistortion
prototype distortion tasks in which each category is category learning task with random dot patterns.
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createdbyfirst defininga cdegory prototype andthen creding the caegory members by randamly distorting
theseprototypes. Inthemost popuar version d prototypedistortiontasksthe cdegory exemplarsarerandom
dot patterns (Posner & Keele, 1968, 1970). An example of the raddqpettern task is srown in Figure
10. To begin, many stimuli are aeaed byrandamly pladng a number of dots onthe display. One of these
stimuliisthen chosen asthe prototypefor Category A. Theothersbecome stimuli not belongngto Category
A. The other Category A exemplars are then creaed by randamly perturbing the position d ead da in the
CategoryA prototype. Categories creaed from these randam dot patterns have been espedally popuar with
prototypetheorists (e.g., Homaé& Cultice, 1984 Homa, Cross, Corndl, Goldman, & Schwartz, 1973 Homa
et al., 1981; Posner & Keele, 1968, 1970).

Explicit Versus Implicit Category Learning

As mentioned previously, many o the aurrent theoriesthat postulate multi ple cdegory leaningsystems
proposeseparate explicit and implicit subsystems. The multi ple memory systems literature dso frequently
usegheterms explicit andimplicit, but usudly in adightly diff erent fashion. So before procealing further,
we briefly discussthe &isting criteriathat are used to determine whether caegory leaningis explicit or
implicit.

Thereiswidespread agreement, within bah the category learning and memory literatures, that expli cit
processingrequires conscious awareness (e.g., Ashby et a., 1998 Cohen & Squire, 1980. The
disagreements relate more to how implicit processimgfised. Many memory theorists adopt the strong
criteriathat a memory is implicit only if there is no conscious awareness of its detail s andthere is no
knowledge that a memory has even been stfmgd Schader, 1987). In atypicd caegorization task, for
example any of those described in the last section, these criteria are impogsisevihen tria-by-trial
feedback is provided (as it usually is). Wherobserver recaves feedbad that aresporseis corred, then
this alone makes it obvious that learnhag occurred, even if thereis nointerna accessto the system that
ismediatingthisleaning. Thus, in caegory leaning, awedker criterionfor implicit leaningistypicdly used
in which the observer isrequired orly to have no conscious accessto the nature of thelearning, even though
he or she would be expected to know that some learning had occurred.

The stronger criteriafor implicit processng that have been adopted in much of the memory literature
could be gplied in ursupervised caegory leaning tasks, in which notria-by-tria feedbad of any kindis
provided. In thaypicd unsupervised task, observers are told the number of contrasting caegories and are
askedto asdgn stimuli to these cdegories, but are never told whether a particular resporse is corred or
incorrect.Freesortingisasimilar, but more unstructured task in which participants are nat told the number
of contrasting categories (e.g., Ashby & Maddox, 198&hough usupervised and freesorting tasks are
ideal for using the stricter criteria to test for implicit leaning, so far, the only leaning that has been
demonstrateth such tasksisexpli cit (Ashby, Queller, & Berretty, 1999 Medin, Wattenmaker, & Hampson,
1997).

Onedanger with equating expli cit processng with conscious awarenessis that this difts the debate
from how to define‘explicit’ to haw to define’ conscious awareness . Ashbyet al. (1998 suggested that one
describeverbally. By this criterion, the rule that separates the cdegoriesin Figure 7 is explicit, whereas the
rulesbest separatingthe cdegoriesin Figures 8 and 9areimpli cit. This definitionworks well i n most cases,
but it seeams unlikely that verbali zability shoud be arequirement for explicit reasoning. For example, the
insightdisplayed by Kdhler's (1925 famous apes seems an obvious example of explicit reasoningin the
absence of language. So ultimately, a theoretically motivated criterion for conscious awareness is needed.

Oneway to devel opatheory of consciousawarenessisby exploitingtherel ationship between awareness
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andworking memory. For example, the ontents of working memory are dealy accegble to conscious
awarenessnfad, becaise of itsclose asciationto exeautive dtention, astrongargument can be made that
thecontents of workingmemory define our conscious awareness When we say that we ae @nsciously aware
of some objed or event, we mean that our exeautive atention has been direded to that stimulus. Its
representatioimn ou working memory givesit amoment-to-moment permanence. Working memory makes
it possbletolink eventsin theimmediate past with thosein the present, andit all ows us to anticipate esents
in the near future. All of these are defining properties of conscious awareness.

The assciation between working memory and the prefrontal cortex makes it possble to formulate
cognitiveneurosciencemodel s of consciousness Themost influential such model was developed byFrancis
Crick and Christof Koch (Crick & Koch, 1990; 1995 1998. The Crick-Koch hypdhesis gatesthat one can
haveconscious awarenessonly of adivity in brain areasthat projed diredly to the prefrontal cortex®. Primary
visual cortex (AreaV1) does nat projed directly to the prefronta cortex, so the Crick-Koch hypdhesis
assertghat we caana be mnsciously aware of adivity in V1. Crick and Koch (199%; 1998 described
evidencean suppart of this prediction. Of course, many ather brain regionsaso do na projea diredly to the
prefrontalcortex. For example, the basal gangliado nd projed diredly to the prefrontal cortex (i.e., they first
projectthroughthe thalamus), so the Crick-Koch hypdhesis predictsthat we aenot awareof activity within
thebasal ganglia. Memory theorists beli eve that the basal gangliamediate procedural memories (Jahanshahi
etad., 1992 Mishkin et al., 1984 Saint-Cyr et al., 1988 Willingham et a., 1989, so the Crick-Koch
hypothesigrovides an explanation o why we dorit seam to be avare of procedura (e.g., motor) leaning.

Category Learning and Memory

The nation that there may be multiple cdegory leaning systems goes bad at least to 1978 when
Brooks hypahesized that category leaning is mediated by separate "deliberate, verbal, analytic control
processes and implicit, intuitivaprenalytic processes" (p.207). Nevertheless most quantitative acourts
of caegory leaning have asaumed the eistence of a singe system (e.g., Estes, 1986; Hintzman, 1986
Kruschke, 1992 Medin & Schaffer, 1978 Nosofsky, 1986. Recantly, however, quantitative mode s that
assumemultiple cdegory leaning systems have been developed (e.g., Ashby et a., 1998 Erickson &
Kruschke,1998. For example, Ashbyet a. (1998 propased aforma neuropsycha ogicd theory of multiple
categoryleaning systems cdled COVIS (COmpetition between Verba and Implicit Systems), which
assumeseparate explicit (rule-based) andimpili cit (procedurd |earning-based) systems. In resporseto these
multiple systems propasals, Nosofsky and Zaki (1998 and Nosofsky and Johansen (in presg argued that
singlesystem (exemplar) models can acount for many of the phenomenathat have been used to suppat the
notion of multiple systems.

Another way to study caegory leaning systems is to emphasize the relationship between caegory
learning and memory. Of course, every category leaning system requires memory. In fad, one could
characterizeaegory leaningasthe processof establi shingsome durablerecord - that is, amemory - of the
structureof the relevant categories, or possbly of arule for corredly assgning rew stimuli to ore of the
categoriesSince much is now known abou the neurobiology d memory, this might be away to lean
quickly about the neurobiology of category learning.

Themulti ple memory systemsthat have been propaosed ead are thougtt to have adistinct neurd basis.

* Crick and Koch (1998) did not take the strong position that working memory is necessary for
conscious awareness. Even so, they did argue that some short-term memory store is required. However,
they left open the possibility that an extremely transient iconic memory might be sufficient.
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Cognitive neuroscience model s of working memory focuson prefrontal cortex (e.g., Fuster, 1989; Goldman-
Rakic, 1987, 1995), declarative memory model s focus on the hippocampus and other medial temporal lobe
structures (e.g., Gloor, 1997; Gluck & Myers, 1997; McCldland et a., 1995; Polster et al., 1991; Squire &
Alvarez, 1995), procedural memory models focus on the basal ganglia (Jahanshahi et a., 1992; Mishkin et
al., 1984; Saint-Cyr et d.,1988; Willingham et a ., 1989), and model s of the perceptua representation system
focus on visual cortex (e.g., Curran & Schacter, 1997; Schacter, 1994).

In addition, each of the category learning theories described above maps in a natural way onto a
different one of these memory systems. To learn and apply explicit rules, one must construct and maintain
them in working memory. Executive attention is also required to select and switch among aternative rules.
Thus, rule-based theories depend on working memory. Exemplar theory assumes people store and access
detailed representations of specific exemplars they have seen. The declarative memory system seems tailor
made for this type of memory encoding and storage. Indeed, it has specifically been proposed that medial
temporal lobe structures (i.e., the hippocampus) mediate the encoding and consolidation of exemplar
memories (Pickering, 1997). On the other hand, declarative memory retrieval istypically thought to occur
with conscious awareness (e.g., Cohen & Squire, 1980), whereas exemplar theorists are careful to assume
that activation of the exemplar memories does not require awareness (e.g., Nosofsky & Alfonso-Reese, 1999;
Nosofsky & Zaki, 1998; Nosofsky, 1986).

Decision bound theory assumes people learn to associate abstract response programs (e.g., response
labels) with groups of similar stimuli (Ashby & Waldron, 1999). Thus, the stored memoriesare of stimulus-
response associ ations, rather than of rulesor previously seen exemplars. Thisisaform of procedural memory
(Ashby et al., 1998).

The prototype abstraction process assumed by prototypetheory isperhapsthe most difficult to map onto
existing accounts of memory. The memory of a prototype is durable, so working memory, by itself is
insufficient. Prototype theorists also have been clear that the prototype might not correspond exactly to any
previously seen exemplar, which rules out simple declarative memory. Finaly, prototypes are not tied to
responses in any direct way, so procedural memory can also be ruled out. While it is not clear that such a
result isnecessary, wewill present evidence later that prototype abstraction depends, at least sometimes, on
perceptual learning, and as a result, on the perceptual representation memory system.

It isimportant to point out that even if multiple memory systems participatein category learning, this
does not necessarily imply that there are multiple category learning systems. For example, it is logicaly
possible that a single category learning system accesses different memory systems in different category
learning tasks. Such amodel could predict double or triple dissociations across tasks. As mentioned in the
last major section, however, such amode aso shares many properties with a multiple systems perspective.
As such, it would probably lie somewhere in the middle of the continuum between pure single system and
pure multiple system models. In our view, it would be counterproductive to place a sharp boundary on this
continuum in an attempt to produce a criterion that classifies every modd as postulating either single or
multiple systems. Instead thegoal, in all areas of learning and memory, should beto understand how humans
perform this vitaly important skill. In the case of category learning, understanding what memory systems
areinvolved isan important first step in this process.

A good example of this blurring between single and multiple systems can be seen with prototype
abstraction. If this process is mediated by a perceptual representation system that depends on perceptual
learning in visual cortex, then it is not clear that prototype abstraction would meet our criteriaas a separate
system. When the stimuli are visual in nature, then any category learning system must receiveinput from the
visual system. If some category learning system X depends on input from the brain region mediating
prototype abstraction, then system X and the prototype abstracti on system would not be mediated by separate
neural pathways - a criterion that we earlier decided was a necessary condition for separate systems. For
example, under this scenario, a double dissociation between system X and the prototype system should be
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impossible. Damage to the neural structutegnstream from visual cortex that mediate system X shoud
induwcedeficitsin caegory leaning tasks mediated by system X, but nat in prototype astradion tasks. On
theother hand, damageto visual cortex shouddimpair all typesof visua caegory leaning. Thus, if prototype
abstractioris mediated within visual cortex, then any groupimpaired in prototype éstradion shoud aso
beimpaired onall other categary leaningtasks. In addition, it shoud be extremdly difficult, or impossble,
to find neuropsychological patient groups that are impair@tobotype dstradion, but nat in ather types
of caegory leaning Aswewill shortly see thislatter predictionis suppated by current neuropsychadogicd
category learning data.

Underthe asaumptionthat the cdegory learning tasks described above diff erentialy load on dff erent
memory systems, then theoreticdly, it shoud be passble to find reuropsychdogicd popuations that
establishet least atriple dissociation acdossthe tasks. Ashby and Ell (under review) reviewed the airrent
neuropsychologicataegory leaning data to test this prediction. Presently, there is extensive cdegory
learningdataon orly afew neuropsychoogicd popuations. The best data comefrom four diff erent groups:
1) patientswith frontal lobelesions, 2) patientswith medial tempord lobeamnesia, andtwo types of patients
sufferingfrom a disease of the basal ganglia - either 3) Parkinson's or 4) Huntington's disease. Table 1
summarizes the performance of these groups on the three different types of category learning tasks.

Table 1. Perfor mance of various neuropsychological populationson three category lear ning tasks

Task

Information-integration

Prototype
Neuropsychological Many Distortion
Group Exemplars

Few Exemplars

Frontal Lobe Lesions J Impaired ? Normal ?

Parkinson’s Disease J Impaired Impaired Impaired Normal

Huntington’s Disease J Impaired Impaired Impaired Normal

Medial Temporal Lobe Normal Normal Late Training

Amnesia Deficit Normal

Notefirst that Table 1 does nat establish atriple dissociation. At best, one could argue from Table 1
only for adaubledissciation— between frontal |obe patients andmedial temporal lobeamnesiacs onrule-based
tasks and information-integration tasks with few exemplars per category. Specifically, frontal patients are
impaired on rule-based tasks (e.g., the Wisconsin Card Sorting Test; Kolb & Whishaw, 1990 but medial
temporal lobeamnesiacs arenormal (e.g., Janowsky, Kritchevsky, & Squire, 1989 Leng& Parkin, 1988. At
the same time, the avail able data on information-integration tasks with few exemplars per categary indicates
that frontal patients are normal (Knowlton, Mangds, & Squire, 1996, but medial temporal |obe amnesiacs
areimpaired (i.e., they show alate-training dficit -- that is, they learn namally duringthefirst 50trials or so,
but thereafter show impaired learning relative to age-matched controls; Knowlton, Squire, & Gluck, 1994,
Therefore, the neuropsychdogical data support the hypothesis that at least two memory systems participate
in category learning. Of course, until more data ae collected on the information-integration tasks, this
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conclusion must be considered tentative.

Notealso that Table 1 supportsthe predictionthat it should be difficult to find patient groupsthat are
impaired in the prototype distortion task, but nat in the other types of tasks. We know of no data on the
performance of frontal 1obe patients in prototype distortion tasks, but if learning in these tasks is mediated
within visual cortex, then frontal patients should nd be impaired in prototype distortion tasks.

If threeor more memory systems participatein category learning, then why dcesn’t Table 1 document
atripledissociation? Thereare several reasonswhy atripledissociationmight nat be observedin Table 1, even
if multiple memory systems areinvaved. First, Table 1 isincomplete. There are several cels with no knavn
data. For example, we know of no data onthe performance of frontal patients in information-integration tasks
with many exemplars per categary. Conclusionsin someother cdlsarebased on \ery littledata. As mentioned
above, thisisthe casefor thelate-training ceficit reported for medial temporal obe amnesiacsin information
integration tasks with few exemplars per category. Second even with unlimited data in each cel, thereis no
guaranteethat these are four patient groups appropriate for establishing a triple dissociation. The groups
included in Table 1 were sdected because they are the groups for which thereis the most current data, rather
than for some theoretical purpose. For example, theideal groups might each have focal damage to a diff erent
memory system. This condtion is aurdy na met for the Table 1 groups. For example, Parkinson's and
Huntington' s diseases aff ect similar structures (i.e., the basal gandia). Of course, to sdect groups that satisfy
thiscondtionrequires ecific hypotheses about the neural structures andpathwaysthat mediatetheputatively
separate systems. There are two ways to generate such hypotheses. One is to use Table 1 and recent
neuroimaging results to make such inferences, and ancther is to examine current neuropsychdogical theories
of multiple systems in category learning. We foll ow these two approaches in the next section.

The Neurobiological Bases of Category Learning

Patients with frontal or basal gangia dysfunction are impaired in rule-based tasks (e.g., Brown &
Marsden, 1988 Codset al.,1984 Kolb & Whishaw, 1990 Robinson, Heaton, Lehman, & Stilson, 1980, but
patients with medial temporal 1obe damage are normal in this type of categary learning task (e.g., Janowsky
etal., 1989 Leng& Parkin, 1988. Thus, an doviousfirst hypothesisisthat the prefrontal cortex andthe basal
gangdlia participatein this type of learning, but the medial temporal lobes do nd. Conwerging evidencefor the
hypothesisthat theseareimportant structuresinrule-based category learningcomesfrom several sources. First,
an fMRI study d arule-based task similar to the Wisconsin Card Sorting Test showed activationin theright
dorsal-lateral prefrontal cortex, the anterior cingulate, and the right caudate nucleus (i.e., head) (among dher
regions) (Rao et al., 1997). Second many studies have implicated these structures as key components of
executive attention (Posner & Petersen, 1990 and working memory (e.g., Fuster, 1989 Goldman-Rakic,
1987), both of which arelikdy to becritically important to the explicit processes of rule formationandtesting
that are assumed to mediate rule-based categary learning. Third, a recent neuroimaging study identified the
(dorsal) anterior cingulate as the site of hypothesis generationin a rule-based categary-learning task (Elli ott
& Dolan, 1998. Fourth, lesion studiesin rats impli cate the dorsal caudate nucleusin rule switching (Winocur
& Eskes, 1998.

Next, natethat in informationintegrationtasks with large categaries, only patients with baesal gangdlia
dysfunction are known to beimpaired (Filoteo, Maddax, & Davis, submitted; Maddax & Filoteo, in press.
In particular, medial temporal lobe patients are normal (Filoteo, Maddax, & Davis, in press. So a first
hypothesis sauld be that the basal gandia ae critical in this task, but the medial temporal lobes are nad. If
the number of exemplars per category is reduced in this task to a small number (e.g., 4 to 8), then medial
temporal |obe amnesiacs show late training deficits — that is, they learn namally during the first 50trials or
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S0, but thereafter show impaired learning relativeto age-matched controls (Knowltonet al., 1994). An dovious
posshility in this case, is that normal observers begin memorizing responses to at least a few of the more
distinctive stimuli —a strategy that is nat avail able to the medial temporal obe amnesiacs, andwhich is either
nat helpful or imposgble when the categaries contain many exemplars. Since patients with basal gandia
dysfunction are also impaired with small categories requiring information-integration (Knowlton, Mangdls et
a., 1996 Knowlton, Squire « al., 1996, afirst hypothesis should be that learning in such tasks depends on
the basal gangiia and onmedial temporal obe structures. The hypothesis that the basal gandia ae activein
informatiorrintegration tasks was supported by Poldrack, Prabhakaran, et al. (1999, who used fMRI to
measure neural activationat four diff erent time points of learningin a probabili stic version d theinformatiort
integration task with few exemplars per category. They reported learning related changes within prefrontal
cortex andin thetail of theright caudate nucleus. Interestingy, they also reported a simultaneous suppresson
of activity within the medial temporal |obes. Thus, the avail able neuroimaging data predict that the deficits of
basal gandia disease patients in information-integration tasks may arise from dysfunction in the tail of the
caudate nucleus.

Table 2. Brain Regions that Current Neuropsychological Data I mplicate in the Various
Category L earning Tasks

Task

Information-integration
Prototype

Many Few Distortion
Exemplars Exemplars

Brain Region

Prefrontal Cortex

Visual Cortex
Basal Ganglia

Medial Temporal Lobe

Finally, nore of these four patient groups are impaired on the prototype distortion tasks, which
suggests that learning onthese tasks does nat depend onan intact medial temporal 1obe or basal gandlia
(Knowlton, Squire ¢ al., 1996 Knowlton, Ramus, & Squire, 1992 Kolodny, 1994 Meulemans, Peigneux,
& Van der Linden, 1998. As mentioned above, it has been suggested instead that learning might depend on
the perceptual representationmemory system —througha perceptual learning process(Knowlton, Squire g al.,
1996. Intherandan dat pattern experiments, this makes ense because all categary A exemplars are created
by randamly perturbing the positions of the dats that form the category A prototype (seeFigure 9). Thus, if
therearecdlsin visual cortex that respondstrongdy to thecategary A prototype, they arealso likely to respond
to the other category A exemplars, and perceptual learning will i ncrease their response. If this ocaurs, the
observer could perform well in this task by respondng “yes’ to any stimulus that dicits a strongfeding d
visual famili arity. Recent fMRI studies of subjectsin prototype distortiontasks show learningrelated changes
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in visual cortex (Reber, Stark, & Squire, 1998, and are thus consistent with this hypothesis.

Table 2 summarizesthe neural impli cations of the current neuropsychdogcal and reurcimaging chta.
Notethat Table 2 isconsistent with current theories about the neurobiological bases of memory —in particular,
that the basal gandia are important in procedural memory, and the medial temporal |obes are critical for
declarativememory. Despitethearguments andevidencein support of the Table 2 conclusions, however, much
more work is needed before Table 2 can be considered more than speculative.

The Explicit System

Several recent neurospsychdogical theories agreewith some of the same conclusions drawnin Table
2. For example, Figure 11 describes a recent neurobiologcal modd of the explicit system(Ashby et al., 1998
Ashby, Isen, & Turken, 199). Thekey structures aretheanterior cingulate, the prefrontal cortex, andthe head
of the caudate nucleus. Figure 11 shows the modd during a trial of the rule-based category learning task
illustrated in Figure 7. Various salient explicit rules reverberate in working memory loops between prefrortal
cortex (PFC) and thalamus (Alexander, Deong & Strick, 1986. In Figure 11, one such logp maintains the
representation of a rule focusing on the shape of the
symbolsand oreloop maintains arulefocusing onsymbol
number. An excitatory projectionfromthe PFC to thehead
of the caudate nucleus prevents the globus palli dus from
interruptingtheseloagps. Theanterior cinguatesd ects new
explicit rules to load into working memory, and the head
of the caudate nucleus mediates the switch from oneactive
loop to anather (facili tated by dopamine projections from
the ventral tegmental area and the substantia nigra).

The Figure 11 mood is consistent with the
neuroimaging data described in the previous sction, and
it acoounts for the rule-based category learning dficits
describedin Table 1. First, of course, it is obviousthat the
modd predicts that patients with lesions of the prefrontal
cortex will be impaired onrule-based categary learning
tasks. It also predicts that the deficits seenin Parkinson's
disease are due to dysfunctionin the head o the caudate
nucleus. Postmortem autopsy reveals that damage to the
head of the caudate is especially severe in Parkinson's
disease (van Domburg & ten Donkdaa, 1997), so the
mode predictsthat thisgroup should show widespread and
profound deficits on rule-based categarization tasks. The
neuropsychdogcal evidence strondy supports this
prediction (eg., onthe WCST; Brown & Marsden, 1988
Codset al., 1984. In fact, the model described in Figure Figure 11. A model of the explicit category learning
11 predictsthat, becauseof itsreciprocal conrectiontothe System. Black projedions are ecitatory, gray
prefrontal cortex, many of thewell documented “frontal- grojed!ons ‘f"re'ggg"t?y’ agfd d?jw piojedfgs(‘:ar_e
like’” symptoms of Parkinson's disease might actually be Oparminergic. ~ braronta cortex, _

. anterior cinguate crtex, Thal = thalamus, GP =
due to damage in the head o the caudate nucleus. globus palli dus, Cau = caudatenudleus, VTA = ventral

tegmental area, SN = substantia nigra.
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The Procedural Learning System

Figure 12showsthecircuit of aputativeprocedural memory-based categary learningsystem (proposed
by Ashby et al., 1998 Ashby & Waldron, 1999. Thekey structureinthismodd isthe caudate nucleus, amajor
input structurewithin the basal gandia. In primates, all of extrastriatevisua cortex projects directly to thetail
of the caudate nucleus, with about 10,000visual cortical cells converging oneach caudate cell (Wilson, 1995.
Cdlsinthetail of the caudate (i.e., medium spiny cels) then project to prefrontal and premotor cortex (viathe
globus pallidus and thalamus; e.g., Alexander et al., 1986. The modd asaumes that, through a procedural
learning process each caudate unit learnsto associate a category labe, or perhaps an abstract motor program,
with alarge group of visual cortical cdls (i.e., al that project to it). Thislearningis thought to be facili tated
by a reward mediated dgpamine signal from the substantia nigra (pars compacta) (e.g., Wickens, 1993.

Lesions of thetail of thecaudate, in bath rats and monkeys, impair the abili ty of the animal to associate
one motor response with ore visual stimulus and a diff erent response with some other stimulus (e.g., vertical
versus horizontal lines; McDonald & White, 1993 1994 Packard et al., 1989 Packard & McGaugh, 1992).
For example, in ore study, rats with lesions in the tail of the caudate could nd learn to dscriminate between
safe and unsafe platforms in the Morris water maze when the safe platform was marked with haizontal lines
and the unsafe platform was marked with vertical lines (Packard & McGaugh, 1992). The same animals
learned narmally, however, when the cues sgnaling which platform was safe were spatial. Because the tail of
the caudate nucleus is not a classc visual areq, it is unlikely that these animals have an impaired abili ty to
perceive the stimuli. Rather, it seams more likely that their deficit is in learning the appropriate stimulus-
response associations. The Figure 12 modd predicts that this same type of stimulus-response association
learning mediates performance in the information-integration category learning tasks described in Figures 8
and9.

TheFigure 12 modd acoounts for the

categary learning cEficits of Parkinson's and e
Huntington' s disease patients in information- . o
integration tasks because both o these y §
populations suff er from caudatedysfunction. It o il - N
also explains why frontal patients and medial 4 Moz \
temporal lobe amnesiacs arerdatively namal y :

in these tasks — that is, because neither
prefrontal cortex nor medial temporal |obe ‘
structures play a prominent role in the Figure > .
12 moddl. - oS —~

The model shown in Figure 12 is :
strictly a modd of visual category learning.
However, it is feasible that a similar system
existsinthe other modalities, sincethey almost
al aso project directly to the basal gandia,
and then indrectly to frontal cortical areas
(again via the globus palidus and the

) Figure 12. A procedural-memory-based category
thalamus; e.g., Chudler, Sugiyama, & Dong

lear ning system. Excitatory projectionsendinsolidcircles,

1995. The maip dfferen.c.e?sin Whe_rewithin inhibitory projedions end in open circles, and
the basal ganglia they initially project. For dopaminergic projedions are dashed. PFC = prefrontal
example, auditory cortex projects directly to cortex, Cau = caudate nucleus, GP = glohus palli dus, and

the body d the caudate (i.e., rather than to the Th = thalamus.
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tail; Arnalud, Jeantet, Arsaut, & Demotes-Mainard, 1999.

The Perceptual Representation and Medial Temporal Lobe Category Learning Systems

No ore has yet proposed a detailed categary learning modd that is based on the perceptual
representation memory system. However, as noted above, based onwork in the memory literature, it seems
likely that such a categary learning system would be based in sensory cortex (Curran & Schacter, 1996
Schacter, 1994.

In cogritive psychdogy, one of the most popuar and influential theories of category learning is
exemplar theory (Brooks, 1978 Estes, 1986k Medin & Schaffer, 1978 Nosofsky, 1986, which assumes that
categarization dcisionsaremadeby accesgngmemory representations of previously seen exemplars. Although
most exemplar theorists have na taken a strong stand about the neural basis by which these memory
representations are encoded, thosewho have asaumethat the medial temporal |obes are heavily invdved (e.g.,
Pickering, 1997. Despite the popularity of exemplar theory within cogritive psychdogy havever, the most
convincingdirect neuropsychdogical evidencein support of akey role of themedial temporal |obesin category
learning remains the late-training deficit identified in Table 1 (Knowltonet al., 1994). Even <o, thisfindingis
not without controversy, sincearecent neuroimaging study found suppresson d medial temporal | obe activity
inthis ssametask (Poldrack, Prabhakaran et al., 1999. Althoughmany neurobiological modds of hippocampal
function have been proposed, there have been orly a few attempts to apply these modds to category learning
(Gluck, Oliver, & Myers, 1996 Pickering, 1997).

Summary

Althoughhatly debated, the question d whether human categary learningis mediated by oneor several
categary learning systemsis currently unresolved. Recent neuropsychdogical and reuroimaging data support
the hypothesis that diff erent memory systems may participatein dff erent types of categary learningtasks, but
thereislittle current data that all ow stronger conclusions to be drawn.

V. Conclusions

The debate as to whether learning and memory is mediated by one or several distinct systemsis being
waged in many areas of cogritive psychdogy. Althoughthe setting o these debates diff ers — from memory to
functionlearningto dscriminationlearningto category learning— there are a number of common themes that
tieall these debatestogether. First, the methoddoges that are most appropriate for testing between singeand
multiple systems are the same no matter what the domain. For example, the fixed-point property and daible
dissociations are powerful tods that can (and should) be used in any areatrying to resolve thisissie. Second
regardiessof thefidd, it is unreali stic to expect any singe study to resolve the singe versus multiple systems
debate. Instead, it is imperative that all available evidence be esaluated simultaneously. For example, given
threedata setsthat all seamingy point toward multiplesystems, it is nat valuableto show that there iststhree
different singe-system modd s that are each consistent with ore set of data. Theimportant questionis really:
doesthesingemodd that best acocountsfor all threedata sets smultaneously postulate one or multiple systems
of learning and memory? Third, al fidds engaged in the singe versus multiple systems debate should look
seriously toward cogritive neuroscience as a way to add more constraints to the isting modds, and as a
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mechanism for building bridges to aher rdated areas of cogritive psychdogy.

In our view, however it is resolved, the singe versus multiple systems debate is likely to prove a
valuable experience for whatever fidd engages it. The benefit of asking whether there are singe or multiple
systems of learning and memory is that this question aganizes new research eff orts, it encourages coll ecting
data of aqualitatively diff erent nature than has been coll ected in the past, andit also immediatey tiesthefied
in questionto the memory literature and a variety of other seemingy disparate literatures. The one danger that
must beresisted is engagingin endessdebate about what constitutes a system. One' s definition d system will
obviously aff ect how the singe versus multiple systems questionis answered, but the processof asking, and
al its associated benefits, is far more important than the answer itsdf.
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