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Categorization is a critical skill that every organism must
possess in at least a rudimentary form, because it allows
organisms to respond differently, for example, to nutrients
and poisons and to predators and prey. There is much re-
cent evidence that human category learning relies on mul-
tiple systems (e.g., Ashby, Alfonso-Reese, Turken, & Wal-
dron, 1998; Ashby & Ell, 2001, 2002a, 2002b; Erickson &
Kruschke, 1998; Pickering, 1997; Smith, Jonides, &
Koeppe, 1996; Smith, Patalano, & Jonides, 1998; Waldron
& Ashby, 2001). In all cases in which multiple systems
have been proposed, it has been hypothesized that one sys-
tem uses explicit (i.e., rule-based) reasoning and at least
one other system involves some form of implicit learning.

Nevertheless, there is still much disagreement. First, the
proposal that there are multiple category-learning systems
is disputed. In particular, Nosofsky and his colleagues have
argued that single-system models can account for many of
the phenomena that have been used to support the notion of
multiple systems (Nosofsky & Johansen, 2000; Nosofsky
& Kruschke, 2002; Nosofsky & Zaki, 1998). Second, even
among those researchers postulating separate explicit and
implicit systems, there is disagreement about the nature of
the implicit system. For example, Ashby et al. (1998) have
proposed a procedural-learning–based implicit system (see
also Ashby & Waldron, 1999; Ashby, Waldron, Lee, &
Berkman, 2001; Waldron & Ashby, 2001). In contrast, sev-
eral researchers have proposed that the implicit system is

exemplar memory based (Erickson & Kruschke, 1998;
Pickering, 1997), and there have also been proposals that
the perceptual representation memory system participates
in implicit category learning (Ashby & Ell, 2001; Knowl-
ton, Squire, et al., 1996; Reber, Stark, & Squire, 1998).

One distinctive feature of procedural learning, which
sets it apart from exemplar-based learning and from per-
ceptual learning, is its association with motor perfor-
mance (e.g., Squire, Knowlton, & Musen, 1993; Will-
ingham, Nissen, & Bullemer, 1989). Whereas there is no
reason to expect that categories learned via an exemplar-
based or a perceptual-learning–based process would
have any close association with a motor response, the
procedural-learning literature suggests that categories
acquired via procedural learning should be more closely
associated with motor responses than are categories ac-
quired via other forms of learning. This article reports
results supporting this prediction. In particular, we de-
scribe results from two experiments in which participants
were required to learn to assign stimuli to one of two con-
trasting categories. In brief, our results support the hy-
pothesis that abstract category labels were learned when
perfect accuracy could be achieved via some explicit rea-
soning strategy but that response positions were learned
when perfect accuracy required integrating information
from separate perceptual dimensions at some predecisional
stage. As such, to our knowledge, these are the first results
to provide direct evidence of a procedural-learning–
based component of perceptual categorization.

Two Different Category-Learning Tasks
Much of the evidence for multiple category-learning

systems comes from two different kinds of tasks (Ashby
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In two experiments, observers learned two types of category structures: those in which perfect accu-
racy could be achieved via some explicit rule-based strategy and those in which perfect accuracy required
integrating information from separate perceptual dimensions at some predecisional stage. At the end of
training, some observers were required to switch their hands on the response keys, whereas the assign-
ment of categories to response keys was switched for other observers. With the rule-based category
structures, neither change in response instructions interfered with categorization accuracy. However,
with the information-integration structures, switching response key assignments interfered with catego-
rization performance, but switching hands did not. These results are consistent with the hypothesis that
abstract category labels are learned in rule-based categorization, whereas response positions are
learned in information-integration categorization. The association to response positions also supports
the hypothesis of a procedural-learning–based component to information integration categorization.
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& Ell, 2001). Rule-based category-learning tasks are
those in which the categories can be learned via some
explicit reasoning process. Frequently, the rule that max-
imizes accuracy (i.e., the optimal strategy) is easy to de-
scribe verbally (Ashby et al., 1998). In the most common
applications, only one stimulus dimension is relevant,
and the observer’s task is to discover this relevant di-
mension and then to map the different dimensional val-
ues to the relevant categories.

Information-integration category-learning tasks are
those in which accuracy is maximized only if informa-
tion from two or more stimulus components (or dimen-
sions) is integrated at some predecisional stage (Ashby
& Gott, 1988). Perceptual integration could take many
forms—from treating the stimulus as a Gestalt to com-
puting a weighted linear combination of the dimensional
values. However, a conjunction rule (e.g., respond A if
the stimulus is small on dimension x and small on dimen-
sion y) is a rule-based task rather than an information-
integration task, because separate decisions are f irst
made about each dimension (e.g., small or large) and
then the outcome of these decisions is combined (inte-
gration is not predecisional). In many cases, the optimal
strategy in information-integration tasks is difficult or
impossible to describe verbally (Ashby et al., 1998).

The two category structures used in the present study
are described in Figure 1. Every stimulus was a single line
that varied across trials in length and orientation. Each
symbol in Figure 1 denotes the length and orientation of
a single stimulus. Category A exemplars are denoted by
plus signs, and Category B exemplars are denoted by cir-
cles. In each condition, there were two distinct categories
that did not overlap, so perfect accuracy was always pos-
sible. Also shown in Figure 1 are the decision bounds
that maximize categorization accuracy. In Figure 1A, the
optimal bound requires observers to attend to line length
and ignore orientation, so we call these unidimensional
categories. With the diagonal categories of Figure 1B,
which were generated by rotating the unidimensional
categories by 45º, equal attention must be allocated to
both stimulus dimensions. In this condition, the most ac-
curate unidimensional rule yields a response accuracy of
about 70%. In addition, because of the continuous-valued
stimulus dimensions, it would be difficult or impossible
to respond optimally in the diagonal condition by using
a unidimensional rule and memorizing exceptions.1

The unidimensional condition is a rule-based task be-
cause there is a simple explicit rule that separates the
contrasting categories. Specifically, the vertical bound
in Figure 1A corresponds to the rule “respond A if the
line is short and B if it is long.” In contrast, the diagonal
condition is an information-integration task. In this con-
dition, perfect accuracy requires integrating length and
orientation information, and there is no simple verbal de-
scription of the optimal decision bound.2

Note that we use the word rule more narrowly than is
common in the psychological literature, where it is often
used to refer to any strategy from an explicit reasoning

process to an algorithm that can be expressed formally.
For example, the optimal decision strategy in the diago-
nal condition shown in Figure 1B could be said to use
the following “rule”: “Respond A if orientation is greater
than length; otherwise, respond B.” However, what does
it mean to compare orientation and length? For example,
which is greater, 43º of orientation or 2 cm of length?
None of the many people we have run in conditions of
this type (over the past decade) have described their de-
cision strategy in this form, even when their data were
well described by this “rule.” Thus, it is important to re-
member that we define rule-based strategy narrowly to
refer specifically to an explicit reasoning process. Note
that according to this criterion, there is no limit on the
complexity of the optimal rule in rule-based tasks. How-
ever, as the complexity of the optimal rule increases, its
salience decreases, and it becomes less likely that ob-
servers will learn the associated categories through an

Figure 1. Category structures used in the unidimensional (A)
and diagonal (B) conditions.
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explicit reasoning process. In fact, Alfonso-Reese (1997)
found that even simple conjunction rules have far lower
salience than do unidimensional rules. This does not
mean that people cannot learn conjunction rules, but
only that they are unlikely to experiment with such rules
unless feedback compels them in this direction. This dis-
cussion should make it clear that the boundary on what
constitutes a rule-based task is fuzzy. Tasks in which the
optimal rule is unidimensional are unambiguously rule
based (at least with separable stimulus dimensions), and
tasks in which the optimal rule is significantly more
complex than a conjunction rule are almost never rule
based. In between, the classification is not so clear-cut.
For this reason, the rule-based tasks used in this article
all have a unidimensional optimal rule.

It is also important to emphasize that despite our use
of the terms rule based and information integration, we
make no assumptions about how people learn these dif-
ferent category structures in any particular application.
For example, there is evidence that pigeons can learn
both types of category structures (Herbranson, Fre-
mouw, & Shimp, 1999), but no one would claim that they
learn rule-based categories via an explicit reasoning pro-
cess. The question of how people learn rule-based and
information-integration categories is strictly empirical.
As such, this particular classification of categorization
tasks is useful only because there are many interesting
empirical dissociations between the two tasks (e.g.,
Ashby, Maddox, & Bohil, 2002; Ashby, Noble, Filoteo,
Waldron, & Ell, 2003; Ashby, Queller, & Berretty, 1999;
Ashby & Waldron, 1999; Maddox, Ashby, & Bohil,
2003).

For each type of category structure shown in Figure 1,
every observer in Experiment 1 completed 12 blocks of

50 trials each. The first 10 blocks were training trials.
On each of these trials, the observers were given 5 sec to
make their categorization responses, and they were given
feedback about their accuracy after every response. The
last 2 blocks of the session measured transfer under dif-
ferent response instructions. In all transfer conditions,
the observers were required to respond within 1.5 sec.
Three types of instructions were used: control, hand
switch, and button switch. These are illustrated in Fig-
ure 2. In the control condition, the only difference from
training was the reduced response deadline. In the hand-
switch condition, the observers began the training blocks
with their hands crossed on the response buttons (i.e.,
left hand on the right button and right hand on the left
button). During the last 2 transfer blocks, the observers
were instructed to “uncross” their hands (i.e., the right
hand on the right button and the left hand on the left but-
ton). The button-switch condition was identical to the
control condition, except that the buttons used to make
the category responses were reversed during the transfer
blocks. The observers were informed of the switch imme-
diately before the switch occurred. Thus, in the button-
switch condition, both the response locations and the
motor responses were reversed, whereas in the hand-
switch condition, only the motor responses were re-
versed. The response deadline was added to all transfer
conditions to ensure that the observers could not over-
come an interference from, say, a button switch by simply
inhibiting their initial response. If there is a procedural-
learning component in either rule-based or information-
integration category learning, a hand or a button switch
could cause an interference at the time of transfer.

Results from the procedural-learning literature allow
us to sharpen these predictions considerably. The most

Figure 2. Design of the three conditions in Experiment 1. “A” and “B” denote the locations of the re-
sponse keys assigned to Categories A and B, respectively. “L” and “R” denote the left and the right hands,
respectively.
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popular experimental paradigm in recent investigations
of procedural learning uses Nissen and Bullemer’s
(1987) serial reaction time (SRT) task. In the prototypi-
cal application, one of n stimuli is presented on each
trial, and each stimulus is associated with a different re-
sponse key. The observer’s task is to depress the correct
key as quickly as possible. The greatest improvements in
reaction time occur when the stimulus sequence has
some repeating structure, even when observers display
no explicit knowledge of the sequential structure (a
defining characteristic of procedural learning) and even
when observers suffer from medial temporal lobe amne-
sia (Nissen & Bullemer, 1987; Reber & Squire, 1994).
Although there is not universal agreement, the prevailing
view seems to be that SRT learning involves both im-
plicit and explicit components (for a review, see Curran,
1995). Willingham (1998) has hypothesized that in SRT
learning, an explicit system learns stimulus positions,
whereas an implicit system learns response positions. In
other words, the explicit system learns the spatial location
of the next stimulus in the sequence, whereas the implicit
system learns the position of the next motor response to
be executed. As impressive evidence in support of this
hypothesis, Willingham, Wells, Farrell, and Stemwedel
(2000) have shown that changing response locations in-
terferes with implicit SRT learning, even when the se-
quence of stimulus positions is unchanged. They also
showed that implicit SRT learning is maintained if the
response locations remain unchanged, even if the se-
quence of finger movements changes (i.e., in a hand-
switch condition). Willingham et al.’s (2000) results pro-
vide a strong test of the controversial hypothesis that
information-integration category learning is mediated by
a procedural-learning–based categorization system. If
this is the case, then with the diagonal categories, an in-
terference should occur in the button-switch condition,
but not in the hand-switch condition. Furthermore, if
learning in the rule-based conditions is mediated by an
explicit reasoning system, no selective interference
should be observed.

EXPERIMENT 1

Method
Observers and Design . In this experiment, we used a 2 3 3 fac-

torial design, with two category types (unidimensional/ diagonal) and
three types of response instructions (control/hand-switch/ button-
switch). One hundred sixteen observers were solicited from the

University of California, Santa Barbara community and received
course credit for participation. The number of observers who par-
ticipated in each of six experimental conditions was as follows:
unidimensional/ control, 16; unidimensional/ hand-switch, 13;
unidimensional/ button-switch, 13; diagonal/control, 22; diagonal/
hand-switch, 21; and diagonal/ button-switch, 38. No observer par-
ticipated in more than one experimental condition. All the ob-
servers reported 20/20 vision or vision corrected to 20/20. Each ob-
server completed one session of approximately 45-min duration.
The criterion for learning was defined as 70% correct during the
block preceding the change in response instructions (i.e., Block 10).
The data from the observers who did not meet this criterion were
excluded from all the subsequent analyses. This criterion resulted
in the exclusion of 1 observer each from the control and the hand-
switch conditions with the unidimensional category structures and
1, 2, and 3 observers, respectively, from the control, hand-switch,
and button-switch conditions with the diagonal category structures.

Stimuli and stimulus generation . In the experiment, we used
the randomization technique introduced by Ashby and Gott (1988),
in which each category was defined as a bivariate normal distribution.
Each category distribution was specified by a mean and a variance on
each dimension and by a covariance between dimensions. The exact
parameter values are displayed in Table 1. On each trial, a random
sample (x, y) was drawn from the Category A or B distribution, and
these values were used to construct a stimulus line of length x pixels
and orientation y 3 (p /600) radians. The scale factor (p /600) was cho-
sen from past research to make changes in perceived length about
equally discriminable to changes in perceived orientation. The com-
plete set of stimuli used in the experiment are shown in Figure 1.3 Each
symbol in Figure 1 denotes the length and orientation of a single
line stimulus. Category A stimuli are denoted by the + signs, and
Category B stimuli are denoted by the circles. For both the uni-
dimensional and the diagonal conditions, the two categories had iden-
tical length and orientation variances and an identical length–
orientation covariance. Under these conditions, the optimal deci-
sion bounds are the vertical and diagonal lines shown in Figure 1.

First, we generated the stimuli for the unidimensional conditions
(Figure 1A) by randomly sampling 300 stimuli from the Category A
distribution and 300 stimuli from the Category B distribution. A
linear transformation was then performed to ensure that the sample
and the population means, variances, and covariances were identi-
cal. The order of the resulting 600 stimuli was then randomized sep-
arately for each observer and divided into 12 blocks of 50 trials
each. The stimuli for the diagonal conditions (Figure 1B) were gen-
erated by rotating the unidimensional categories 45º clockwise
around a central point located at 350 pixels in length (3.75º of vi-
sual angle) and 350 orientation units (i.e., 105º from horizontal).
Thus, the optimal strategy in the diagonal condition required inte-
grating information from both the length and the orientation of the
stimulus. For these category structures, the best unidimensional
rule would achieve approximately 70% accuracy.

The stimuli were computer generated and displayed on a 15-in.
CRT with 832 3 624 pixel resolution in a dimly lit room. Each line
was presented in white on a black background and subtended a visual
angle between 1.0º and 6.5º. The midpoint of the line was fixed at the

Table 1
Parameter Values Used in the Generation of the Unidimensional and Diagonal Category Structures

Means Variances

Category Length Orientation (Both Categories) Covariance
Structure Category A Category B Category A Category B Length Orientation (Both Categories)

Unidimensional 280 420 350 350 ,330 14,000 ,0
Diagonal 300 400 400 300 8,000 8,000 7,800
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center of the monitor. To minimize line jaggedness, Alfonso-Reese’s
(1997) anti-aliasing routine, developed for use with Brainard’s (1997)
Psychophysics Toolbox, was applied.

Procedure. The observers were run individually in a dimly lit
testing room. They were told that there were two equally likely cat-
egories and that perfect performance was possible.

There were three experimental conditions: control, hand switch,
and button switch. In all the conditions, the observers depressed the
two response keys with their index fingers, and trial-by-trial feedback
was provided. In the control condition, the observers were given
500 trials (10 blocks of 50 trials) of training, with 5 sec to make their
response. They were then given 100 trials (2 blocks of 50 trials),
with 1.5 sec to respond. If a response was not given in that time pe-
riod, the observer was prompted to speed up his or her response, and
that trial was discarded. A brief (1-sec) high-pitched tone (500 Hz)
was presented if the response was correct, and a low-pitched tone
(200 Hz) was presented if the response was incorrect. In addition,
feedback was given at the end of each block of 50 trials regarding
the participant’s accuracy during that block. The response–stimulus
interval was 1 sec. 

In the hand-switch condition, the observers began the first 500
trials with their hands crossed on the response buttons (i.e., left
hand on the right button and right hand on the left button). For the
last 100 trials, the observers were instructed to “uncross”  their
hands (i.e., the right hand on the right button and the left hand on
the left button). The button-switch condition was identical to the
control condition, except that the buttons used to make the category
response were reversed for the last 100 trials. Thus, in the button-
switch condition, both the response location and the motor response
were reversed, whereas in the hand-switch condition, only the
motor responses were reversed. The observers were instructed at
the beginning of the experiment that the response instructions
would change following Block 10 and that they would be informed
of the switch immediately before the switch occurred. The words
“respond quickly,” “respond quickly and switch your hands now,”
and “respond quickly and the response buttons will now be
switched” were displayed on the monitor immediately prior to the
change in the response instructions in the control, hand-switch, and
button-switch conditions, respectively.

Results
Accuracy-based analyses. The learning curves for

each of the three experimental conditions are shown in Fig-
ure 3. Several important trends are evident. First, as was
expected, accuracy was consistently higher with the uni-
dimensional structures than with the diagonal structures.
Second, learning was abrupt with the unidimensional
structures but was gradual with the diagonal structures.
Third, during the critical Transfer Blocks 11 and 12, there
was no decrement in performance with the unidimensional
structures in any of the response conditions. Fourth, with
the diagonal structures, accuracy declined in Block 11 in
all three response conditions, and this loss was greatest in
the button-switch condition. Finally, during the last block,
there was an accuracy recovery, in all three response con-
ditions, of about the same magnitude. However, in the
control and the hand-switch conditions, this recovery com-
pletely erased the losses during Block 11, but in the button-
switch condition, accuracy was still much lower in
Block 12 than at the end of the training period.

The most important question for statistical analysis is
whether a change in response instructions caused an inter-
ference. For example, suppose that switching the response

buttons did interfere with the expression of category
learning. A problem in documenting such interference,
however, is that no matter how great this interference,
eventually the observers would adapt to the new button
locations and the interference would disappear. So if too
many transfer trials are included in the analysis, no in-
terference could ever be discovered, no matter how large
that interference was initially. Ideally, then, only one
transfer block would be included in the analyses. The
complication is that there were two types of changes in
response instructions in Experiment 1: (1) hand and
button switches and (2) the introduction of a response
deadline. Therefore, to verify a possible hand- or button-
switch interference, we must first account for any possible
response deadline interference. In fact, Figure 3 shows
that with the diagonal category structures, even the control
group experienced a significant drop in accuracy during

Figure 3. Unidimensional and diagonal category-learning
curves for the control (A), the hand-switch (B), and the button-
switch (C) conditions in Experiment 1.
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Block 11, which disappeared by Block 12 (a statistical
analysis is presented below). Thus, in addition to any in-
terference that might have been caused by switching
hands or response buttons, with the diagonal categories
there is strong evidence that mild speed stress also
caused a temporary interference that disappeared after
one block. For this reason, it is important to include
Block 12 in any further statistical analyses.

An analysis of the accuracy rates prior to (Block 10)
and following (Blocks 11 and 12) the change in response
instructions largely supported the conclusions drawn
from a visual analysis of the Figure 3 learning curves. To
begin with, we investigated the effect of the change in
response instructions by performing a 2 (category type:
unidimensional vs. diagonal)3 3 (response instructions:
control vs. hand switch vs. button switch) 3 3 (blocks:
10–12) mixed design analysis of variance (ANOVA, with
block as the within-subjects factor). The main effects of
category type [F(1,109) = 105.1, MSe = 100.78, p < .01],
response instructions [F(2,109) = 6.16, MSe = 100.78,
p < .01], and block [F(2,218) = 23.59, MSe = 31.98, p <
.01] were all significant. More important, however, these
main effects were qualified by a significant three-way
interaction [F(4,218) = 5.16, MSe = 31.98, p < .01]. Be-
cause we hypothesized that the effect of transfer would
differ for the unidimensional and the diagonal category
structures, we chose to examine the three-way interaction
by performing separate response instructions 3 block
ANOVAs for the unidimensional and the diagonal cate-
gories. For the unidimensional category structures, nei-
ther the main effect of response instructions [F(2,37) =
0.03, MSe = 27.12, p = .97], nor the main effect of block
[F(2,37) = 3.07, MSe = 29.93, p = .06], nor the response
instruction 3 block interaction [F(4,37) = 1.49, MSe =
29.93, p = .21] was significant. This analysis indicates
that neither the sudden introduction of mild speed stress
nor switching hands or response buttons interfered with
categorization accuracy in the unidimensional conditions.
This is strong evidence that the observers in these condi-
tions were learning abstract category labels that were not
tied to specific motor programs or response positions.

A different pattern of results was observed for the di-
agonal category structures. The main effects of both re-
sponse instruction [F(2,72) = 9.54, MSe = 105.50, p <
.01] and block [F(1,72) = 116.63, MSe = 34.85, p < .01]
were significant. However, these main effects were qual-
ified by a significant response instruction 3 block inter-
action [F(2,72) = 18.83, MSe = 34.85, p < .01], suggest-
ing that the change in accuracy across response blocks
depended on the response instructions. A simple main
effects analysis revealed a pattern of results consistent
with the visual analysis of Figure 3. First, as was indi-
cated above, there was a significant decrease in accuracy
from Block 10 to Block 11 for the control group ( p <
.01), suggesting that introducing a mild speed stress sig-
nificantly lowered accuracy for the first 50 trials after
the response deadline was imposed.4 Even so, perfor-
mance completely recovered during the second block of

50 trials (as evidenced by the lack of a significant dif-
ference between Blocks 10 and 12; p = .93). Second, this
same pattern of results was observed in the hand-switch
group—that is, a significant decrease in accuracy during
Block 11 ( p < .01), followed by a complete recovery dur-
ing Block 12 ( p = .21). Similarly, performance in the
button-switch group also significantly decreased in
Block 11 ( p < .01), but in contrast to the control and the
hand-switch groups, performance did not recover during
Block 12 ( p < .01). Recall that, in addition to experi-
encing the same sudden speed stress as the control
group, the observers in the hand-switch group were also
required to switch their hands on the response keys. De-
spite this extra burden, the drop in accuracy during the
first block after these changes was no different than the
reduction observed in the control group [t(38) = 20.09,
SE = 2.61, p = .93]. In contrast, the button-switch group
showed a much larger initial performance decrement
than did either the control group [t(54) = 5.17, SE = 2.32,
p < .01] or the hand-switch group [t(52) = 4.91, SE =
2.39, p < .01]. Therefore, unlike switching the hands, re-
versing the button assignments caused a substantial in-
terference (decrement in performance between Block 10
and Block 11) in the diagonal condition. In sum, the re-
sults of these analyses are consistent with the hypothesis
that the observers learn response positions in information-
integration category learning, rather than abstract cate-
gory labels or specific motor programs.

Model-based analyses. The interference in the button-
switch condition with the diagonal categories could have
occurred because the change in response locations inter-
fered with the categorization strategy used by the ob-
servers or because it induced the observers to switch to
a less accurate strategy. To test between these two alter-
natives, we f it a number of different decision bound
models (Ashby, 1992a; Maddox & Ashby, 1993) to each
observer’s responses. Decision bound models assume
that each observer partitions the perceptual space into re-
sponse regions by constructing a decision bound. On
each trial, the observer determines which region the per-
cept is in and then emits the associated response. Two
different types of models were fit to each observer’s re-
sponses (see the Appendix for more details). One type
was compatible with the assumption that the observers
used an explicit rule-based strategy, and one type as-
sumed an information-integration strategy.

Table 2 shows the percentage of the observers whose
data were best fit by a rule-based model. Inspection of
Table 2 indicates that with the unidimensional categories,
most observers used a rule-based strategy both prior to
and during transfer. Importantly, a comparison of the pre-
and the post-transfer data in Table 2, using a normal ap-
proximation to the binomial distribution, suggested that
the change in response instructions had no significant ef-
fect on the dominance of rule-based strategies in any of
the conditions [control, z = 0.61, SD = 0.11, p > .05; hand
switch, z = 0, SD = 0, p > .05; button switch, z = 1.04, SD =
0.07, p > .05]. Similarly, most observers who learned the
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diagonal categories used an information-integration,
rather than a rule-based, strategy both before and during
transfer. However, an analysis of the Table 2 data re-
vealed that although the change in response instructions
had no effect in the control condition [z = 0.48, SD =
0.10, p > .05], it did cause an increase in the dominance
of rule-based strategies in the hand-switch [z = 1.97,
SD = 0.08, p < .05] and button-switch [z = 2.78, SD =
0.06, p < .01] conditions. Thus, the instruction change
disrupted the categorization strategy used by the ob-
servers more strongly with the diagonal structures than
with the unidimensional structures, at least when hands
or response buttons were switched. It appears, then, that
information-integration strategies may be more fragile
than rule-based strategies, in the sense that they are more
easily disrupted by changes in experimental procedures.

Table 2 indicates that with the diagonal categories, a
large number of the observers switched strategies when
the response instructions changed. Because it is possible
that the interference observed with the diagonal categories
occurred simply because the participants switched to a
less accurate response strategy, the data were examined
for the observers who did not switch strategies. Analyz-
ing the accuracy for those observers who used a strategy
of the same type as the optimal classifier both before and
after the change in response instructions (i.e., rule based
with the unidimensional categories and information in-
tegration with the diagonal categories) did not change
the pattern of results observed in the analysis of the ac-
curacy data shown in Figure 3.

EXPERIMENT 2

In Experiment 1, the diagonal categories were created
by rotating the unidimensional categories shown in Fig-
ure 1 by 45º. For this reason, an ideal observer would
perform equally on the two category structures, even if
susceptible to perceptual and criterial noise (as would
any common cluster or discriminant analysis algorithm).
Even so, our observers were consistently less accurate
on the diagonal categories, a result that replicates many
other studies. We would argue that this accuracy differ-
ence is found in humans, but not in ideal observers, be-
cause humans have a system that can quickly learn uni-
dimensional categories but this same system is relatively
useless at learning the diagonal categories. Even if this

were true, however, one possible complication that could
cloud the interpretation of the Experiment 1 results is
that, because of the accuracy difference, observers in the
unidimensional conditions had achieved a higher level
of expertise at the time of transfer than had observers in
the diagonal conditions. That is, although the observers
in the two conditions had the same number of training
trials, the diagonal categories took longer to learn, so the
observers in these conditions had developed less exper-
tise at the time of transfer than had the observers learn-
ing the unidimensional categories (i.e., note the differ-
ence in the learning curves shown in Figure 3). Because
of this difference, the results of Experiment 1 make it
difficult to rule out the hypothesis that switching hands
or response keys interferes with categorization only
when the categories are not well learned. The idea here
is that, early in learning, category representations are
fragile, and any change in the manner in which category
knowledge is expressed could be catastrophic. As greater
expertise is developed, however, category representa-
tions become more stable and might, therefore, be used
in more flexible ways.

Experiment 2 tested this hypothesis. The conditions of
Experiment 1 were replicated, except that the observers
learning the diagonal categories were given twice as
much training as they had received in Experiment 1,
whereas the observers learning the unidimensional cate-
gories were given only 30% as much training as in Ex-
periment 1. Thus, in Experiment 2, at the time of trans-
fer, the observers learning the unidimensional categories
were less expert than the observers learning the diagonal
categories. As a result, if the expertise hypothesis is cor-
rect, some sort of interference should occur in the uni-
dimensional conditions, but no interference should be
observed in the diagonal conditions.5 However, if rule-
based categorization is mediated by a system that learns
abstract category labels, whereas information-integration
categorization is mediated by a procedural-learning–based
system that learns response positions, changing the
amount of training the observers receive should have rel-
atively little effect on the amount of interference that oc-
curs when the hands or the response keys are switched.

Method
Observers and Design . Forty-two observers from the Univer-

sity of California, Santa Barbara community either received course
credit for participation in this experiment (those learning the uni-
dimensional categories) or were paid $30 (those learning the diag-
onal categories). The number of participants in each of the experi-
mental conditions were as follows: unidimensional/ control, 10;
unidimensional/ hand-switch, 11; unidimensional/ button-switch, 11;
diagonal/control, 9; and diagonal/ button-switch, 7. No observer par-
ticipated in more than one experimental condition. All the observers
reported 20/20 vision or vision corrected to 20/20. Each observer
in the unidimensional conditions completed one session of approx-
imately 15-min duration. Each observer in the diagonal conditions
completed two sessions of approximately 45-min duration that were
separated, on average, by 24 h. The criterion for learning was de-
fined as 70% correct during the block preceding the change in re-
sponse instructions. The data from the observers who did not meet

Table 2
Percentages of Observers Whose Data Were Best Fit by a 

Rule-Based Model One Block Before and After the 
Change in Response Instructions in Experiment 1

Category Structure Response Instruction Before After

Unidimensional control 86.7 93.3
hand switch 100 100
button switch 92.3 100

Diagonal control 9.5 14.3
hand switch 0 15.8
button switch 17.1 34.3
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this criterion were excluded from all the subsequent analyses. This
criterion resulted in the exclusion of 2 observers from the diagonal/
control condition.

Stimuli and stimulus generation . The stimuli and stimulus
generation procedures were identical to those in Experiment 1.

Procedure. The experimental procedures were identical to those
in Experiment 1, except for the following. Each participant in the
unidimensional conditions completed 5 blocks of trials (with 50 tri-
als per block), and the change in response instructions occurred
after Block 3 for all the conditions. Each participant in the diago-
nal conditions completed 12 blocks of training (50 trials per block)
during the first experimental session. The second session occurred
approximately 24 h later. The procedure during the second session
was identical to that of the single sessions used in Experiment 1. Fi-
nally, the diagonal/hand-switch condition was omitted (see note 5).

Results
The learning curves for each of the three unidimen-

sional conditions are shown in Figure 4. Note that the ob-
servers learned this category structure within two
blocks. Also note the apparent lack of any effect of speed
stress. In fact, for the control group, accuracy in the first
transfer block was not significantly different from accu-
racy in the final training block [t(10) = 1.31, SE = 1.12,
p = .22]. For this reason, our statistical analyses can be
focused on the more important first transfer block.

A 3 (response instructions) 3 2 (block: 3 vs. 4) mixed
ANOVA was performed on the accuracy data to investi-
gate performance at transfer. Neither the main effect of
response instructions [F(2,29) = 0.51, MSe = 17.62, p =
.61] nor the response instructions 3 block interaction
[F(2,29) = 0.10, MSe = 7.51, p = .90] was significant.
There was a small but significant decrease in accuracy
across response instructions from Block 3 to Block 4
(the average was 2%; p < .05). However, the magnitude of
this decrease did not differ across conditions, so it does

not support the expertise hypothesis. More important,
the absence of a main effect of response instructions or
of an interaction between response instructions and
block argues strongly against the expertise hypothesis.

In the case of the diagonal categories, the learning
curves from the control and the button-switch conditions
are shown in Figure 5. In both conditions, the observers
steadily improved their accuracy throughout the training
blocks, and there was no effect of speed stress during the
first transfer block in the control condition [t(6) = 0.44,
SE = 2.06, p = .68]. The latter result suggests that the
extra training (i.e., as compared with Experiment 1) was
effective. In particular, at the time of transfer, the ob-
servers in the diagonal conditions of Experiment 2 were
practiced enough that the sudden introduction of a re-
sponse deadline had no effect on their performance. For
this reason, the analyses that follow can focus on the crit-
ical first transfer block.

A comparison of the last block before transfer and the
first block after is quite clear. Despite 1,100 trials of
training, switching the response keys again caused a
massive decrement in performance (M = 9.0%, SD =
7.7%), whereas a simple introduction of mild speed
stress had virtually no effect on performance (M = 0.9%,
SD = 5.45%). The results of a 2 response instructions 3
2 block (Block 22 vs. Block 23) mixed ANOVA provided
support for these conclusions. The main effect of re-
sponse instructions was not significant [F(1,12) = 0.92,
MSe = 50.98, p = .36], but there was a significant main
effect of block [F(1,12) = 7.58, MSe = 22.4, p < .05] that
was qualified by a significant response instructions 3
block interaction [F(1,12) = 5.05, MSe = 22.4, p < .05].
A simple main effects analysis suggests that the inter-
action was driven by the presence of interference in the

Figure 4. Unidimensional learning curves in Experiment 2.



1122 ASHBY, ELL, AND WALDRON

button-switch condition ( p < .01) and the lack of inter-
ference in the control condition ( p = .73).

A comparison of Experiments 1 and 2 suggests that
the biggest effect of extra training is to make catego-
rization more immune to mild speed stress. In Experi-
ment 1, accuracy of the control group dropped 6.7%
when mild speed stress was introduced, whereas in Ex-
periment 2, the control group showed no accuracy loss at
all. It is well known that categorization response times
decrease with practice (e.g., Nosofsky & Alfonso-Reese,
1999), so one possibility is that following the extra day
of practice, the observers learning the diagonal cate-
gories in Experiment 2 were responding fast enough at
the time of transfer so that the 1.5-sec response deadline
was not experienced as stressful. Clearly, however, the
accuracy loss exhibited by the button-switch group sug-
gests that a similar phenomenon was not driving the ac-
curacy loss that was seen in this group in Experiment 1.

Rule-based and information-integration models were fit
to each observer’s responses. Consistent with Experiment1,
all the observers in both the control and the button-switch
conditions in Experiment 2 used information-integration
strategies before the response instructions changed. The
majority of the observers continued to use information-
integration strategies following the change in response
instructions (100% and 86% in the control and the button-
switch conditions, respectively). This suggests that the
additional training of Experiment 2 solidified the use of
information-integration strategies.

GENERAL DISCUSSION

The results of Experiments 1 and 2 lead to strikingly
similar conclusions. When categories that can be sepa-

rated by a unidimensional rule are learned, there is no
interference from the sudden introduction of mild speed
stress, from requiring the observers to switch their hands
on the response keys, or from reversing the button as-
signments. These results strongly suggest that with the
unidimensional categories, the observers learned ab-
stract category labels. As such, our results are consistent
with the hypothesis that learning of the unidimensional
categories is mediated by an explicit rule-based category-
learning system in which the final product is a represen-
tation of an abstract category label. Under this scenario,
the hand- and button-switch manipulations were accom-
modated by a straightforward remapping from the cate-
gory label representations to motor planning and pro-
duction systems.

The type of learning that occurred with the diagonal
categories appears to be of a very different nature. First,
there was a robust effect of speed stress on categorization
accuracy in the diagonal condition that disappeared with
practice. Second, there was no further interference caused
by switching hands on the response buttons. In this con-
dition, the position of the response buttons remained in-
variant, but the motor programs changed. Thus, the ab-
sence of any further interference in the hand-switch group
(of Experiment 1) suggests that the category representa-
tion learned with the diagonal categories was more ab-
stract than a simple motor command. Third, switching the
motor response, as well as the position of the response
buttons, produced significant additional interference that
did not decrease with extended practice. This suggests
that, in information-integration categorization, the ob-
servers learn what action to execute, but not a specific
motor program with which to produce that action. In our
experiments, the necessary action was to depress the re-

Figure 5. Diagonal learning curves for the control and the button-switch conditions over
2 days of training in Experiment 2.



PROCEDURAL LEARNING IN CATEGORIZATION 1123

sponse button on the left in the presence of an exemplar
from Category A and the response button on the right to
an exemplar from Category B. As long as these actions
did not change, there was no lasting interference caused
by a sudden introduction of mild speed stress (e.g., in the
hand-switch condition). Changing these actions, however,
caused a profound and lasting interference.

All of these results are generally consistent with the
many recent hypotheses that category learning is medi-
ated by two or more separate systems (Ashby et al.,
1998; Ashby & Ell, 2001, 2002b; Erickson & Kruschke,
1998; Pickering, 1997; Waldron & Ashby, 2001). For ex-
ample, the dual-system COVIS model (Ashby et al.,
1998) assumes separate explicit (rule-based) and im-
plicit (procedural-learning–based) category-learning
systems that compete throughout training. A system
weight determines the relative contribution that each
system makes to the observable categorization response.
Initially, the system weight favors the explicit system,
but it is then adjusted up and down depending on the rel-
ative success of the two systems. In rule-based tasks, the
explicit system is successful, so the system weight
strongly favors the explicit system throughout category
learning. In information-integration tasks, however, the
explicit system is less successful, so the weight given the
procedural-learning system gradually grows. Even at as-
ymptote, however, the weight given the explicit system
in information-integration tasks remains reasonably
large (because the explicit system is still suggesting
many correct responses; Ashby et al., 1998; Ashby &
Ell, 2002a). Thus, COVIS predicts that even highly prac-
ticed observers will use explicit rules on some trials in
information-integration tasks (e.g., the rule that long
lines are in Category B and short lines are in Category A
works for the longest and the shortest lines in the diago-
nal categories of Figure 1). This could be why accuracy
did not drop all the way to chance (or below) in the button-
switch conditions and also why some observers were so
adept at switching to a rule-based strategy during the
transfer blocks.

Our results show that switching response locations se-
lectively interferes with learning of the diagonal cate-
gories even when pretransfer accuracy is the same as
with the unidimensional categories. Even so, one possi-
ble criticism of our conclusions is that even when accu-
racy is controlled in this way, the diagonal categories are
still more difficult to learn than the unidimensional cat-
egories. If so, then perhaps our results show only that dif-
ficult tasks are more susceptible to interference than are
simpler tasks.

This difficulty hypothesis is problematic for several
reasons. First, there is no widely accepted measure of
difficulty. Our experiments controlled difficulty accord-
ing to two popular definitions (i.e., ideal observer per-
formance and observed asymptotic accuracy), but many
other definitions are possible (Alfonso-Reese, Ashby, &
Brainard, 2002). Because there is such wide disagree-
ment about how to define difficulty, it is not clear that

noncontroversial a priori predictions could be made from
the difficulty hypothesis.

Second, several studies disconfirm the hypothesis that
difficulty is the only difference between the unidimen-
sional and the diagonal categories. If this were true, then
unidimensional rule-based tasks should always be less
susceptible to interference than are information-integration
tasks. Evidence disconfirming this prediction was re-
ported by Waldron and Ashby (2001), who showed that
a simple rule-based category-learning task (which re-
quired attending to a single stimulus dimension) was dis-
rupted more by a simultaneous (numerical Stroop) task
than was a complex information-integration task (which
required attending to three stimulus dimensions). Simi-
larly, Ashby et al. (2003) found that Parkinson’s disease
patients were much more impaired at rule-based cate-
gory learning (one-dimensional) than at information-
integration category learning (three-dimensional).6

These studies are important because they show that it
is invalid to predict a priori that learning in the easier
unidimensional conditions is necessarily more resistant
to interference than learning in the more difficult diago-
nal conditions. Therefore, the only way to know that
switching response buttons will be more detrimental in
the diagonal conditions is to run the experiment. Our
data establish this result. We believe this selective inter-
ference occurred because information-integration cate-
gory learning is largely procedural. Although we con-
trolled for several measures of difficulty, it is important
to acknowledge that our results do not completely rule
out the possibility that difficulty played a role in our re-
sults. More work is needed on the role of difficulty in
category learning.

CONCLUSIONS

Some categories seem to be closely linked to a motor
response. For example, when one suddenly sees a snake,
it is natural to withdraw or retreat. When one plays ten-
nis, certain shots hit by an opponent cause one to pre-
pare a backhand return almost automatically, whereas
other shots elicit forehand returns. Many other cate-
gories, however, seem completely divorced from any
motor response. For example, categorizing an object as
a square does not compel any specific action. The pres-
ent results provide empirical evidence supporting this in-
tuition.

Our results can be considered an extension of the re-
sults of Willingham et al. (2000) to the field of category
learning. As was mentioned above, Willingham et al.
(2000) showed that changing response locations inter-
feres with implicit SRT learning but changing the se-
quence of finger movements does not. On the basis of
these results, Willingham et al. (2000) argued that im-
plicit SRT learning is the learning of response positions.
Implicit SRT learning is perhaps the best-known exam-
ple of procedural learning. As such, the similarity of our
results to those of Willingham et al. (2000) supports the
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hypothesis that information-integration category learn-
ing is largely mediated by a procedural-learning–based
system.
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NOTES

1. A rule-plus-exception model that allows generalization from excep-
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because amnesiacs cannot memorize exceptions, they should always use
unidimensional strategies, which is incorrect (Filoteo, Maddox, &
Davis, 2001). Second, it predicts that no factor should interfere with
rule-based learning more strongly than with information-integration
learning. Several studies have disconfirmed this prediction (Ashby,
Noble, Filoteo, Waldron, & Ell, 2003; Waldron & Ashby, 2001).

2. We have used similar category structures in a number of other ex-
periments (Ashby, Maddox, & Bohil, 2002; Ashby, Queller, & Berretty,
1999), in addition to a second set of unidimensional and diagonal struc-
tures that were obtained by rotating the categories shown in Figures 1A
and 1B each by 90º. Thus, in these other experiments, two unidimen-
sional categories (horizontal and vertical tending) and two diagonal cat-
egories (positive and negative slope) were used. In each of these exper-
iments, there was no qualitative difference between the observers’
performance with either unidimensional category structure, nor was
there a difference between performance with either diagonal category
structure. For this reason, in the present study, we included only a sin-
gle example of each category structure type.

3. The length and orientation dimensions in Figure 1 are expressed in
degrees of visual angle and degrees from horizontal, respectively, for

presentation purposes only. To generate the stimuli, length was defined
in pixels, and orientation was defined in arbitrary units that resulted in
a range of 0 to 700 units on both the length and the orientation dimensions.

4. All pairwise comparisons were made using Sidak-corrected 95%
confidence intervals.

5. The expertise hypothesis predicts that increased practice should
make categorization less susceptible to interference when response in-
structions are suddenly changed. No interference was observed in the
hand-switch condition with the diagonal categories in Experiment 1. As
a result, the expertise hypothesis predicts that extra practice should have
no effect in this condition. For this reason, the hand-switch condition
was dropped for the diagonal categories in Experiment 2.

6. Parkinson’s disease (PD) patients are impaired in procedural learn-
ing (e.g., Soliveri, Brown, Jahanshahi, Caraceni, & Marsden, 1997;
Thomas-Ollivier et al., 1999), so we predict PD deficits in information-
integration category learning. In fact, such deficits do exist (Knowlton,
Mangels, & Squire, 1996; Maddox & Filoteo, 2001). However, Ashby
et al. (1998) also predicted that the extensive damage that PD causes to
the head of the caudate nucleus would lead to an even greater PD defi-
cit in rule-based category learning.

APPENDIX

Here, we briefly describe the decision bound models. For more details, see Ashby (1992a) or Maddox and
Ashby (1993).

Rule-Based Models
Two models assume that the observers use an explicit rule-based strategy.
The unidimensional model. This model assumes that the observer sets a criterion on a single perceptual

dimension and then makes an explicit decision about the level of the stimulus on that dimension (Ashby &
Gott, 1988; Shaw, 1982). It has two free parameters: a decision criterion on the relevant perceptual dimension
and the variance of internal (perceptual and criterial) noise (i.e., s2). In the unidimensional conditions, a spe-
cial case of the unidimensional model assumes that observers use the unidimensional decision bound that
maximizes accuracy (i.e., the vertical bound shown in Figure 1A). This special case has only one free pa-
rameter (i.e., noise variance).

The conjunction model. Another possible rule-based strategy is that the observers use a conjunction rule
in which they make separate decisions about the levels on the two dimensions and then select a response on
the basis of the outcome of these two decisions. Conjunction models have three parameters (a criterion on each
dimension and s 2).

Information Integration Models
The general linear classifier (GLC). This model assumes that the decision bound between each pair of cat-

egories is linear. This produces an information-integration decision strategy, because it requires linear integration
of perceived length and orientation. The GLC has three parameters (slope and intercept of the linear bound and
s 2). In the diagonal conditions, a special case of the GLC assumes that observers use the linear bound that
maximizes accuracy (i.e., the diagonal bound shown in Figure 1B). This model has only one free parameter
(noise variance).

The general quadratic classifier (GQC). A natural extension of the GLC is to assume that the observer
uses a quadratic, rather than a linear, decision bound. This model also produces an information-integration
strategy, but the integration of perceived length and orientation is nonlinear. The GQC has six free parameters
(five describing the form of the decision bound and s2).

Model Fitting
Each of these models were fit separately to the data for every observer from the last pretransfer block (i.e.,

Block 10) and the first post-transfer block (i.e., Block 11). The model parameters were estimated using max-
imum likelihood (Ashby, 1992b; Wickens, 1982), and the goodness-of-fit statistic was

BIC = r lnN 2 2lnL,

where N is the sample size, r is the number of free parameters, and L is the likelihood of the model given the
data (Schwarz, 1978). The BIC statistic penalizes a model for bad fit and for extra free parameters. To find
the best model among a set of competitors, one simply computes a BIC value for each model and then chooses
the model with the smallest BIC.
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