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Nosofsky and Kruschke (2002) argued that the single-
system ALCOVE model (Kruschke, 1992) can account for
the dual-task category learning data reported by Waldron
and Ashby (2001). In our reply, we argue that Nosofsky and
Kruschke overstated the ability of ALCOVE to account for
the Waldron and Ashby results. In fact, ALCOVE has diffi-
culty with these data, and we show that the only versions of
ALCOVE that actually fit the Waldron and Ashby accuracy
data make incorrect predictions about other previously un-
reported features of that experiment. We also show that the
dual-system COVIS model (Ashby, Alfonso-Reese, Turken,
& Waldron, 1998) naturally predicts these results.

Waldron and Ashby (2001) reported the results of an ex-
periment in which participants learned simple and complex
category structures under typical single-task conditions and
when performing a simultaneous numerical Stroop task.
In the simple categorization tasks, each set of contrasting
categories was separated by a unidimensional explicit rule,
whereas the complex tasks required the integration of in-
formation from three stimulus dimensions and resulted in
rules that were difficult to verbalize. The concurrent Stroop
task dramatically impaired learning of the simple struc-
tures but did not significantly delay learning of the com-
plex structures. Waldron and Ashby argued that single-
system accounts of category learning naturally predict that
a dual task should interfere more strongly with the com-
plex task than with the simple task (it should be easier to
perform two simple tasks at the same time than two diffi-
cult tasks). Since the opposite pattern was observed, Wal-
dron and Ashby argued that their results provided evidence
of at least two separate category learning systems.

In response, Nosofsky and Kruschke (2002) reported the
results of a large computational study that investigated the
predictions of Kruschke’s (1992) single-system ALCOVE
model of category learning in the Waldron and Ashby
(2001) experiment. On the basis of these investigations,
Nosofsky and Kruschke argued that Waldron and Ashby’s
dual-task results do not pose a serious challenge for single-
system models of category learning.

We believe that Nosofsky and Kruschke overstated the
ability of ALCOVE to account for the Waldron and Ashby
(2001) results. In fact, ALCOVE has difficulty with these
data, and we show that the only versions of ALCOVE that
actually fit the Waldron and Ashby accuracy data make in-
correct predictions about other previously unreported fea-
tures of that experiment.

ALCOVE Has Difficulty Fitting the 
Waldron and Ashby (2001) Data

Nosofsky and Kruschke (2002) focused on the ques-
tion of whether ALCOVE can account for the ordinal re-
sult that the concurrent task used by Waldron and Ashby
(2001) interfered more strongly with the learning of the
simple category structures than with the learning of the
complex structures. Their comment ignores the more am-
bitious question of whether ALCOVE can fit the Wal-
dron and Ashby data quantitatively. In fact, despite having
more free parameters (i.e., five) than there are datapoints
(i.e., four), ALCOVE has difficulty providing accurate
fits to the Waldron and Ashby data.

First, consider just the single-task control data. The Wal-
dron and Ashby (2001) participants reached criterion in
this condition in about 15 trials with the simple structures
and in about 50 trials with the complex structures. These
data therefore support the intuition that it is much easier
for people to learn categories that are separated by a simple
unidimensional rule than categories that are separated by
a complex three-dimensional rule that is difficult to de-
scribe verbally. Waldron and Ashby argued that this differ-
ence in difficulty occurs because people use an explicit,
logical-reasoning system to learn the simple unidimen-
sional rules but some other implicit-like system to learn the
complex rules. Since ALCOVE is a single-system model,
it obviously must learn both types of category structures
with the same cognitive architecture. An immediate chal-
lenge for any single-system model is to account for the ob-
served difference in difficulty in the control data, which is
much larger than would be predicted, say, by an ideal ob-
server.1

In fact, the simulations reported by Nosofsky and
Kruschke (2002) indicate that ALCOVE often underpre-
dicts this difficulty difference. This can be seen in Nosof-
sky and Kruschke’s Figure 2, which shows ALCOVE pre-
dictions for 140 different combinations of the ALCOVE
parameters. Consider the predictions of ALCOVE when
there is no attentional learning (i.e., la 5 0). These predic-
tions are generated by randomly selecting attention weights
for the various stimulus dimensions and then holding these
weights fixed throughout the simulated experiment. As
such, they illustrate the predictions of ALCOVE when at-
tention is randomly distributed among the dimensions.
Note that ALCOVE does predict that the three-dimensional
task is more difficult than the unidimensional task, but also
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note that for all 20 combinations of the other parameters,
ALCOVE underpredicts the observed difficulty difference.

When attentional learning occurs, ALCOVE can account
for the observed difference between simple and complex
category learning, but in almost all such cases, it predicts
overly poor performance in the simple unidimensional
condition. A careful examination indicates that in almost
all of the 140 cases shown in Nosofsky and Kruschke’s
(2002) Figure 2, ALCOVE either predicts overly poor per-
formance with the simple structures or too little differ-
ence between the simple and complex structures.

ALCOVE comes close to a perfect fit of the Waldron and
Ashby (2001) control data when lw 5 0.07, c 5 1.50,
and the attention learning rate la 5 0.160 (and f 5 4.5).
When the attention learning rate is set to 0, these same
parameter values allow ALCOVE to also provide good fits
to the dual-task data of Waldron and Ashby. However, note
that with any value of the attention learning rate greater
than 0, the model seriously underpredicts the amount of
interference that the dual task causes in learning the sim-
ple category structures. In fact, this result generalizes to
other sets of parameter values. For any set of parameters
that allow ALCOVE to roughly fit the control data, rea-
sonable fits to the dual-task data require setting la 5 0.

Thus, the Nosofsky and Kruschke (2002) simulations
show that ALCOVE can fit the Waldron and Ashby (2001)
data, but only under the extreme assumption that there is
no attentional learning at all in the dual-task conditions.
This version of ALCOVE makes a very strong predic-
tion. Specifically, since the attention weights are origi-
nally set to random values, ALCOVE predicts that after
reaching criterion accuracy on the simple-category
structures, observers will have no idea that only one di-
mension was relevant in the dual-task condition.

To test this prediction of ALCOVE we ran 5 more par-
ticipants in the Waldron and Ashby (2001) experiment.
The present experiment differed from the Waldron and
Ashby experiment in two respects. First, the two experi-
mental sessions from the Waldron and Ashby experiment
were condensed into a single session. Each participant
first learned two simple (i.e., unidimensional) and two
complex (i.e., three-dimensional) rules under standard
single-task conditions (with rule order being random
across participants). Second, each participant learned a
single, new unidimensional rule under dual-task condi-
tions. After achieving criterion accuracy (eight consecu-
tive correct responses) in the dual-task condition, the par-
ticipants were asked to describe the strategy that they used
in the categorization portion of that part of the experiment.

The accuracy results from this experiment are shown in
Figure 1. Note that they are similar to the results of Wal-
dron and Ashby (2001; although the difference between
the results for the simple and complex structures in the
control condition is even more pronounced in Figure 1 than
in Waldron & Ashby). Even so, 4 of the 5 participants per-
fectly described the unidimensional rule that they used in
the dual-task condition. The 5th participant described a

(two-dimensional) conjunctive rule that included the cri-
tical stimulus dimension. Thus, in contrast to the ALCOVE
predictions, every participant showed significant atten-
tional learning, and 4 of the 5 participants showed per-
fect attentional learning.

One possibility not ruled out by our results, so far, is
that ALCOVE might be able to roughly fit the Waldron and
Ashby (2001) data with some small, but nonzero value of
the attentional learning rate (i.e., la ). As long as the at-
tentional learning rate is greater than zero, some attentional
learning will occur, so it is of interest to ask whether
enough learning will occur in such cases to explain the
accuracy of our verbal reports. The smallest nonzero value
of la investigated by Nosofsky and Kruschke (2002) was
la 5 0.005. Figure 2 of Nosofsky and Kruschke shows that
none of the fits with this value of the attentional learning
rate were good, but better results might be obtained with
even smaller values of la. However, even with la 5 0.005,
ALCOVE predicts very little attentional learning over the
course of the experiment. For example, we conducted a se-
ries of simulations of ALCOVE with la 5 0.005. Like
Nosofsky and Kruschke, we fixed f at 4.5, let c range from
0.75 to 4.5, and lw range from 0.01 to 0.10. In each case, we
simulated the performance of ALCOVE with the simple
category structures until criterion accuracy was reached
(eight consecutive correct responses). At the end of this
learning period, we examined the final values of the atten-
tion weights. The results are shown in Figure 2. Note that in
every case, ALCOVE allocated less than 40% of the total
attention to the single relevant dimension. Of the three ir-
relevant dimensions, they each received at least 19.8% of
the total attention. Thus, even with an attentional learning
rate that is too large to allow ALCOVE to provide good
fits to the Waldron and Ashby data, ALCOVE still pre-
dicts that at the end of training, observers will be allocat-
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Figure 1. Mean number of trials to criterion for the control and
dual-task data.



NOTES AND COMMENT 177

ing most of their attention to irrelevant dimensions. This
prediction was not supported by our data.2

COVIS Easily Accounts for the Waldron and
Ashby (2001) Results

A second interesting and important question is whether
the dual-system model COVIS (Ashby et al., 1998) can ac-
count for these verbal reports. COVIS assumes separate
explicit (rule-based) and implicit (procedural learning-
based) category learning systems that compete throughout
training. A system weight determines the relative contri-
bution that each system makes to the observable catego-
rization response. Initially, the system weight favors the ex-
plicit system, but it is then adjusted up or down, depending
on the relative success of the two systems.

Waldron and Ashby (2001) showed that COVIS fit their
data quantitatively, but they did not address the question of
whether the best-fitting version of COVIS predicted that,
by the end of training, the participants would be aware that
a single dimension was relevant with the simple category
structures. In the COVIS explicit system, the process of se-
lecting among alternative explicit categorization rules is
mediated by frontal cortical structures. Stroop tasks are
known to activate frontal cortex (Bench et al., 1993), so

Waldron and Ashby hypothesized that the effect of the nu-
merical Stroop dual task would be to decrease the efficacy
of the explicit system to select new categorization rules.

COVIS correctly predicts the verbal reports that we col-
lected only if two conditions are met. First, the system
weight on the explicit system must be reasonably large in
order to guarantee that a significant percentage of responses
were generated by the explicit system. Second, the explicit
system must learn the optimal rule. To investigate these
issues we conducted a series of simulations of COVIS.

As mentioned above, Waldron and Ashby (2001) hypoth-
esized that the concurrent task would decrease the ability
of the explicit system to select new categorization rules.
In COVIS, this ability is instantiated in the selection pa-
rameter l (not to be confused with the ALCOVE learning
rates la and lw). Specifically, Waldron and Ashby hypoth-
esized that the concurrent task would decrease l. As in
Waldron and Ashby, in our simulations of COVIS, we first
fit the control data by crudely adjusting all parameters.3
Next, with all parameters except l fixed at these values, we
found the value of l that best fit the dual-task data. Fig-
ure 3 shows that an excellent fit to the Waldron and Ashby
accuracy data occurs when l 5 1.55 for the control data
and l 5 0.35 for the concurrent data (r2 5 .98).

Figure 2. Proportion of attention allocated to each of the four stimulus dimensions averaged across 1,000 replications. The value of
c varied from 0.75 to 4.5 (across columns in the figure) and la varied from 0.01 to 0.1 (across rows in the figure), whereas lw and f
were held constant across at .005 and 4.5, respectively.
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As mentioned above, our simulations focused on two
questions. First, does the explicit system contribute to
category learning under dual-task conditions? Second,
does the explicit system learn the correct unidimensional
rule in the presence of the dual task? Figure 4 shows val-
ues of the COVIS system weight after criterion accuracy is
met for many different values of l. Figure 4 clearly shows
that for all values of l, the system weight favors the explicit
system. Thus, in all these cases, COVIS gives greater
weight to the explicit system than to the implicit system.

On each trial, the COVIS explicit system selects the cat-
egorization rule with the highest salience, where saliences
are updated after each trial according to past reinforce-
ment history, the participant’s tendency to perseverate,
and the ability of the participant to select new rules (see
Ashby et al., 1998, for details of this updating process).
Figure 5 shows the saliences of the four unidimensional
rules on each of the last eight trials before criterion ac-
curacy was met with the unidimensional category struc-
tures. Note that for all values of l, the optimal rule has
the highest salience on virtually all trials. Thus, for this

entire range of l, the COVIS explicit system is consis-
tently using the optimal unidimensional decision rule at
the end of training.

In summary, our simulations of the dual-system model
COVIS produced several important results. First, COVIS
provided excellent fits to the Waldron and Ashby (2001)
accuracy data. Second, over a wide variety of parameter
settings, including those that provided the best fits, the
COVIS explicit system was more heavily weighted than
was the implicit system, and the explicit system always
learned the correct unidimensional decision rule by the
end of training. Because of the last two results, COVIS cor-
rectly predicts that participants will be able to describe the
optimal categorization rule for the simple category struc-
tures under the dual-task conditions.

Conclusions
Nososfky and Kruschke (2002) showed that many

combinations of ALCOVE’s parameters allowed the model
to account for the result that the concurrent task used by
Waldron and Ashby (2001) interfered more strongly with
the learning of the simple-category structures than with
the complex structures. In our reply, we asked whether
ALCOVE could fit the Waldron and Ashby data quanti-
tatively. We showed that the only versions of ALCOVE
that could fit the Waldron and Ashby data made the strong
prediction that after reaching criterion accuracy on the
simple category structures, participants would have no
idea that only one dimension was relevant in the dual-task
conditions. We reported new empirical evidence that
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strongly disconfirms this prediction, and we showed that
the dual-system model COVIS naturally predicts these
new data.

Although we believe that the results presented here are
strong evidence that ALCOVE is not able to account for
results in the Waldron and Ashby (2001) experiment, this
does not mean that all single-system models of category
learning are incompatible with the Waldron and Ashby
data. In fact, we suspect that a clever researcher could con-
struct such a model. For example, it might be possible to
modify ALCOVE, so that it can account for the new ver-
bal report data described here. For this reason, we believe
that significant progress will be made toward answering
the question of whether there are one or more category

learning systems only when a converging operations ap-
proach is used in which many different data sets from a
variety of disparate experimental paradigms are simulta-
neously considered (e.g., Ashby & Ell, 2002).
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NOTES

1. An ideal observer would perform more poorly with the complex
categories (assuming some noise). Both types of category structure are
linearly separable, and in both cases, perfect accuracy can be achieved
by responding with the category that has the most similar prototype. The
category prototypes (i.e., centroids) are two units apart with the simple-
category structures and Ï3 units apart with the complex structures. The
difference between these two distances is much smaller, however, than
the observed difficulty difference (i.e., 15 vs. 50 trials to criterion).

2. One could argue that if we had asked participants which dimen-
sion was most important, they would have been able to respond cor-

rectly, even if most of their attention was allocated to irrelevant dimen-
sions. However, they were instructed to describe the strategy that they
used during categorization. If most of the attention was allocated to ir-
relevant dimensions, it makes sense that at least some of the observers
would mention this.

3. This process yielded the following numerical values: l 5 1.55, the
perserveration parameter was set to 1.25, the increment on the salience
of explicit rules following a correct response and the decrement on the
salience of explicit rules following an incorrect response were both set
to 0.02, the initial weights of the four alternative dimensional rules were
each set to 0.25, the initial learning rate on the implicit system was set
to .0005, and the initial system weights were set to .99 for the explicit
system and .01 for the implicit system. The momentum and decay
terms, and the initial learning rate for the system output node were ir-
relevant in these simulations owing to the use of binary-valued stimu-
lus dimensions. See Ashby et al. (1998) for more details on the COVIS
model.
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